summaryrefslogtreecommitdiff
path: root/arch/arc/kernel/kprobes.c
blob: 7d3efe83cba7498627da4fd3dc24fab0df620132 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
 */

#include <linux/types.h>
#include <linux/kprobes.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/kdebug.h>
#include <linux/sched.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/current.h>
#include <asm/disasm.h>

#define MIN_STACK_SIZE(addr)	min((unsigned long)MAX_STACK_SIZE, \
		(unsigned long)current_thread_info() + THREAD_SIZE - (addr))

DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);

int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
	/* Attempt to probe at unaligned address */
	if ((unsigned long)p->addr & 0x01)
		return -EINVAL;

	/* Address should not be in exception handling code */

	p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
	p->opcode = *p->addr;

	return 0;
}

void __kprobes arch_arm_kprobe(struct kprobe *p)
{
	*p->addr = UNIMP_S_INSTRUCTION;

	flush_icache_range((unsigned long)p->addr,
			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
}

void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
	*p->addr = p->opcode;

	flush_icache_range((unsigned long)p->addr,
			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
}

void __kprobes arch_remove_kprobe(struct kprobe *p)
{
	arch_disarm_kprobe(p);

	/* Can we remove the kprobe in the middle of kprobe handling? */
	if (p->ainsn.t1_addr) {
		*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;

		flush_icache_range((unsigned long)p->ainsn.t1_addr,
				   (unsigned long)p->ainsn.t1_addr +
				   sizeof(kprobe_opcode_t));

		p->ainsn.t1_addr = NULL;
	}

	if (p->ainsn.t2_addr) {
		*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;

		flush_icache_range((unsigned long)p->ainsn.t2_addr,
				   (unsigned long)p->ainsn.t2_addr +
				   sizeof(kprobe_opcode_t));

		p->ainsn.t2_addr = NULL;
	}
}

static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
}

static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
	kcb->kprobe_status = kcb->prev_kprobe.status;
}

static inline void __kprobes set_current_kprobe(struct kprobe *p)
{
	__this_cpu_write(current_kprobe, p);
}

static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
				       struct pt_regs *regs)
{
	/* Remove the trap instructions inserted for single step and
	 * restore the original instructions
	 */
	if (p->ainsn.t1_addr) {
		*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;

		flush_icache_range((unsigned long)p->ainsn.t1_addr,
				   (unsigned long)p->ainsn.t1_addr +
				   sizeof(kprobe_opcode_t));

		p->ainsn.t1_addr = NULL;
	}

	if (p->ainsn.t2_addr) {
		*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;

		flush_icache_range((unsigned long)p->ainsn.t2_addr,
				   (unsigned long)p->ainsn.t2_addr +
				   sizeof(kprobe_opcode_t));

		p->ainsn.t2_addr = NULL;
	}

	return;
}

static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
{
	unsigned long next_pc;
	unsigned long tgt_if_br = 0;
	int is_branch;
	unsigned long bta;

	/* Copy the opcode back to the kprobe location and execute the
	 * instruction. Because of this we will not be able to get into the
	 * same kprobe until this kprobe is done
	 */
	*(p->addr) = p->opcode;

	flush_icache_range((unsigned long)p->addr,
			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));

	/* Now we insert the trap at the next location after this instruction to
	 * single step. If it is a branch we insert the trap at possible branch
	 * targets
	 */

	bta = regs->bta;

	if (regs->status32 & 0x40) {
		/* We are in a delay slot with the branch taken */

		next_pc = bta & ~0x01;

		if (!p->ainsn.is_short) {
			if (bta & 0x01)
				regs->blink += 2;
			else {
				/* Branch not taken */
				next_pc += 2;

				/* next pc is taken from bta after executing the
				 * delay slot instruction
				 */
				regs->bta += 2;
			}
		}

		is_branch = 0;
	} else
		is_branch =
		    disasm_next_pc((unsigned long)p->addr, regs,
			(struct callee_regs *) current->thread.callee_reg,
			&next_pc, &tgt_if_br);

	p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
	p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
	*(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;

	flush_icache_range((unsigned long)p->ainsn.t1_addr,
			   (unsigned long)p->ainsn.t1_addr +
			   sizeof(kprobe_opcode_t));

	if (is_branch) {
		p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
		p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
		*(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;

		flush_icache_range((unsigned long)p->ainsn.t2_addr,
				   (unsigned long)p->ainsn.t2_addr +
				   sizeof(kprobe_opcode_t));
	}
}

int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
{
	struct kprobe *p;
	struct kprobe_ctlblk *kcb;

	preempt_disable();

	kcb = get_kprobe_ctlblk();
	p = get_kprobe((unsigned long *)addr);

	if (p) {
		/*
		 * We have reentered the kprobe_handler, since another kprobe
		 * was hit while within the handler, we save the original
		 * kprobes and single step on the instruction of the new probe
		 * without calling any user handlers to avoid recursive
		 * kprobes.
		 */
		if (kprobe_running()) {
			save_previous_kprobe(kcb);
			set_current_kprobe(p);
			kprobes_inc_nmissed_count(p);
			setup_singlestep(p, regs);
			kcb->kprobe_status = KPROBE_REENTER;
			return 1;
		}

		set_current_kprobe(p);
		kcb->kprobe_status = KPROBE_HIT_ACTIVE;

