summaryrefslogtreecommitdiff
path: root/Documentation/hwmon/sysfs-interface.rst
blob: fd590633bb14b394d6045d8dbc85b6d503d57a5b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
Naming and data format standards for sysfs files
================================================

The libsensors library offers an interface to the raw sensors data
through the sysfs interface. Since lm-sensors 3.0.0, libsensors is
completely chip-independent. It assumes that all the kernel drivers
implement the standard sysfs interface described in this document.
This makes adding or updating support for any given chip very easy, as
libsensors, and applications using it, do not need to be modified.
This is a major improvement compared to lm-sensors 2.

Note that motherboards vary widely in the connections to sensor chips.
There is no standard that ensures, for example, that the second
temperature sensor is connected to the CPU, or that the second fan is on
the CPU. Also, some values reported by the chips need some computation
before they make full sense. For example, most chips can only measure
voltages between 0 and +4V. Other voltages are scaled back into that
range using external resistors. Since the values of these resistors
can change from motherboard to motherboard, the conversions cannot be
hard coded into the driver and have to be done in user space.

For this reason, even if we aim at a chip-independent libsensors, it will
still require a configuration file (e.g. /etc/sensors.conf) for proper
values conversion, labeling of inputs and hiding of unused inputs.

An alternative method that some programs use is to access the sysfs
files directly. This document briefly describes the standards that the
drivers follow, so that an application program can scan for entries and
access this data in a simple and consistent way. That said, such programs
will have to implement conversion, labeling and hiding of inputs. For
this reason, it is still not recommended to bypass the library.

Each chip gets its own directory in the sysfs /sys/devices tree.  To
find all sensor chips, it is easier to follow the device symlinks from
`/sys/class/hwmon/hwmon*`.

Up to lm-sensors 3.0.0, libsensors looks for hardware monitoring attributes
in the "physical" device directory. Since lm-sensors 3.0.1, attributes found
in the hwmon "class" device directory are also supported. Complex drivers
(e.g. drivers for multifunction chips) may want to use this possibility to
avoid namespace pollution. The only drawback will be that older versions of
libsensors won't support the driver in question.

All sysfs values are fixed point numbers.

There is only one value per file, unlike the older /proc specification.
The common scheme for files naming is: <type><number>_<item>. Usual
types for sensor chips are "in" (voltage), "temp" (temperature) and
"fan" (fan). Usual items are "input" (measured value), "max" (high
threshold, "min" (low threshold). Numbering usually starts from 1,
except for voltages which start from 0 (because most data sheets use
this). A number is always used for elements that can be present more
than once, even if there is a single element of the given type on the
specific chip. Other files do not refer to a specific element, so
they have a simple name, and no number.

Alarms are direct indications read from the chips. The drivers do NOT
make comparisons of readings to thresholds. This allows violations
between readings to be caught and alarmed. The exact definition of an
alarm (for example, whether a threshold must be met or must be exceeded
to cause an alarm) is chip-dependent.

When setting values of hwmon sysfs attributes, the string representation of
the desired value must be written, note that strings which are not a number
are interpreted as 0! For more on how written strings are interpreted see the
"sysfs attribute writes interpretation" section at the end of this file.

-------------------------------------------------------------------------

======= ===========================================
`[0-*]`	denotes any positive number starting from 0
`[1-*]`	denotes any positive number starting from 1
RO	read only value
WO	write only value
RW	read/write value
======= ===========================================

Read/write values may be read-only for some chips, depending on the
hardware implementation.

All entries (except name) are optional, and should only be created in a
given driver if the chip has the feature.


*****************
Global attributes
*****************

`name`
		The chip name.
		This should be a short, lowercase string, not containing
		whitespace, dashes, or the wildcard character '*'.
		This attribute represents the chip name. It is the only
		mandatory attribute.
		I2C devices get this attribute created automatically.

		RO

`update_interval`
		The interval at which the chip will update readings.
		Unit: millisecond

		RW

		Some devices have a variable update rate or interval.
		This attribute can be used to change it to the desired value.


********
Voltages
********

`in[0-*]_min`
		Voltage min value.

