summaryrefslogtreecommitdiff
path: root/Documentation/rust/quick-start.rst
blob: a8931512ed98986ad188c1601404c0de0d0b4065 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
.. SPDX-License-Identifier: GPL-2.0

Quick Start
===========

This document describes how to get started with kernel development in Rust.


Requirements: Building
----------------------

This section explains how to fetch the tools needed for building.

Some of these requirements might be available from Linux distributions
under names like ``rustc``, ``rust-src``, ``rust-bindgen``, etc. However,
at the time of writing, they are likely not to be recent enough unless
the distribution tracks the latest releases.

To easily check whether the requirements are met, the following target
can be used::

	make LLVM=1 rustavailable

This triggers the same logic used by Kconfig to determine whether
``RUST_IS_AVAILABLE`` should be enabled; but it also explains why not
if that is the case.


rustc
*****

A particular version of the Rust compiler is required. Newer versions may or
may not work because, for the moment, the kernel depends on some unstable
Rust features.

If ``rustup`` is being used, enter the checked out source code directory
and run::

	rustup override set $(scripts/min-tool-version.sh rustc)

Otherwise, fetch a standalone installer from:

	https://forge.rust-lang.org/infra/other-installation-methods.html#standalone


Rust standard library source
****************************

The Rust standard library source is required because the build system will
cross-compile ``core`` and ``alloc``.

If ``rustup`` is being used, run::

	rustup component add rust-src

The components are installed per toolchain, thus upgrading the Rust compiler
version later on requires re-adding the component.

Otherwise, if a standalone installer is used, the Rust repository may be cloned
into the installation folder of the toolchain::

	git clone --recurse-submodules \
		--branch $(scripts/min-tool-version.sh rustc) \
		https://github.com/rust-lang/rust \
		$(rustc --print sysroot)/lib/rustlib/src/rust

In this case, upgrading the Rust compiler version later on requires manually
updating this clone.


libclang
********

``libclang`` (part of LLVM) is used by ``bindgen`` to understand the C code
in the kernel, which means LLVM needs to be installed; like when the kernel
is compiled with ``CC=clang`` or ``LLVM=1``.

Linux distributions are likely to have a suitable one available, so it is
best to check that first.

There are also some binaries for several systems and architectures uploaded at:

	https://releases.llvm.org/download.html

Otherwise, building LLVM takes quite a while, but it is not a complex process:

	https://llvm.org/docs/GettingStarted.html#getting-the-source-code-and-building-llvm

Please see Documentation/kbuild/llvm.rst for more information and further ways
to fetch pre-built releases and distribution packages.


bindgen
*******

The bindings to the C side of the kernel are generated at build time using
the ``bindgen`` tool. A particular version is required.

Install it via (note that this will download and build the tool from source)::

	cargo install --locked --version $(scripts/min-tool-version.sh bindgen) bindgen


Requirements: Developing
------------------------

This section explains how to fetch the tools needed for developing. That is,
they are not needed when just building the kernel.


rustfmt
*******

The ``rustfmt`` tool is used to automatically format all the Rust kernel code,
including the generated C bindings (for details, please see
coding-guidelines.rst).

If ``rustup`` is being used, its ``default`` profile already installs the tool,
thus nothing needs to be done. If another profile is being used, the component
can be installed manually::

	rustup component add rustfmt

The standalone installers also come with ``rustfmt``.


clippy
******

``clippy`` is a Rust linter. Running it provides extra warnings for Rust code.
It can be run by passing ``CLIPPY=1`` to ``make`` (for details, please see
general-information.rst).

If ``rustup`` is being used, its ``default`` profile already installs the tool,
thus nothing needs to be done. If another profile is being used, the component
can be installed manually::

	rustup component add clippy

The standalone installers also come with ``clippy``.


cargo
*****

``cargo`` is the Rust native build system. It is currently required to run
the tests since it is used to build a custom standard library that contains
the facilities provided by the custom ``alloc`` in the kernel. The tests can
be run using the ``rusttest`` Make target.

If ``rustup`` is being used, all the profiles already install the tool,
thus nothing needs to be done.

The standalone installers also come with ``cargo``.


rustdoc
*******

``rustdoc`` is the documentation tool for Rust. It generates pretty HTML
documentation for Rust code (for details, please see
general-information.rst).

``rustdoc`` is also used to test the examples provided in documented Rust code
(called doctests or documentation tests). The ``rusttest`` Make target uses
this feature.

If ``rustup`` is being used, all the profiles already install the tool,
thus nothing needs to be done.

The standalone installers also come with ``rustdoc``.


rust-analyzer
*************

The `rust-analyzer <https://rust-analyzer.github.io/>`_ language server can
be used with many editors to enable syntax highlighting, completion, go to
definition, and other features.

``rust-analyzer`` needs a configuration file, ``rust-project.json``, which
can be generated by the ``rust-analyzer`` Make target.


Configuration
-------------

``Rust support`` (``CONFIG_RUST``) needs to be enabled in the ``General setup``
menu. The option is only shown if a suitable Rust toolchain is found (see
above), as long as the other requirements are met. In turn, this will make
visible the rest of options that depend on Rust.

Afterwards, go to::

	Kernel hacking
	    -> Sample kernel code
	        -> Rust samples

And enable some sample modules either as built-in or as loadable.


Building
--------

Building a kernel with a complete LLVM toolchain is the best supported setup
at the moment. That is::

	make LLVM=1

For architectures that do not support a full LLVM toolchain, use::

	make CC=clang

Using GCC also works for some configurations, but it is very experimental at
the moment.


Hacking
-------

To dive deeper, take a look at the source code of the samples
at ``samples/rust/``, the Rust support code under ``rust/`` and
the ``Rust hacking`` menu under ``Kernel hacking``.

If GDB/Binutils is used and Rust symbols are not getting demangled, the reason
is the toolchain does not support Rust's new v0 mangling scheme yet.
There are a few ways out:

  - Install a newer release (GDB >= 10.2, Binutils >= 2.36).

  - Some versions of GDB (e.g. vanilla GDB 10.1) are able to use
    the pre-demangled names embedded in the debug info (``CONFIG_DEBUG_INFO``).