		/* If we have no pre-handler or it returned 0, we continue with
		 * normal processing. If we have a pre-handler and it returned
		 * non-zero - which means user handler setup registers to exit
		 * to another instruction, we must skip the single stepping.
		 */
		if (!p->pre_handler || !p->pre_handler(p, regs)) {
			setup_singlestep(p, regs);
			kcb->kprobe_status = KPROBE_HIT_SS;
		} else {
			reset_current_kprobe();
			preempt_enable_no_resched();
		}

		return 1;
	}

	/* no_kprobe: */
	preempt_enable_no_resched();
	return 0;
}

static int __kprobes arc_post_kprobe_handler(unsigned long addr,
					 struct pt_regs *regs)
{
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
		return 0;

	resume_execution(cur, addr, regs);

	/* Rearm the kprobe */
	arch_arm_kprobe(cur);

	/*
	 * When we return from trap instruction we go to the next instruction
	 * We restored the actual instruction in resume_exectuiont and we to
	 * return to the same address and execute it
	 */
	regs->ret = addr;

	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
	}

	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
		goto out;
	}

	reset_current_kprobe();

out:
	preempt_enable_no_resched();
	return 1;
}

/*
 * Fault can be for the instruction being single stepped or for the
 * pre/post handlers in the module.
 * This is applicable for applications like user probes, where we have the
 * probe in user space and the handlers in the kernel
 */

int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
{
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	switch (kcb->kprobe_status) {
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
		/*
		 * We are here because the instruction being single stepped
		 * caused the fault. We reset the current kprobe and allow the
		 * exception handler as if it is regular exception. In our
		 * case it doesn't matter because the system will be halted
		 */
		resume_execution(cur, (unsigned long)cur->addr, regs);

		if (kcb->kprobe_status == KPROBE_REENTER)
			restore_previous_kprobe(kcb);
		else
			reset_current_kprobe();

		preempt_enable_no_resched();
		break;

	case KPROBE_HIT_ACTIVE:
	case KPROBE_HIT_SSDONE:
		/*
		 * We are here because the instructions in the pre/post handler
		 * caused the fault.
		 */

		/* We increment the nmissed count for accounting,
		 * we can also use npre/npostfault count for accounting
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
			return 1;

		/*
		 * In case the user-specified fault handler returned zero,
		 * try to fix up.
		 */
		if (fixup_exception(regs))
			return 1;

		/*
		 * fixup_exception() could not handle it,
		 * Let do_page_fault() fix it.
		 */
		break;

	default:
		break;
	}
	return 0;
}

int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
{
	struct die_args *args = data;
	unsigned long addr = args->err;
	int ret = NOTIFY_DONE;

	switch (val) {
	case DIE_IERR:
		if (arc_kprobe_handler(addr, args->regs))
			return NOTIFY_STOP;
		break;

	case DIE_TRAP:
		if (arc_post_kprobe_handler(addr, args->regs))
			return NOTIFY_STOP;
		break;

	default:
		break;
	}

	return ret;
}

static void __used kretprobe_trampoline_holder(void)
{
	__asm__ __volatile__(".global kretprobe_trampoline\n"
			     "kretprobe_trampoline:\n" "nop\n");
}

void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
				      struct pt_regs *regs)
{

	ri->ret_addr = (kprobe_opcode_t *) regs->blink;

	/* Replace the return addr with trampoline addr */
	regs->blink = (unsigned long)&kretprobe_trampoline;
}

static int __kprobes trampoline_probe_handler(struct kprobe *p,
					      struct pt_regs *regs)
{
	struct kretprobe_instance *ri = NULL;
	struct hlist_head *head, empty_rp;
	struct hlist_node *tmp;
	unsigned long flags, orig_ret_address = 0;
	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;

	INIT_HLIST_HEAD(&empty_rp);
	kretprobe_hash_lock(current, &head, &flags);

	/*
	 * It is possible to have multiple instances associated with a given
	 * task either because an multiple functions in the call path
	 * have a return probe installed on them, and/or more than one return
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
	 *     - instances are always inserted at the head of the list
	 *     - when multiple return probes are registered for the same
	 *       function, the first instance's ret_addr will point to the
	 *       real return address, and all the rest will point to
	 *       kretprobe_trampoline
	 */
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
		if (ri->task != current)
			/* another task is sharing our hash bucket */
			continue;

		if (ri->rp && ri->rp->handler)
			ri->rp->handler(ri, regs);

		orig_ret_address = (unsigned long)ri->ret_addr;
		recycle_rp_inst(ri, &empty_rp);

		if (orig_ret_address != trampoline_address) {
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
		}
	}

	kretprobe_assert(ri, orig_ret_address, trampoline_address);
	regs->ret = orig_ret_address;

	kretprobe_hash_unlock(current, &flags);

	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
		hlist_del(&ri->hlist);
		kfree(ri);
	}

	/* By returning a non zero value, we are telling the kprobe handler
	 * that we don't want the post_handler to run
	 */
	return 1;
}

static struct kprobe trampoline_p = {
	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
	.pre_handler = trampoline_probe_handler
};

int __init arch_init_kprobes(void)
{
	/* Registering the trampoline code for the kret probe */
	return register_kprobe(&trampoline_p);
}

int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
	if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline)
		return 1;

	return 0;
}

void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
{
	notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
}