		Unit: millivolt

		RW

`in[0-*]_lcrit`
		Voltage critical min value.

		Unit: millivolt

		RW

		If voltage drops to or below this limit, the system may
		take drastic action such as power down or reset. At the very
		least, it should report a fault.

`in[0-*]_max`
		Voltage max value.

		Unit: millivolt

		RW

`in[0-*]_crit`
		Voltage critical max value.

		Unit: millivolt

		RW

		If voltage reaches or exceeds this limit, the system may
		take drastic action such as power down or reset. At the very
		least, it should report a fault.

`in[0-*]_input`
		Voltage input value.

		Unit: millivolt

		RO

		Voltage measured on the chip pin.

		Actual voltage depends on the scaling resistors on the
		motherboard, as recommended in the chip datasheet.

		This varies by chip and by motherboard.
		Because of this variation, values are generally NOT scaled
		by the chip driver, and must be done by the application.
		However, some drivers (notably lm87 and via686a)
		do scale, because of internal resistors built into a chip.
		These drivers will output the actual voltage. Rule of
		thumb: drivers should report the voltage values at the
		"pins" of the chip.

`in[0-*]_average`
		Average voltage

		Unit: millivolt

		RO

`in[0-*]_lowest`
		Historical minimum voltage

		Unit: millivolt

		RO

`in[0-*]_highest`
		Historical maximum voltage

		Unit: millivolt

		RO

`in[0-*]_reset_history`
		Reset inX_lowest and inX_highest

		WO

`in_reset_history`
		Reset inX_lowest and inX_highest for all sensors

		WO

`in[0-*]_label`
		Suggested voltage channel label.

		Text string

		Should only be created if the driver has hints about what
		this voltage channel is being used for, and user-space
		doesn't. In all other cases, the label is provided by
		user-space.

		RO

`in[0-*]_enable`
		Enable or disable the sensors.

		When disabled the sensor read will return -ENODATA.

		- 1: Enable
		- 0: Disable

		RW

`cpu[0-*]_vid`
		CPU core reference voltage.

		Unit: millivolt

		RO

		Not always correct.

`vrm`
		Voltage Regulator Module version number.

		RW (but changing it should no more be necessary)

		Originally the VRM standard version multiplied by 10, but now
		an arbitrary number, as not all standards have a version
		number.

		Affects the way the driver calculates the CPU core reference
		voltage from the vid pins.

Also see the Alarms section for status flags associated with voltages.


****
Fans
****

`fan[1-*]_min`
		Fan minimum value

		Unit: revolution/min (RPM)

		RW

`fan[1-*]_max`
		Fan maximum value

		Unit: revolution/min (RPM)

		Only rarely supported by the hardware.
		RW

`fan[1-*]_input`
		Fan input value.

		Unit: revolution/min (RPM)

		RO

`fan[1-*]_div`
		Fan divisor.

		Integer value in powers of two (1, 2, 4, 8, 16, 32, 64, 128).

		RW

		Some chips only support values 1, 2, 4 and 8.
		Note that this is actually an internal clock divisor, which
		affects the measurable speed range, not the read value.

`fan[1-*]_pulses`
		Number of tachometer pulses per fan revolution.

		Integer value, typically between 1 and 4.

		RW

		This value is a characteristic of the fan connected to the
		device's input, so it has to be set in accordance with the fan
		model.

		Should only be created if the chip has a register to configure
		the number of pulses. In the absence of such a register (and
		thus attribute) the value assumed by all devices is 2 pulses
		per fan revolution.

`fan[1-*]_target`
		Desired fan speed

		Unit: revolution/min (RPM)

		RW

		Only makes sense if the chip supports closed-loop fan speed
		control based on the measured fan speed.

`fan[1-*]_label`
		Suggested fan channel label.

		Text string

		Should only be created if the driver has hints about what
		this fan channel is being used for, and user-space doesn't.
		In all other cases, the label is provided by user-space.

		RO

`fan[1-*]_enable`
		Enable or disable the sensors.

		When disabled the sensor read will return -ENODATA.

		- 1: Enable
		- 0: Disable

		RW

Also see the Alarms section for status flags associated with fans.


