summaryrefslogtreecommitdiff
path: root/arch/arm/include/asm/bitops.h
blob: e943e6cee254503cb642bf95caa573eca03de758 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/*
 * Copyright 1995, Russell King.
 * Various bits and pieces copyrights include:
 *  Linus Torvalds (test_bit).
 * Big endian support: Copyright 2001, Nicolas Pitre
 *  reworked by rmk.
 *
 * bit 0 is the LSB of an "unsigned long" quantity.
 *
 * Please note that the code in this file should never be included
 * from user space.  Many of these are not implemented in assembler
 * since they would be too costly.  Also, they require privileged
 * instructions (which are not available from user mode) to ensure
 * that they are atomic.
 */

#ifndef __ASM_ARM_BITOPS_H
#define __ASM_ARM_BITOPS_H

#ifdef __KERNEL__

#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif

#include <linux/compiler.h>
#include <linux/irqflags.h>
#include <asm/barrier.h>

/*
 * These functions are the basis of our bit ops.
 *
 * First, the atomic bitops. These use native endian.
 */
static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
{
	unsigned long flags;
	unsigned long mask = BIT_MASK(bit);

	p += BIT_WORD(bit);

	raw_local_irq_save(flags);
	*p |= mask;
	raw_local_irq_restore(flags);
}

static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
{
	unsigned long flags;
	unsigned long mask = BIT_MASK(bit);

	p += BIT_WORD(bit);

	raw_local_irq_save(flags);
	*p &= ~mask;
	raw_local_irq_restore(flags);
}

static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
{
	unsigned long flags;
	unsigned long mask = BIT_MASK(bit);

	p += BIT_WORD(bit);

	raw_local_irq_save(flags);
	*p ^= mask;
	raw_local_irq_restore(flags);
}

static inline int
____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
{
	unsigned long flags;
	unsigned int res;
	unsigned long mask = BIT_MASK(bit);

	p += BIT_WORD(bit);

	raw_local_irq_save(flags);
	res = *p;
	*p = res | mask;
	raw_local_irq_restore(flags);

	return (res & mask) != 0;
}

static inline int
____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
{
	unsigned long flags;
	unsigned int res;
	unsigned long mask = BIT_MASK(bit);

	p += BIT_WORD(bit);

	raw_local_irq_save(flags);
	res = *p;
	*p = res & ~mask;
	raw_local_irq_restore(flags);

	return (res & mask) != 0;
}

static inline int
____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
{
	unsigned long flags;
	unsigned int res;
	unsigned long mask = BIT_MASK(bit);

	p += BIT_WORD(bit);

	raw_local_irq_save(flags);
	res = *p;
	*p = res ^ mask;
	raw_local_irq_restore(flags);

	return (res & mask) != 0;
}

#include <asm-generic/bitops/non-atomic.h>

/*
 *  A note about Endian-ness.
 *  -------------------------
 *
 * When the ARM is put into big endian mode via CR15, the processor
 * merely swaps the order of bytes within words, thus:
 *
 *          ------------ physical data bus bits -----------
 *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
 * little     byte 3       byte 2       byte 1      byte 0
 * big        byte 0       byte 1       byte 2      byte 3
 *
 * This means that reading a 32-bit word at address 0 returns the same
 * value irrespective of the endian mode bit.
 *
 * Peripheral devices should be connected with the data bus reversed in
 * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
 * available from http://www.arm.com/.
 *
 * The following assumes that the data bus connectivity for big endian
 * mode has been followed.
 *
 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
 */

/*
 * Native endian assembly bitops.  nr = 0 -> word 0 bit 0.
 */
extern void _set_bit(int nr, volatile unsigned long * p);
extern void _clear_bit(int nr, volatile unsigned long * p);
extern void _change_bit(int nr, volatile unsigned long * p);
extern int _test_and_set_bit(int nr, volatile unsigned long * p);
extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
extern int _test_and_change_bit(int nr, volatile unsigned long * p);

/*
 * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
 */
extern int _find_first_zero_bit_le(const void * p, unsigned size);
extern int _find_next_zero_bit_le(const void * p, int size, int offset);
extern int _find_first_bit_le(const unsigned long *p, unsigned size);
extern int _find_next_bit_le(const unsigned long *p, int size, int offset);

/*
 * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
 */
extern int _find_first_zero_bit_be(const void * p, unsigned size);
extern int _find_next_zero_bit_be(const void * p, int size, int offset);
extern int _find_first_bit_be(const unsigned long *p, unsigned size);
extern int _find_next_bit_be(const unsigned long *p, int size, int offset);

