summaryrefslogtreecommitdiff
path: root/arch/alpha/kernel/pci_iommu.c
blob: 022c2748fa410569230094097bb491c8d8595839 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
/*
 *	linux/arch/alpha/kernel/pci_iommu.c
 */

#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bootmem.h>
#include <linux/scatterlist.h>
#include <linux/log2.h>
#include <linux/dma-mapping.h>
#include <linux/iommu-helper.h>

#include <asm/io.h>
#include <asm/hwrpb.h>

#include "proto.h"
#include "pci_impl.h"


#define DEBUG_ALLOC 0
#if DEBUG_ALLOC > 0
# define DBGA(args...)		printk(KERN_DEBUG args)
#else
# define DBGA(args...)
#endif
#if DEBUG_ALLOC > 1
# define DBGA2(args...)		printk(KERN_DEBUG args)
#else
# define DBGA2(args...)
#endif

#define DEBUG_NODIRECT 0

#define ISA_DMA_MASK		0x00ffffff

static inline unsigned long
mk_iommu_pte(unsigned long paddr)
{
	return (paddr >> (PAGE_SHIFT-1)) | 1;
}

/* Return the minimum of MAX or the first power of two larger
   than main memory.  */

unsigned long
size_for_memory(unsigned long max)
{
	unsigned long mem = max_low_pfn << PAGE_SHIFT;
	if (mem < max)
		max = roundup_pow_of_two(mem);
	return max;
}

struct pci_iommu_arena * __init
iommu_arena_new_node(int nid, struct pci_controller *hose, dma_addr_t base,
		     unsigned long window_size, unsigned long align)
{
	unsigned long mem_size;
	struct pci_iommu_arena *arena;

	mem_size = window_size / (PAGE_SIZE / sizeof(unsigned long));

	/* Note that the TLB lookup logic uses bitwise concatenation,
	   not addition, so the required arena alignment is based on
	   the size of the window.  Retain the align parameter so that
	   particular systems can over-align the arena.  */
	if (align < mem_size)
		align = mem_size;


#ifdef CONFIG_DISCONTIGMEM

	arena = alloc_bootmem_node(NODE_DATA(nid), sizeof(*arena));
	if (!NODE_DATA(nid) || !arena) {
		printk("%s: couldn't allocate arena from node %d\n"
		       "    falling back to system-wide allocation\n",
		       __func__, nid);
		arena = alloc_bootmem(sizeof(*arena));
	}

	arena->ptes = __alloc_bootmem_node(NODE_DATA(nid), mem_size, align, 0);
	if (!NODE_DATA(nid) || !arena->ptes) {
		printk("%s: couldn't allocate arena ptes from node %d\n"
		       "    falling back to system-wide allocation\n",
		       __func__, nid);
		arena->ptes = __alloc_bootmem(mem_size, align, 0);
	}

#else /* CONFIG_DISCONTIGMEM */

	arena = alloc_bootmem(sizeof(*arena));
	arena->ptes = __alloc_bootmem(mem_size, align, 0);

#endif /* CONFIG_DISCONTIGMEM */

	spin_lock_init(&arena->lock);
	arena->hose = hose;
	arena->dma_base = base;
	arena->size = window_size;
	arena->next_entry = 0;

	/* Align allocations to a multiple of a page size.  Not needed
	   unless there are chip bugs.  */
	arena->align_entry = 1;

	return arena;
}

struct pci_iommu_arena * __init
iommu_arena_new(struct pci_controller *hose, dma_addr_t base,
		unsigned long window_size, unsigned long align)
{
	return iommu_arena_new_node(0, hose, base, window_size, align);
}

/* Must be called with the arena lock held */
static long
iommu_arena_find_pages(struct device *dev, struct pci_iommu_arena *arena,
		       long n, long mask)
{
	unsigned long *ptes;
	long i, p, nent;
	int pass = 0;
	unsigned long base;
	unsigned long boundary_size;

	base = arena->dma_base >> PAGE_SHIFT;
	if (dev) {
		boundary_size = dma_get_seg_boundary(dev) + 1;
		boundary_size >>= PAGE_SHIFT;
	} else {
		boundary_size = 1UL << (32 - PAGE_SHIFT);
	}