***
PWM
***

`pwm[1-*]`
		Pulse width modulation fan control.

		Integer value in the range 0 to 255

		RW

		255 is max or 100%.

`pwm[1-*]_enable`
		Fan speed control method:

		- 0: no fan speed control (i.e. fan at full speed)
		- 1: manual fan speed control enabled (using `pwm[1-*]`)
		- 2+: automatic fan speed control enabled

		Check individual chip documentation files for automatic mode
		details.

		RW

`pwm[1-*]_mode`
		- 0: DC mode (direct current)
		- 1: PWM mode (pulse-width modulation)

		RW

`pwm[1-*]_freq`
		Base PWM frequency in Hz.

		Only possibly available when pwmN_mode is PWM, but not always
		present even then.

		RW

`pwm[1-*]_auto_channels_temp`
		Select which temperature channels affect this PWM output in
		auto mode.

		Bitfield, 1 is temp1, 2 is temp2, 4 is temp3 etc...
		Which values are possible depend on the chip used.

		RW

`pwm[1-*]_auto_point[1-*]_pwm` / `pwm[1-*]_auto_point[1-*]_temp` / `pwm[1-*]_auto_point[1-*]_temp_hyst`
		Define the PWM vs temperature curve.

		Number of trip points is chip-dependent. Use this for chips
		which associate trip points to PWM output channels.

		RW

`temp[1-*]_auto_point[1-*]_pwm` / `temp[1-*]_auto_point[1-*]_temp` / `temp[1-*]_auto_point[1-*]_temp_hyst`
		Define the PWM vs temperature curve.

		Number of trip points is chip-dependent. Use this for chips
		which associate trip points to temperature channels.

		RW

There is a third case where trip points are associated to both PWM output
channels and temperature channels: the PWM values are associated to PWM
output channels while the temperature values are associated to temperature
channels. In that case, the result is determined by the mapping between
temperature inputs and PWM outputs. When several temperature inputs are
mapped to a given PWM output, this leads to several candidate PWM values.
The actual result is up to the chip, but in general the highest candidate
value (fastest fan speed) wins.


************
Temperatures
************

`temp[1-*]_type`
		Sensor type selection.

		Integers 1 to 6

		RW

		- 1: CPU embedded diode
		- 2: 3904 transistor
		- 3: thermal diode
		- 4: thermistor
		- 5: AMD AMDSI
		- 6: Intel PECI

		Not all types are supported by all chips

`temp[1-*]_max`
		Temperature max value.

		Unit: millidegree Celsius (or millivolt, see below)

		RW

`temp[1-*]_min`
		Temperature min value.

		Unit: millidegree Celsius

		RW

`temp[1-*]_max_hyst`
		Temperature hysteresis value for max limit.

		Unit: millidegree Celsius

		Must be reported as an absolute temperature, NOT a delta
		from the max value.

		RW

`temp[1-*]_min_hyst`
		Temperature hysteresis value for min limit.
		Unit: millidegree Celsius

		Must be reported as an absolute temperature, NOT a delta
		from the min value.

		RW

`temp[1-*]_input`
	 Temperature input value.

		Unit: millidegree Celsius

		RO

`temp[1-*]_crit`
		Temperature critical max value, typically greater than
		corresponding temp_max values.

		Unit: millidegree Celsius

		RW

`temp[1-*]_crit_hyst`
		Temperature hysteresis value for critical limit.

		Unit: millidegree Celsius

		Must be reported as an absolute temperature, NOT a delta
		from the critical value.

		RW

`temp[1-*]_emergency`
		Temperature emergency max value, for chips supporting more than
		two upper temperature limits. Must be equal or greater than
		corresponding temp_crit values.

		Unit: millidegree Celsius

		RW

`temp[1-*]_emergency_hyst`
		Temperature hysteresis value for emergency limit.

		Unit: millidegree Celsius

		Must be reported as an absolute temperature, NOT a delta
		from the emergency value.

		RW

`temp[1-*]_lcrit`
		Temperature critical min value, typically lower than
		corresponding temp_min values.

		Unit: millidegree Celsius

		RW

`temp[1-*]_lcrit_hyst`
		Temperature hysteresis value for critical min limit.

