summaryrefslogtreecommitdiff
path: root/arch/alpha/kernel/time.c
blob: 75480cab0893c391619e681bdc1ee6dd6adbf7ed (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/*
 *  linux/arch/alpha/kernel/time.c
 *
 *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
 *
 * This file contains the PC-specific time handling details:
 * reading the RTC at bootup, etc..
 * 1994-07-02    Alan Modra
 *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 * 1995-03-26    Markus Kuhn
 *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
 *      precision CMOS clock update
 * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
 *		"A Kernel Model for Precision Timekeeping" by Dave Mills
 * 1997-01-09    Adrian Sun
 *      use interval timer if CONFIG_RTC=y
 * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
 *      fixed tick loss calculation in timer_interrupt
 *      (round system clock to nearest tick instead of truncating)
 *      fixed algorithm in time_init for getting time from CMOS clock
 * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
 *	fixed algorithm in do_gettimeofday() for calculating the precise time
 *	from processor cycle counter (now taking lost_ticks into account)
 * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
 * 	Fixed time_init to be aware of epoches != 1900. This prevents
 * 	booting up in 2048 for me;) Code is stolen from rtc.c.
 * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
 *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
 */
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/bcd.h>
#include <linux/profile.h>

#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/hwrpb.h>
#include <asm/8253pit.h>

#include <linux/mc146818rtc.h>
#include <linux/time.h>
#include <linux/timex.h>

#include "proto.h"
#include "irq_impl.h"

static int set_rtc_mmss(unsigned long);

DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);

#define TICK_SIZE (tick_nsec / 1000)

/*
 * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
 * for large CPU clock rates.
 */
#define FIX_SHIFT	48

/* lump static variables together for more efficient access: */
static struct {
	/* cycle counter last time it got invoked */
	__u32 last_time;
	/* ticks/cycle * 2^48 */
	unsigned long scaled_ticks_per_cycle;
	/* last time the CMOS clock got updated */
	time_t last_rtc_update;
	/* partial unused tick */
	unsigned long partial_tick;
} state;

unsigned long est_cycle_freq;


static inline __u32 rpcc(void)
{
    __u32 result;
    asm volatile ("rpcc %0" : "=r"(result));
    return result;
}

/*
 * timer_interrupt() needs to keep up the real-time clock,
 * as well as call the "do_timer()" routine every clocktick
 */
irqreturn_t timer_interrupt(int irq, void *dev)
{
	unsigned long delta;
	__u32 now;
	long nticks;

#ifndef CONFIG_SMP
	/* Not SMP, do kernel PC profiling here.  */
	profile_tick(CPU_PROFILING);
#endif

	write_seqlock(&xtime_lock);

	/*
	 * Calculate how many ticks have passed since the last update,
	 * including any previous partial leftover.  Save any resulting
	 * fraction for the next pass.
	 */
	now = rpcc();
	delta = now - state.last_time;
	state.last_time = now;
	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 
	nticks = delta >> FIX_SHIFT;

	if (nticks)
		do_timer(nticks);

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 */
	if (ntp_synced()
	    && xtime.tv_sec > state.last_rtc_update + 660
	    && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
	    && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
		int tmp = set_rtc_mmss(xtime.tv_sec);
		state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
	}

	write_sequnlock(&xtime_lock);

#ifndef CONFIG_SMP
	while (nticks--)
		update_process_times(user_mode(get_irq_regs()));
#endif

	return IRQ_HANDLED;
}

void __init
common_init_rtc(void)
{
	unsigned char x;

	/* Reset periodic interrupt frequency.  */
	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
        /* Test includes known working values on various platforms
           where 0x26 is wrong; we refuse to change those. */
	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
	}

	/* Turn on periodic interrupts.  */
	x = CMOS_READ(RTC_CONTROL);
	if (!(x & RTC_PIE)) {
		printk("Turning on RTC interrupts.\n");
		x |= RTC_PIE;
		x &= ~(RTC_AIE | RTC_UIE);
		CMOS_WRITE(x, RTC_CONTROL);
	}
	(void) CMOS_READ(RTC_INTR_FLAGS);

	outb(0x36, 0x43);	/* pit counter 0: system timer */
	outb(0x00, 0x40);
	outb(0x00, 0x40);

	outb(0xb6, 0x43);	/* pit counter 2: speaker */
	outb(0x31, 0x42);
	outb(0x13, 0x42);

	init_rtc_irq();
}


/* Validate a computed cycle counter result against the known bounds for
   the given processor core.  There's too much brokenness in the way of
   timing hardware for any one method to work everywhere.  :-(

   Return 0 if the result cannot be trusted, otherwise return the argument.  */

static unsigned long __init
validate_cc_value(unsigned long cc)
{
	static struct bounds {
		unsigned int min, max;
	} cpu_hz[] __initdata = {
		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
		[EV4_CPU]    = {  100000000,  300000000 },
		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
		[EV45_CPU]   = {  200000000,  300000000 },
		[EV5_CPU]    = {  250000000,  433000000 },
		[EV56_CPU]   = {  333000000,  667000000 },
		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
		[EV6_CPU]    = {  466000000,  600000000 },
		[EV67_CPU]   = {  600000000,  750000000 },
		[EV68AL_CPU] = {  750000000,  940000000 },
		[EV68CB_CPU] = { 1000000000, 1333333333 },
		/* None of the following are shipping as of 2001-11-01.  */
		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
	};