	/* Search forward for the first mask-aligned sequence of N free ptes */
	ptes = arena->ptes;
	nent = arena->size >> PAGE_SHIFT;
	p = ALIGN(arena->next_entry, mask + 1);
	i = 0;

again:
	while (i < n && p+i < nent) {
		if (!i && iommu_is_span_boundary(p, n, base, boundary_size)) {
			p = ALIGN(p + 1, mask + 1);
			goto again;
		}

		if (ptes[p+i])
			p = ALIGN(p + i + 1, mask + 1), i = 0;
		else
			i = i + 1;
	}

	if (i < n) {
		if (pass < 1) {
			/*
			 * Reached the end.  Flush the TLB and restart
			 * the search from the beginning.
			*/
			alpha_mv.mv_pci_tbi(arena->hose, 0, -1);

			pass++;
			p = 0;
			i = 0;
			goto again;
		} else
			return -1;
	}

	/* Success. It's the responsibility of the caller to mark them
	   in use before releasing the lock */
	return p;
}

static long
iommu_arena_alloc(struct device *dev, struct pci_iommu_arena *arena, long n,
		  unsigned int align)
{
	unsigned long flags;
	unsigned long *ptes;
	long i, p, mask;

	spin_lock_irqsave(&arena->lock, flags);

	/* Search for N empty ptes */
	ptes = arena->ptes;
	mask = max(align, arena->align_entry) - 1;
	p = iommu_arena_find_pages(dev, arena, n, mask);
	if (p < 0) {
		spin_unlock_irqrestore(&arena->lock, flags);
		return -1;
	}

	/* Success.  Mark them all in use, ie not zero and invalid
	   for the iommu tlb that could load them from under us.
	   The chip specific bits will fill this in with something
	   kosher when we return.  */
	for (i = 0; i < n; ++i)
		ptes[p+i] = IOMMU_INVALID_PTE;

	arena->next_entry = p + n;
	spin_unlock_irqrestore(&arena->lock, flags);

	return p;
}

static void
iommu_arena_free(struct pci_iommu_arena *arena, long ofs, long n)
{
	unsigned long *p;
	long i;

	p = arena->ptes + ofs;
	for (i = 0; i < n; ++i)
		p[i] = 0;
}

/*
 * True if the machine supports DAC addressing, and DEV can
 * make use of it given MASK.
 */
static int pci_dac_dma_supported(struct pci_dev *dev, u64 mask)
{
	dma_addr_t dac_offset = alpha_mv.pci_dac_offset;
	int ok = 1;

	/* If this is not set, the machine doesn't support DAC at all.  */
	if (dac_offset == 0)
		ok = 0;

	/* The device has to be able to address our DAC bit.  */
	if ((dac_offset & dev->dma_mask) != dac_offset)
		ok = 0;

	/* If both conditions above are met, we are fine. */
	DBGA("pci_dac_dma_supported %s from %p\n",
	     ok ? "yes" : "no", __builtin_return_address(0));

	return ok;
}

/* Map a single buffer of the indicated size for PCI DMA in streaming
   mode.  The 32-bit PCI bus mastering address to use is returned.
   Once the device is given the dma address, the device owns this memory
   until either pci_unmap_single or pci_dma_sync_single is performed.  */

static dma_addr_t
pci_map_single_1(struct pci_dev *pdev, void *cpu_addr, size_t size,
		 int dac_allowed)
{
	struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose;
	dma_addr_t max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK;
	struct pci_iommu_arena *arena;
	long npages, dma_ofs, i;
	unsigned long paddr;
	dma_addr_t ret;
	unsigned int align = 0;
	struct device *dev = pdev ? &pdev->dev : NULL;

	paddr = __pa(cpu_addr);