		Unit: millidegree Celsius

		Must be reported as an absolute temperature, NOT a delta
		from the critical min value.

		RW

`temp[1-*]_offset`
		Temperature offset which is added to the temperature reading
		by the chip.

		Unit: millidegree Celsius

		Read/Write value.

`temp[1-*]_label`
		Suggested temperature channel label.

		Text string

		Should only be created if the driver has hints about what
		this temperature channel is being used for, and user-space
		doesn't. In all other cases, the label is provided by
		user-space.

		RO

`temp[1-*]_lowest`
		Historical minimum temperature

		Unit: millidegree Celsius

		RO

`temp[1-*]_highest`
		Historical maximum temperature

		Unit: millidegree Celsius

		RO

`temp[1-*]_reset_history`
		Reset temp_lowest and temp_highest

		WO

`temp_reset_history`
		Reset temp_lowest and temp_highest for all sensors

		WO

`temp[1-*]_enable`
		Enable or disable the sensors.

		When disabled the sensor read will return -ENODATA.

		- 1: Enable
		- 0: Disable

		RW

Some chips measure temperature using external thermistors and an ADC, and
report the temperature measurement as a voltage. Converting this voltage
back to a temperature (or the other way around for limits) requires
mathematical functions not available in the kernel, so the conversion
must occur in user space. For these chips, all temp* files described
above should contain values expressed in millivolt instead of millidegree
Celsius. In other words, such temperature channels are handled as voltage
channels by the driver.

Also see the Alarms section for status flags associated with temperatures.


********
Currents
********

`curr[1-*]_max`
		Current max value

		Unit: milliampere

		RW

`curr[1-*]_min`
		Current min value.

		Unit: milliampere

		RW

`curr[1-*]_lcrit`
		Current critical low value

		Unit: milliampere

		RW

`curr[1-*]_crit`
		Current critical high value.

		Unit: milliampere

		RW

`curr[1-*]_input`
		Current input value

		Unit: milliampere

		RO

`curr[1-*]_average`
		Average current use

		Unit: milliampere

		RO

`curr[1-*]_lowest`
		Historical minimum current

		Unit: milliampere

		RO

`curr[1-*]_highest`
		Historical maximum current
		Unit: milliampere
		RO

`curr[1-*]_reset_history`
		Reset currX_lowest and currX_highest

		WO

`curr_reset_history`
		Reset currX_lowest and currX_highest for all sensors

		WO

`curr[1-*]_enable`
		Enable or disable the sensors.

		When disabled the sensor read will return -ENODATA.

		- 1: Enable
		- 0: Disable

		RW

Also see the Alarms section for status flags associated with currents.

*****
Power
*****

`power[1-*]_average`
				Average power use

				Unit: microWatt

				RO

`power[1-*]_average_interval`
				Power use averaging interval.  A poll
				notification is sent to this file if the
				hardware changes the averaging interval.

				Unit: milliseconds

				RW

`power[1-*]_average_interval_max`
				Maximum power use averaging interval

				Unit: milliseconds

				RO

`power[1-*]_average_interval_min`
				Minimum power use averaging interval

				Unit: milliseconds

				RO

`power[1-*]_average_highest`
				Historical average maximum power use

				Unit: microWatt

				RO

`power[1-*]_average_lowest`
				Historical average minimum power use

				Unit: microWatt

				RO

`power[1-*]_average_max`
				A poll notification is sent to
				`power[1-*]_average` when power use
				rises above this value.

				Unit: microWatt

				RW

`power[1-*]_average_min`
				A poll notification is sent to
				`power[1-*]_average` when power use
				sinks below this value.

				Unit: microWatt

				RW

`power[1-*]_input`
				Instantaneous power use

				Unit: microWatt

				RO

`power[1-*]_input_highest`
				Historical maximum power use

				Unit: microWatt

				RO

`power[1-*]_input_lowest`
				Historical minimum power use

				Unit: microWatt

				RO

`power[1-*]_reset_history`
				Reset input_highest, input_lowest,
				average_highest and average_lowest.

				WO

`power[1-*]_accuracy`
				Accuracy of the power meter.