	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
	const unsigned int deviation = 10000000;

	struct percpu_struct *cpu;
	unsigned int index;

	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
	index = cpu->type & 0xffffffff;

	/* If index out of bounds, no way to validate.  */
	if (index >= ARRAY_SIZE(cpu_hz))
		return cc;

	/* If index contains no data, no way to validate.  */
	if (cpu_hz[index].max == 0)
		return cc;

	if (cc < cpu_hz[index].min - deviation
	    || cc > cpu_hz[index].max + deviation)
		return 0;

	return cc;
}


/*
 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
 * arch/i386/time.c.
 */

#define CALIBRATE_LATCH	0xffff
#define TIMEOUT_COUNT	0x100000

static unsigned long __init
calibrate_cc_with_pit(void)
{
	int cc, count = 0;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Now let's take care of CTC channel 2
	 *
	 * Set the Gate high, program CTC channel 2 for mode 0,
	 * (interrupt on terminal count mode), binary count,
	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */

	cc = rpcc();
	do {
		count++;
	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
	cc = rpcc() - cc;

	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
	if (count <= 1 || count == TIMEOUT_COUNT)
		return 0;

	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
}

/* The Linux interpretation of the CMOS clock register contents:
   When the Update-In-Progress (UIP) flag goes from 1 to 0, the
   RTC registers show the second which has precisely just started.
   Let's hope other operating systems interpret the RTC the same way.  */

static unsigned long __init
rpcc_after_update_in_progress(void)
{
	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);

	return rpcc();
}

void __init
time_init(void)
{
	unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
	unsigned long cycle_freq, tolerance;
	long diff;

	/* Calibrate CPU clock -- attempt #1.  */
	if (!est_cycle_freq)
		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());

	cc1 = rpcc();

	/* Calibrate CPU clock -- attempt #2.  */
	if (!est_cycle_freq) {
		cc1 = rpcc_after_update_in_progress();
		cc2 = rpcc_after_update_in_progress();
		est_cycle_freq = validate_cc_value(cc2 - cc1);
		cc1 = cc2;
	}

	cycle_freq = hwrpb->cycle_freq;
	if (est_cycle_freq) {
		/* If the given value is within 250 PPM of what we calculated,
		   accept it.  Otherwise, use what we found.  */
		tolerance = cycle_freq / 4000;
		diff = cycle_freq - est_cycle_freq;
		if (diff < 0)
			diff = -diff;
		if ((unsigned long)diff > tolerance) {
			cycle_freq = est_cycle_freq;
			printk("HWRPB cycle frequency bogus.  "
			       "Estimated %lu Hz\n", cycle_freq);
		} else {
			est_cycle_freq = 0;
		}
	} else if (! validate_cc_value (cycle_freq)) {
		printk("HWRPB cycle frequency bogus, "
		       "and unable to estimate a proper value!\n");
	}

	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
	   to settle, as the Update-In-Progress bit going low isn't good
	   enough on some hardware.  2ms is our guess; we haven't found 
	   bogomips yet, but this is close on a 500Mhz box.  */
	__delay(1000000);

	sec = CMOS_READ(RTC_SECONDS);
	min = CMOS_READ(RTC_MINUTES);
	hour = CMOS_READ(RTC_HOURS);
	day = CMOS_READ(RTC_DAY_OF_MONTH);
	mon = CMOS_READ(RTC_MONTH);
	year = CMOS_READ(RTC_YEAR);

	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
		BCD_TO_BIN(sec);
		BCD_TO_BIN(min);
		BCD_TO_BIN(hour);
		BCD_TO_BIN(day);
		BCD_TO_BIN(mon);
		BCD_TO_BIN(year);
	}

	/* PC-like is standard; used for year >= 70 */
	epoch = 1900;
	if (year < 20)
		epoch = 2000;
	else if (year >= 20 && year < 48)
		/* NT epoch */
		epoch = 1980;
	else if (year >= 48 && year < 70)
		/* Digital UNIX epoch */
		epoch = 1952;

	printk(KERN_INFO "Using epoch = %d\n", epoch);

	if ((year += epoch) < 1970)
		year += 100;

	xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
	xtime.tv_nsec = 0;

        wall_to_monotonic.tv_sec -= xtime.tv_sec;
        wall_to_monotonic.tv_nsec = 0;

	if (HZ > (1<<16)) {
		extern void __you_loose (void);
		__you_loose();
	}

	state.last_time = cc1;
	state.scaled_ticks_per_cycle
		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
	state.last_rtc_update = 0;
	state.partial_tick = 0L;