#if !DEBUG_NODIRECT
	/* First check to see if we can use the direct map window.  */
	if (paddr + size + __direct_map_base - 1 <= max_dma
	    && paddr + size <= __direct_map_size) {
		ret = paddr + __direct_map_base;

		DBGA2("pci_map_single: [%p,%zx] -> direct %llx from %p\n",
		      cpu_addr, size, ret, __builtin_return_address(0));

		return ret;
	}
#endif

	/* Next, use DAC if selected earlier.  */
	if (dac_allowed) {
		ret = paddr + alpha_mv.pci_dac_offset;

		DBGA2("pci_map_single: [%p,%zx] -> DAC %llx from %p\n",
		      cpu_addr, size, ret, __builtin_return_address(0));

		return ret;
	}

	/* If the machine doesn't define a pci_tbi routine, we have to
	   assume it doesn't support sg mapping, and, since we tried to
	   use direct_map above, it now must be considered an error. */
	if (! alpha_mv.mv_pci_tbi) {
		printk_once(KERN_WARNING "pci_map_single: no HW sg\n");
		return 0;
	}

	arena = hose->sg_pci;
	if (!arena || arena->dma_base + arena->size - 1 > max_dma)
		arena = hose->sg_isa;

	npages = iommu_num_pages(paddr, size, PAGE_SIZE);

	/* Force allocation to 64KB boundary for ISA bridges. */
	if (pdev && pdev == isa_bridge)
		align = 8;
	dma_ofs = iommu_arena_alloc(dev, arena, npages, align);
	if (dma_ofs < 0) {
		printk(KERN_WARNING "pci_map_single failed: "
		       "could not allocate dma page tables\n");
		return 0;
	}

	paddr &= PAGE_MASK;
	for (i = 0; i < npages; ++i, paddr += PAGE_SIZE)
		arena->ptes[i + dma_ofs] = mk_iommu_pte(paddr);

	ret = arena->dma_base + dma_ofs * PAGE_SIZE;
	ret += (unsigned long)cpu_addr & ~PAGE_MASK;

	DBGA2("pci_map_single: [%p,%zx] np %ld -> sg %llx from %p\n",
	      cpu_addr, size, npages, ret, __builtin_return_address(0));

	return ret;
}

/* Helper for generic DMA-mapping functions. */
static struct pci_dev *alpha_gendev_to_pci(struct device *dev)
{
	if (dev && dev->bus == &pci_bus_type)
		return to_pci_dev(dev);

	/* Assume that non-PCI devices asking for DMA are either ISA or EISA,
	   BUG() otherwise. */
	BUG_ON(!isa_bridge);

	/* Assume non-busmaster ISA DMA when dma_mask is not set (the ISA
	   bridge is bus master then). */
	if (!dev || !dev->dma_mask || !*dev->dma_mask)
		return isa_bridge;

	/* For EISA bus masters, return isa_bridge (it might have smaller
	   dma_mask due to wiring limitations). */
	if (*dev->dma_mask >= isa_bridge->dma_mask)
		return isa_bridge;

	/* This assumes ISA bus master with dma_mask 0xffffff. */
	return NULL;
}

static dma_addr_t alpha_pci_map_page(struct device *dev, struct page *page,
				     unsigned long offset, size_t size,
				     enum dma_data_direction dir,
				     struct dma_attrs *attrs)
{
	struct pci_dev *pdev = alpha_gendev_to_pci(dev);
	int dac_allowed;

	if (dir == PCI_DMA_NONE)
		BUG();

	dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; 
	return pci_map_single_1(pdev, (char *)page_address(page) + offset, 
				size, dac_allowed);
}

/* Unmap a single streaming mode DMA translation.  The DMA_ADDR and
   SIZE must match what was provided for in a previous pci_map_single
   call.  All other usages are undefined.  After this call, reads by
   the cpu to the buffer are guaranteed to see whatever the device
   wrote there.  */

static void alpha_pci_unmap_page(struct device *dev, dma_addr_t dma_addr,
				 size_t size, enum dma_data_direction dir,
				 struct dma_attrs *attrs)
{
	unsigned long flags;
	struct pci_dev *pdev = alpha_gendev_to_pci(dev);
	struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose;
	struct pci_iommu_arena *arena;
	long dma_ofs, npages;

	if (dir == PCI_DMA_NONE)
		BUG();

	if (dma_addr >= __direct_map_base
	    && dma_addr < __direct_map_base + __direct_map_size) {
		/* Nothing to do.  */