				Unit: Percent

				RO

`power[1-*]_cap`
				If power use rises above this limit, the
				system should take action to reduce power use.
				A poll notification is sent to this file if the
				cap is changed by the hardware.  The `*_cap`
				files only appear if the cap is known to be
				enforced by hardware.

				Unit: microWatt

				RW

`power[1-*]_cap_hyst`
				Margin of hysteresis built around capping and
				notification.

				Unit: microWatt

				RW

`power[1-*]_cap_max`
				Maximum cap that can be set.

				Unit: microWatt

				RO

`power[1-*]_cap_min`
				Minimum cap that can be set.

				Unit: microWatt

				RO

`power[1-*]_max`
				Maximum power.

				Unit: microWatt

				RW

`power[1-*]_crit`
				Critical maximum power.

				If power rises to or above this limit, the
				system is expected take drastic action to reduce
				power consumption, such as a system shutdown or
				a forced powerdown of some devices.

				Unit: microWatt

				RW

`power[1-*]_enable`
				Enable or disable the sensors.

				When disabled the sensor read will return
				-ENODATA.

				- 1: Enable
				- 0: Disable

				RW

Also see the Alarms section for status flags associated with power readings.

******
Energy
******

`energy[1-*]_input`
				Cumulative energy use

				Unit: microJoule

				RO

`energy[1-*]_enable`
				Enable or disable the sensors.

				When disabled the sensor read will return
				-ENODATA.

				- 1: Enable
				- 0: Disable

				RW

********
Humidity
********

`humidity[1-*]_input`
				Humidity

				Unit: milli-percent (per cent mille, pcm)

				RO


`humidity[1-*]_enable`
				Enable or disable the sensors

				When disabled the sensor read will return
				-ENODATA.

				- 1: Enable
				- 0: Disable

				RW

******
Alarms
******

Each channel or limit may have an associated alarm file, containing a
boolean value. 1 means than an alarm condition exists, 0 means no alarm.

Usually a given chip will either use channel-related alarms, or
limit-related alarms, not both. The driver should just reflect the hardware
implementation.

+-------------------------------+-----------------------+
| **`in[0-*]_alarm`,		| Channel alarm		|
| `curr[1-*]_alarm`,		|			|
| `power[1-*]_alarm`,		|   - 0: no alarm	|
| `fan[1-*]_alarm`,		|   - 1: alarm		|
| `temp[1-*]_alarm`**		|			|
|				|   RO			|
+-------------------------------+-----------------------+

**OR**

+-------------------------------+-----------------------+
| **`in[0-*]_min_alarm`,	| Limit alarm		|
| `in[0-*]_max_alarm`,		|			|
| `in[0-*]_lcrit_alarm`,	|   - 0: no alarm	|
| `in[0-*]_crit_alarm`,		|   - 1: alarm		|
| `curr[1-*]_min_alarm`,	|			|
| `curr[1-*]_max_alarm`,	| RO			|
| `curr[1-*]_lcrit_alarm`,	|			|
| `curr[1-*]_crit_alarm`,	|			|
| `power[1-*]_cap_alarm`,	|			|
| `power[1-*]_max_alarm`,	|			|
| `power[1-*]_crit_alarm`,	|			|
| `fan[1-*]_min_alarm`,		|			|
| `fan[1-*]_max_alarm`,		|			|
| `temp[1-*]_min_alarm`,	|			|
| `temp[1-*]_max_alarm`,	|			|
| `temp[1-*]_lcrit_alarm`,	|			|
| `temp[1-*]_crit_alarm`,	|			|
| `temp[1-*]_emergency_alarm`**	|			|
+-------------------------------+-----------------------+

Each input channel may have an associated fault file. This can be used
to notify open diodes, unconnected fans etc. where the hardware
supports it. When this boolean has value 1, the measurement for that
channel should not be trusted.