#ifndef CONFIG_SMP
/*
 * The __* form of bitops are non-atomic and may be reordered.
 */
#define ATOMIC_BITOP(name,nr,p)			\
	(__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
#else
#define ATOMIC_BITOP(name,nr,p)		_##name(nr,p)
#endif

/*
 * Native endian atomic definitions.
 */
#define set_bit(nr,p)			ATOMIC_BITOP(set_bit,nr,p)
#define clear_bit(nr,p)			ATOMIC_BITOP(clear_bit,nr,p)
#define change_bit(nr,p)		ATOMIC_BITOP(change_bit,nr,p)
#define test_and_set_bit(nr,p)		ATOMIC_BITOP(test_and_set_bit,nr,p)
#define test_and_clear_bit(nr,p)	ATOMIC_BITOP(test_and_clear_bit,nr,p)
#define test_and_change_bit(nr,p)	ATOMIC_BITOP(test_and_change_bit,nr,p)

#ifndef __ARMEB__
/*
 * These are the little endian, atomic definitions.
 */
#define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz)
#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off)
#define find_first_bit(p,sz)		_find_first_bit_le(p,sz)
#define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off)

#else
/*
 * These are the big endian, atomic definitions.
 */
#define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz)
#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off)
#define find_first_bit(p,sz)		_find_first_bit_be(p,sz)
#define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off)

#endif

#if __LINUX_ARM_ARCH__ < 5

#include <asm-generic/bitops/ffz.h>
#include <asm-generic/bitops/__fls.h>
#include <asm-generic/bitops/__ffs.h>
#include <asm-generic/bitops/fls.h>
#include <asm-generic/bitops/ffs.h>

#else

static inline int constant_fls(int x)
{
	int r = 32;

	if (!x)
		return 0;
	if (!(x & 0xffff0000u)) {
		x <<= 16;
		r -= 16;
	}
	if (!(x & 0xff000000u)) {
		x <<= 8;
		r -= 8;
	}
	if (!(x & 0xf0000000u)) {
		x <<= 4;
		r -= 4;
	}
	if (!(x & 0xc0000000u)) {
		x <<= 2;
		r -= 2;
	}
	if (!(x & 0x80000000u)) {
		x <<= 1;
		r -= 1;
	}
	return r;
}

/*
 * On ARMv5 and above those functions can be implemented around the
 * clz instruction for much better code efficiency.  __clz returns
 * the number of leading zeros, zero input will return 32, and
 * 0x80000000 will return 0.
 */
static inline unsigned int __clz(unsigned int x)
{
	unsigned int ret;

	asm("clz\t%0, %1" : "=r" (ret) : "r" (x));

	return ret;
}

/*
 * fls() returns zero if the input is zero, otherwise returns the bit
 * position of the last set bit, where the LSB is 1 and MSB is 32.
 */
static inline int fls(int x)
{
	if (__builtin_constant_p(x))
	       return constant_fls(x);

	return 32 - __clz(x);
}

/*
 * __fls() returns the bit position of the last bit set, where the
 * LSB is 0 and MSB is 31.  Zero input is undefined.
 */
static inline unsigned long __fls(unsigned long x)
{
	return fls(x) - 1;
}

/*
 * ffs() returns zero if the input was zero, otherwise returns the bit
 * position of the first set bit, where the LSB is 1 and MSB is 32.
 */
static inline int ffs(int x)
{
	return fls(x & -x);
}

/*
 * __ffs() returns the bit position of the first bit set, where the
 * LSB is 0 and MSB is 31.  Zero input is undefined.
 */
static inline unsigned long __ffs(unsigned long x)
{
	return ffs(x) - 1;
}

#define ffz(x) __ffs( ~(x) )

#endif

#include <asm-generic/bitops/fls64.h>

#include <asm-generic/bitops/sched.h>
#include <asm-generic/bitops/hweight.h>
#include <asm-generic/bitops/lock.h>

#ifdef __ARMEB__

static inline int find_first_zero_bit_le(const void *p, unsigned size)
{
	return _find_first_zero_bit_le(p, size);
}
#define find_first_zero_bit_le find_first_zero_bit_le

static inline int find_next_zero_bit_le(const void *p, int size, int offset)
{
	return _find_next_zero_bit_le(p, size, offset);
}
#define find_next_zero_bit_le find_next_zero_bit_le

static inline int find_next_bit_le(const void *p, int size, int offset)
{
	return _find_next_bit_le(p, size, offset);
}
#define find_next_bit_le find_next_bit_le

#endif

#include <asm-generic/bitops/le.h>

/*
 * Ext2 is defined to use little-endian byte ordering.
 */
#include <asm-generic/bitops/ext2-atomic-setbit.h>

#endif /* __KERNEL__ */

#endif /* _ARM_BITOPS_H */