		DBGA2("pci_unmap_single: direct [%llx,%zx] from %p\n",
		      dma_addr, size, __builtin_return_address(0));

		return;
	}

	if (dma_addr > 0xffffffff) {
		DBGA2("pci64_unmap_single: DAC [%llx,%zx] from %p\n",
		      dma_addr, size, __builtin_return_address(0));
		return;
	}

	arena = hose->sg_pci;
	if (!arena || dma_addr < arena->dma_base)
		arena = hose->sg_isa;

	dma_ofs = (dma_addr - arena->dma_base) >> PAGE_SHIFT;
	if (dma_ofs * PAGE_SIZE >= arena->size) {
		printk(KERN_ERR "Bogus pci_unmap_single: dma_addr %llx "
		       " base %llx size %x\n",
		       dma_addr, arena->dma_base, arena->size);
		return;
		BUG();
	}

	npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);

	spin_lock_irqsave(&arena->lock, flags);

	iommu_arena_free(arena, dma_ofs, npages);

        /* If we're freeing ptes above the `next_entry' pointer (they
           may have snuck back into the TLB since the last wrap flush),
           we need to flush the TLB before reallocating the latter.  */
	if (dma_ofs >= arena->next_entry)
		alpha_mv.mv_pci_tbi(hose, dma_addr, dma_addr + size - 1);

	spin_unlock_irqrestore(&arena->lock, flags);

	DBGA2("pci_unmap_single: sg [%llx,%zx] np %ld from %p\n",
	      dma_addr, size, npages, __builtin_return_address(0));
}

/* Allocate and map kernel buffer using consistent mode DMA for PCI
   device.  Returns non-NULL cpu-view pointer to the buffer if
   successful and sets *DMA_ADDRP to the pci side dma address as well,
   else DMA_ADDRP is undefined.  */

static void *alpha_pci_alloc_coherent(struct device *dev, size_t size,
				      dma_addr_t *dma_addrp, gfp_t gfp)
{
	struct pci_dev *pdev = alpha_gendev_to_pci(dev);
	void *cpu_addr;
	long order = get_order(size);

	gfp &= ~GFP_DMA;

try_again:
	cpu_addr = (void *)__get_free_pages(gfp, order);
	if (! cpu_addr) {
		printk(KERN_INFO "pci_alloc_consistent: "
		       "get_free_pages failed from %p\n",
			__builtin_return_address(0));
		/* ??? Really atomic allocation?  Otherwise we could play
		   with vmalloc and sg if we can't find contiguous memory.  */
		return NULL;
	}
	memset(cpu_addr, 0, size);

	*dma_addrp = pci_map_single_1(pdev, cpu_addr, size, 0);
	if (*dma_addrp == 0) {
		free_pages((unsigned long)cpu_addr, order);
		if (alpha_mv.mv_pci_tbi || (gfp & GFP_DMA))
			return NULL;
		/* The address doesn't fit required mask and we
		   do not have iommu. Try again with GFP_DMA. */
		gfp |= GFP_DMA;
		goto try_again;
	}

	DBGA2("pci_alloc_consistent: %zx -> [%p,%llx] from %p\n",
	      size, cpu_addr, *dma_addrp, __builtin_return_address(0));

	return cpu_addr;
}

/* Free and unmap a consistent DMA buffer.  CPU_ADDR and DMA_ADDR must
   be values that were returned from pci_alloc_consistent.  SIZE must
   be the same as what as passed into pci_alloc_consistent.
   References to the memory and mappings associated with CPU_ADDR or
   DMA_ADDR past this call are illegal.  */

static void alpha_pci_free_coherent(struct device *dev, size_t size,
				    void *cpu_addr, dma_addr_t dma_addr)
{
	struct pci_dev *pdev = alpha_gendev_to_pci(dev);
	pci_unmap_single(pdev, dma_addr, size, PCI_DMA_BIDIRECTIONAL);
	free_pages((unsigned long)cpu_addr, get_order(size));