`fan[1-*]_fault` / `temp[1-*]_fault`
		Input fault condition

		- 0: no fault occurred
		- 1: fault condition

		RO

Some chips also offer the possibility to get beeped when an alarm occurs:

`beep_enable`
		Master beep enable

		- 0: no beeps
		- 1: beeps

		RW

`in[0-*]_beep`, `curr[1-*]_beep`, `fan[1-*]_beep`, `temp[1-*]_beep`,
		Channel beep

		- 0: disable
		- 1: enable

		RW

In theory, a chip could provide per-limit beep masking, but no such chip
was seen so far.

Old drivers provided a different, non-standard interface to alarms and
beeps. These interface files are deprecated, but will be kept around
for compatibility reasons:

`alarms`
		Alarm bitmask.

		RO

		Integer representation of one to four bytes.

		A '1' bit means an alarm.

		Chips should be programmed for 'comparator' mode so that
		the alarm will 'come back' after you read the register
		if it is still valid.

		Generally a direct representation of a chip's internal
		alarm registers; there is no standard for the position
		of individual bits. For this reason, the use of this
		interface file for new drivers is discouraged. Use
		`individual *_alarm` and `*_fault` files instead.
		Bits are defined in kernel/include/sensors.h.

`beep_mask`
		Bitmask for beep.
		Same format as 'alarms' with the same bit locations,
		use discouraged for the same reason. Use individual
		`*_beep` files instead.
		RW


*******************
Intrusion detection
*******************

`intrusion[0-*]_alarm`
		Chassis intrusion detection

		- 0: OK
		- 1: intrusion detected

		RW

		Contrary to regular alarm flags which clear themselves
		automatically when read, this one sticks until cleared by
		the user. This is done by writing 0 to the file. Writing
		other values is unsupported.

`intrusion[0-*]_beep`
		Chassis intrusion beep

		0: disable
		1: enable

		RW

****************************
Average sample configuration
****************************

Devices allowing for reading {in,power,curr,temp}_average values may export
attributes for controlling number of samples used to compute average.

+--------------+---------------------------------------------------------------+
| samples      | Sets number of average samples for all types of measurements. |
|	       |							       |
|	       | RW							       |
+--------------+---------------------------------------------------------------+
| in_samples   | Sets number of average samples for specific type of	       |
| power_samples| measurements.						       |
| curr_samples |							       |
| temp_samples | Note that on some devices it won't be possible to set all of  |
|	       | them to different values so changing one might also change    |
|	       | some others.						       |
|	       |							       |
|	       | RW							       |
+--------------+---------------------------------------------------------------+

sysfs attribute writes interpretation
-------------------------------------

hwmon sysfs attributes always contain numbers, so the first thing to do is to
convert the input to a number, there are 2 ways todo this depending whether
the number can be negative or not::

	unsigned long u = simple_strtoul(buf, NULL, 10);
	long s = simple_strtol(buf, NULL, 10);

With buf being the buffer with the user input being passed by the kernel.
Notice that we do not use the second argument of strto[u]l, and thus cannot
tell when 0 is returned, if this was really 0 or is caused by invalid input.
This is done deliberately as checking this everywhere would add a lot of
code to the kernel.

Notice that it is important to always store the converted value in an
unsigned long or long, so that no wrap around can happen before any further
checking.

After the input string is converted to an (unsigned) long, the value should be
checked if its acceptable. Be careful with further conversions on the value
before checking it for validity, as these conversions could still cause a wrap
around before the check. For example do not multiply the result, and only
add/subtract if it has been divided before the add/subtract.

What to do if a value is found to be invalid, depends on the type of the
sysfs attribute that is being set. If it is a continuous setting like a
tempX_max or inX_max attribute, then the value should be clamped to its
limits using clamp_val(value, min_limit, max_limit). If it is not continuous
like for example a tempX_type, then when an invalid value is written,
-EINVAL should be returned.

Example1, temp1_max, register is a signed 8 bit value (-128 - 127 degrees)::

	long v = simple_strtol(buf, NULL, 10) / 1000;
	v = clamp_val(v, -128, 127);
	/* write v to register */

Example2, fan divider setting, valid values 2, 4 and 8::

	unsigned long v = simple_strtoul(buf, NULL, 10);

	switch (v) {
	case 2: v = 1; break;
	case 4: v = 2; break;
	case 8: v = 3; break;
	default:
		return -EINVAL;
	}
	/* write v to register */