	/* Startup the timer source. */
	alpha_mv.init_rtc();
}

/*
 * Use the cycle counter to estimate an displacement from the last time
 * tick.  Unfortunately the Alpha designers made only the low 32-bits of
 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
 * part.  So we can't do the "find absolute time in terms of cycles" thing
 * that the other ports do.
 */
void
do_gettimeofday(struct timeval *tv)
{
	unsigned long flags;
	unsigned long sec, usec, seq;
	unsigned long delta_cycles, delta_usec, partial_tick;

	do {
		seq = read_seqbegin_irqsave(&xtime_lock, flags);

		delta_cycles = rpcc() - state.last_time;
		sec = xtime.tv_sec;
		usec = (xtime.tv_nsec / 1000);
		partial_tick = state.partial_tick;

	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));

#ifdef CONFIG_SMP
	/* Until and unless we figure out how to get cpu cycle counters
	   in sync and keep them there, we can't use the rpcc tricks.  */
	delta_usec = 0;
#else
	/*
	 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
	 *	= cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
	 *	= cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
	 *
	 * which, given a 600MHz cycle and a 1024Hz tick, has a
	 * dynamic range of about 1.7e17, which is less than the
	 * 1.8e19 in an unsigned long, so we are safe from overflow.
	 *
	 * Round, but with .5 up always, since .5 to even is harder
	 * with no clear gain.
	 */

	delta_usec = (delta_cycles * state.scaled_ticks_per_cycle 
		      + partial_tick) * 15625;
	delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
#endif

	usec += delta_usec;
	if (usec >= 1000000) {
		sec += 1;
		usec -= 1000000;
	}

	tv->tv_sec = sec;
	tv->tv_usec = usec;
}

EXPORT_SYMBOL(do_gettimeofday);

int
do_settimeofday(struct timespec *tv)
{
	time_t wtm_sec, sec = tv->tv_sec;
	long wtm_nsec, nsec = tv->tv_nsec;
	unsigned long delta_nsec;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irq(&xtime_lock);

	/* The offset that is added into time in do_gettimeofday above
	   must be subtracted out here to keep a coherent view of the
	   time.  Without this, a full-tick error is possible.  */

#ifdef CONFIG_SMP
	delta_nsec = 0;
#else
	delta_nsec = rpcc() - state.last_time;
	delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle 
		      + state.partial_tick) * 15625;
	delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
	delta_nsec *= 1000;
#endif

	nsec -= delta_nsec;

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);

	set_normalized_timespec(&xtime, sec, nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

	ntp_clear();

	write_sequnlock_irq(&xtime_lock);
	clock_was_set();
	return 0;
}

EXPORT_SYMBOL(do_settimeofday);


/*
 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
 * called 500 ms after the second nowtime has started, because when
 * nowtime is written into the registers of the CMOS clock, it will
 * jump to the next second precisely 500 ms later. Check the Motorola
 * MC146818A or Dallas DS12887 data sheet for details.
 *
 * BUG: This routine does not handle hour overflow properly; it just
 *      sets the minutes. Usually you won't notice until after reboot!
 */


static int
set_rtc_mmss(unsigned long nowtime)
{
	int retval = 0;
	int real_seconds, real_minutes, cmos_minutes;
	unsigned char save_control, save_freq_select;

	/* irq are locally disabled here */
	spin_lock(&rtc_lock);
	/* Tell the clock it's being set */
	save_control = CMOS_READ(RTC_CONTROL);
	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);

	/* Stop and reset prescaler */
	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);

	cmos_minutes = CMOS_READ(RTC_MINUTES);
	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
		BCD_TO_BIN(cmos_minutes);

	/*
	 * since we're only adjusting minutes and seconds,
	 * don't interfere with hour overflow. This avoids
	 * messing with unknown time zones but requires your
	 * RTC not to be off by more than 15 minutes
	 */
	real_seconds = nowtime % 60;
	real_minutes = nowtime / 60;
	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
		/* correct for half hour time zone */
		real_minutes += 30;
	}
	real_minutes %= 60;

	if (abs(real_minutes - cmos_minutes) < 30) {
		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
			BIN_TO_BCD(real_seconds);
			BIN_TO_BCD(real_minutes);
		}
		CMOS_WRITE(real_seconds,RTC_SECONDS);
		CMOS_WRITE(real_minutes,RTC_MINUTES);
	} else {
		printk(KERN_WARNING
		       "set_rtc_mmss: can't update from %d to %d\n",
		       cmos_minutes, real_minutes);
 		retval = -1;
	}

	/* The following flags have to be released exactly in this order,
	 * otherwise the DS12887 (popular MC146818A clone with integrated
	 * battery and quartz) will not reset the oscillator and will not
	 * update precisely 500 ms later. You won't find this mentioned in
	 * the Dallas Semiconductor data sheets, but who believes data
	 * sheets anyway ...                           -- Markus Kuhn
	 */
	CMOS_WRITE(save_control, RTC_CONTROL);
	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
	spin_unlock(&rtc_lock);

	return retval;
}