	DBGA2("pci_free_consistent: [%llx,%zx] from %p\n",
	      dma_addr, size, __builtin_return_address(0));
}

/* Classify the elements of the scatterlist.  Write dma_address
   of each element with:
	0   : Followers all physically adjacent.
	1   : Followers all virtually adjacent.
	-1  : Not leader, physically adjacent to previous.
	-2  : Not leader, virtually adjacent to previous.
   Write dma_length of each leader with the combined lengths of
   the mergable followers.  */

#define SG_ENT_VIRT_ADDRESS(SG) (sg_virt((SG)))
#define SG_ENT_PHYS_ADDRESS(SG) __pa(SG_ENT_VIRT_ADDRESS(SG))

static void
sg_classify(struct device *dev, struct scatterlist *sg, struct scatterlist *end,
	    int virt_ok)
{
	unsigned long next_paddr;
	struct scatterlist *leader;
	long leader_flag, leader_length;
	unsigned int max_seg_size;

	leader = sg;
	leader_flag = 0;
	leader_length = leader->length;
	next_paddr = SG_ENT_PHYS_ADDRESS(leader) + leader_length;

	/* we will not marge sg without device. */
	max_seg_size = dev ? dma_get_max_seg_size(dev) : 0;
	for (++sg; sg < end; ++sg) {
		unsigned long addr, len;
		addr = SG_ENT_PHYS_ADDRESS(sg);
		len = sg->length;

		if (leader_length + len > max_seg_size)
			goto new_segment;

		if (next_paddr == addr) {
			sg->dma_address = -1;
			leader_length += len;
		} else if (((next_paddr | addr) & ~PAGE_MASK) == 0 && virt_ok) {
			sg->dma_address = -2;
			leader_flag = 1;
			leader_length += len;
		} else {
new_segment:
			leader->dma_address = leader_flag;
			leader->dma_length = leader_length;
			leader = sg;
			leader_flag = 0;
			leader_length = len;
		}

		next_paddr = addr + len;
	}

	leader->dma_address = leader_flag;
	leader->dma_length = leader_length;
}

/* Given a scatterlist leader, choose an allocation method and fill
   in the blanks.  */

static int
sg_fill(struct device *dev, struct scatterlist *leader, struct scatterlist *end,
	struct scatterlist *out, struct pci_iommu_arena *arena,
	dma_addr_t max_dma, int dac_allowed)
{
	unsigned long paddr = SG_ENT_PHYS_ADDRESS(leader);
	long size = leader->dma_length;
	struct scatterlist *sg;
	unsigned long *ptes;
	long npages, dma_ofs, i;

#if !DEBUG_NODIRECT
	/* If everything is physically contiguous, and the addresses
	   fall into the direct-map window, use it.  */
	if (leader->dma_address == 0
	    && paddr + size + __direct_map_base - 1 <= max_dma
	    && paddr + size <= __direct_map_size) {
		out->dma_address = paddr + __direct_map_base;
		out->dma_length = size;

		DBGA("    sg_fill: [%p,%lx] -> direct %llx\n",
		     __va(paddr), size, out->dma_address);

		return 0;
	}
#endif

	/* If physically contiguous and DAC is available, use it.  */
	if (leader->dma_address == 0 && dac_allowed) {
		out->dma_address = paddr + alpha_mv.pci_dac_offset;
		out->dma_length = size;

		DBGA("    sg_fill: [%p,%lx] -> DAC %llx\n",
		     __va(paddr), size, out->dma_address);

		return 0;
	}

	/* Otherwise, we'll use the iommu to make the pages virtually
	   contiguous.  */

	paddr &= ~PAGE_MASK;
	npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	dma_ofs = iommu_arena_alloc(dev, arena, npages, 0);
	if (dma_ofs < 0) {
		/* If we attempted a direct map above but failed, die.  */
		if (leader->dma_address == 0)
			return -1;

		/* Otherwise, break up the remaining virtually contiguous
		   hunks into individual direct maps and retry.  */
		sg_classify(dev, leader, end, 0);
		return sg_fill(dev, leader, end, out, arena, max_dma, dac_allowed);
	}

	out->dma_address = arena->dma_base + dma_ofs*PAGE_SIZE + paddr;
	out->dma_length = size;

	DBGA("    sg_fill: [%p,%lx] -> sg %llx np %ld\n",
	     __va(paddr), size, out->dma_address, npages);

	/* All virtually contiguous.  We need to find the length of each
	   physically contiguous subsegment to fill in the ptes.  */
	ptes = &arena->ptes[dma_ofs];
	sg = leader;
	do {
#if DEBUG_ALLOC > 0
		struct scatterlist *last_sg = sg;
#endif

		size = sg->length;
		paddr = SG_ENT_PHYS_ADDRESS(sg);

		while (sg+1 < end && (int) sg[1].dma_address == -1) {
			size += sg[1].length;
			sg++;
		}

		npages = iommu_num_pages(paddr, size, PAGE_SIZE);

		paddr &= PAGE_MASK;
		for (i = 0; i < npages; ++i, paddr += PAGE_SIZE)
			*ptes++ = mk_iommu_pte(paddr);

#if DEBUG_ALLOC > 0
		DBGA("    (%ld) [%p,%x] np %ld\n",
		     last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg),
		     last_sg->length, npages);
		while (++last_sg <= sg) {
			DBGA("        (%ld) [%p,%x] cont\n",
			     last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg),
			     last_sg->length);
		}
#endif
	} while (++sg < end && (int) sg->dma_address < 0);

	return 1;
}

static int alpha_pci_map_sg(struct device *dev, struct scatterlist *sg,
			    int nents, enum dma_data_direction dir,
			    struct dma_attrs *attrs)
{
	struct pci_dev *pdev = alpha_gendev_to_pci(dev);
	struct scatterlist *start, *end, *out;
	struct pci_controller *hose;
	struct pci_iommu_arena *arena;
	dma_addr_t max_dma;
	int dac_allowed;

	if (dir == PCI_DMA_NONE)
		BUG();

	dac_allowed = dev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0;

	/* Fast path single entry scatterlists.  */
	if (nents == 1) {
		sg->dma_length = sg->length;
		sg->dma_address
		  = pci_map_single_1(pdev, SG_ENT_VIRT_ADDRESS(sg),
				     sg->length, dac_allowed);
		return sg->dma_address != 0;
	}

	start = sg;
	end = sg + nents;

	/* First, prepare information about the entries.  */
	sg_classify(dev, sg, end, alpha_mv.mv_pci_tbi != 0);

	/* Second, figure out where we're going to map things.  */
	if (alpha_mv.mv_pci_tbi) {
		hose = pdev ? pdev->sysdata : pci_isa_hose;
		max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK;
		arena = hose->sg_pci;
		if (!arena || arena->dma_base + arena->size - 1 > max_dma)
			arena = hose->sg_isa;
	} else {
		max_dma = -1;
		arena = NULL;
		hose = NULL;
	}

	/* Third, iterate over the scatterlist leaders and allocate
	   dma space as needed.  */
	for (out = sg; sg < end; ++sg) {
		if ((int) sg->dma_address < 0)
			continue;
		if (sg_fill(dev, sg, end, out, arena, max_dma, dac_allowed) < 0)
			goto error;
		out++;
	}

	/* Mark the end of the list for pci_unmap_sg.  */
	if (out < end)
		out->dma_length = 0;

	if (out - start == 0)
		printk(KERN_WARNING "pci_map_sg failed: no entries?\n");
	DBGA("pci_map_sg: %ld entries\n", out - start);

	return out - start;

 error:
	printk(KERN_WARNING "pci_map_sg failed: "
	       "could not allocate dma page tables\n");

	/* Some allocation failed while mapping the scatterlist
	   entries.  Unmap them now.  */
	if (out > start)
		pci_unmap_sg(pdev, start, out - start, dir);
	return 0;
}

/* Unmap a set of streaming mode DMA translations.  Again, cpu read
   rules concerning calls here are the same as for pci_unmap_single()
   above.  */

static void alpha_pci_unmap_sg(struct device *dev, struct scatterlist *sg,
			       int nents, enum dma_data_direction dir,
			       struct dma_attrs *attrs)
{
	struct pci_dev *pdev = alpha_gendev_to_pci(dev);
	unsigned long flags;
	struct pci_controller *hose;
	struct pci_iommu_arena *arena;
	struct scatterlist *end;
	dma_addr_t max_dma;
	dma_addr_t fbeg, fend;

	if (dir == PCI_DMA_NONE)
		BUG();

	if (! alpha_mv.mv_pci_tbi)
		return;

	hose = pdev ? pdev->sysdata : pci_isa_hose;
	max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK;
	arena = hose->sg_pci;
	if (!arena || arena->dma_base + arena->size - 1 > max_dma)
		arena = hose->sg_isa;

	fbeg = -1, fend = 0;

	spin_lock_irqsave(&arena->lock, flags);

	for (end = sg + nents; sg < end; ++sg) {
		dma_addr_t addr;
		size_t size;
		long npages, ofs;
		dma_addr_t tend;

		addr = sg->dma_address;
		size = sg->dma_length;
		if (!size)
			break;

		if (addr > 0xffffffff) {
			/* It's a DAC address -- nothing to do.  */
			DBGA("    (%ld) DAC [%llx,%zx]\n",
			      sg - end + nents, addr, size);
			continue;
		}

		if (addr >= __direct_map_base
		    && addr < __direct_map_base + __direct_map_size) {
			/* Nothing to do.  */
			DBGA("    (%ld) direct [%llx,%zx]\n",
			      sg - end + nents, addr, size);
			continue;
		}

		DBGA("    (%ld) sg [%llx,%zx]\n",
		     sg - end + nents, addr, size);

		npages = iommu_num_pages(addr, size, PAGE_SIZE);
		ofs = (addr - arena->dma_base) >> PAGE_SHIFT;
		iommu_arena_free(arena, ofs, npages);

		tend = addr + size - 1;
		if (fbeg > addr) fbeg = addr;
		if (fend < tend) fend = tend;
	}

        /* If we're freeing ptes above the `next_entry' pointer (they
           may have snuck back into the TLB since the last wrap flush),
           we need to flush the TLB before reallocating the latter.  */
	if ((fend - arena->dma_base) >> PAGE_SHIFT >= arena->next_entry)
		alpha_mv.mv_pci_tbi(hose, fbeg, fend);

	spin_unlock_irqrestore(&arena->lock, flags);

	DBGA("pci_unmap_sg: %ld entries\n", nents - (end - sg));
}

/* Return whether the given PCI device DMA address mask can be
   supported properly.  */

static int alpha_pci_supported(struct device *dev, u64 mask)
{
	struct pci_dev *pdev = alpha_gendev_to_pci(dev);
	struct pci_controller *hose;
	struct pci_iommu_arena *arena;

	/* If there exists a direct map, and the mask fits either
	   the entire direct mapped space or the total system memory as
	   shifted by the map base */
	if (__direct_map_size != 0
	    && (__direct_map_base + __direct_map_size - 1 <= mask ||
		__direct_map_base + (max_low_pfn << PAGE_SHIFT) - 1 <= mask))
		return 1;

	/* Check that we have a scatter-gather arena that fits.  */
	hose = pdev ? pdev->sysdata : pci_isa_hose;
	arena = hose->sg_isa;
	if (arena && arena->dma_base + arena->size - 1 <= mask)
		return 1;
	arena = hose->sg_pci;
	if (arena && arena->dma_base + arena->size - 1 <= mask)
		return 1;

	/* As last resort try ZONE_DMA.  */
	if (!__direct_map_base && MAX_DMA_ADDRESS - IDENT_ADDR - 1 <= mask)
		return 1;

	return 0;
}


/*
 * AGP GART extensions to the IOMMU
 */
int
iommu_reserve(struct pci_iommu_arena *arena, long pg_count, long align_mask) 
{
	unsigned long flags;
	unsigned long *ptes;
	long i, p;

	if (!arena) return -EINVAL;

	spin_lock_irqsave(&arena->lock, flags);

	/* Search for N empty ptes.  */
	ptes = arena->ptes;
	p = iommu_arena_find_pages(NULL, arena, pg_count, align_mask);
	if (p < 0) {
		spin_unlock_irqrestore(&arena->lock, flags);
		return -1;
	}

	/* Success.  Mark them all reserved (ie not zero and invalid)
	   for the iommu tlb that could load them from under us.
	   They will be filled in with valid bits by _bind() */
	for (i = 0; i < pg_count; ++i)
		ptes[p+i] = IOMMU_RESERVED_PTE;

	arena->next_entry = p + pg_count;
	spin_unlock_irqrestore(&arena->lock, flags);

	return p;
}

int 
iommu_release(struct pci_iommu_arena *arena, long pg_start, long pg_count)
{
	unsigned long *ptes;
	long i;

	if (!arena) return -EINVAL;

	ptes = arena->ptes;

	/* Make sure they're all reserved first... */
	for(i = pg_start; i < pg_start + pg_count; i++)
		if (ptes[i] != IOMMU_RESERVED_PTE)
			return -EBUSY;

	iommu_arena_free(arena, pg_start, pg_count);
	return 0;
}

int
iommu_bind(struct pci_iommu_arena *arena, long pg_start, long pg_count, 
	   struct page **pages)
{
	unsigned long flags;
	unsigned long *ptes;
	long i, j;

	if (!arena) return -EINVAL;
	
	spin_lock_irqsave(&arena->lock, flags);

	ptes = arena->ptes;

	for(j = pg_start; j < pg_start + pg_count; j++) {
		if (ptes[j] != IOMMU_RESERVED_PTE) {
			spin_unlock_irqrestore(&arena->lock, flags);
			return -EBUSY;
		}
	}
		
	for(i = 0, j = pg_start; i < pg_count; i++, j++)
		ptes[j] = mk_iommu_pte(page_to_phys(pages[i]));

	spin_unlock_irqrestore(&arena->lock, flags);

	return 0;
}

int
iommu_unbind(struct pci_iommu_arena *arena, long pg_start, long pg_count)
{
	unsigned long *p;
	long i;

	if (!arena) return -EINVAL;

	p = arena->ptes + pg_start;
	for(i = 0; i < pg_count; i++)
		p[i] = IOMMU_RESERVED_PTE;

	return 0;
}

static int alpha_pci_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == 0;
}

static int alpha_pci_set_mask(struct device *dev, u64 mask)
{
	if (!dev->dma_mask ||
	    !pci_dma_supported(alpha_gendev_to_pci(dev), mask))
		return -EIO;

	*dev->dma_mask = mask;
	return 0;
}

struct dma_map_ops alpha_pci_ops = {
	.alloc_coherent		= alpha_pci_alloc_coherent,
	.free_coherent		= alpha_pci_free_coherent,
	.map_page		= alpha_pci_map_page,
	.unmap_page		= alpha_pci_unmap_page,
	.map_sg			= alpha_pci_map_sg,
	.unmap_sg		= alpha_pci_unmap_sg,
	.mapping_error		= alpha_pci_mapping_error,
	.dma_supported		= alpha_pci_supported,
	.set_dma_mask		= alpha_pci_set_mask,
};

struct dma_map_ops *dma_ops = &alpha_pci_ops;
EXPORT_SYMBOL(dma_ops);