summaryrefslogtreecommitdiff
path: root/Documentation/device-mapper/verity.txt
blob: 89fd8f9a259f69b9c9423da9bb16771ed0596cad (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
dm-verity
==========

Device-Mapper's "verity" target provides transparent integrity checking of
block devices using a cryptographic digest provided by the kernel crypto API.
This target is read-only.

Construction Parameters
=======================
    <version> <dev> <hash_dev>
    <data_block_size> <hash_block_size>
    <num_data_blocks> <hash_start_block>
    <algorithm> <digest> <salt>
    [<#opt_params> <opt_params>]

<version>
    This is the type of the on-disk hash format.

    0 is the original format used in the Chromium OS.
      The salt is appended when hashing, digests are stored continuously and
      the rest of the block is padded with zeroes.

    1 is the current format that should be used for new devices.
      The salt is prepended when hashing and each digest is
      padded with zeroes to the power of two.

<dev>
    This is the device containing data, the integrity of which needs to be
    checked.  It may be specified as a path, like /dev/sdaX, or a device number,
    <major>:<minor>.

<hash_dev>
    This is the device that supplies the hash tree data.  It may be
    specified similarly to the device path and may be the same device.  If the
    same device is used, the hash_start should be outside the configured
    dm-verity device.

<data_block_size>
    The block size on a data device in bytes.
    Each block corresponds to one digest on the hash device.

<hash_block_size>
    The size of a hash block in bytes.

<num_data_blocks>
    The number of data blocks on the data device.  Additional blocks are
    inaccessible.  You can place hashes to the same partition as data, in this
    case hashes are placed after <num_data_blocks>.

<hash_start_block>
    This is the offset, in <hash_block_size>-blocks, from the start of hash_dev
    to the root block of the hash tree.

<algorithm>
    The cryptographic hash algorithm used for this device.  This should
    be the name of the algorithm, like "sha1".

<digest>
    The hexadecimal encoding of the cryptographic hash of the root hash block
    and the salt.  This hash should be trusted as there is no other authenticity
    beyond this point.

<salt>
    The hexadecimal encoding of the salt value.

<#opt_params>
    Number of optional parameters. If there are no optional parameters,
    the optional paramaters section can be skipped or #opt_params can be zero.
    Otherwise #opt_params is the number of following arguments.

    Example of optional parameters section:
        1 ignore_corruption

ignore_corruption
    Log corrupted blocks, but allow read operations to proceed normally.

restart_on_corruption
    Restart the system when a corrupted block is discovered. This option is
    not compatible with ignore_corruption and requires user space support to
    avoid restart loops.

ignore_zero_blocks
    Do not verify blocks that are expected to contain zeroes and always return
    zeroes instead. This may be useful if the partition contains unused blocks
    that are not guaranteed to contain zeroes.

use_fec_from_device <fec_dev>
    Use forward error correction (FEC) to recover from corruption if hash
    verification fails. Use encoding data from the specified device. This
    may be the same device where data and hash blocks reside, in which case
    fec_start must be outside data and hash areas.

    If the encoding data covers additional metadata, it must be accessible
    on the hash device after the hash blocks.

    Note: block sizes for data and hash devices must match. Also, if the
    verity <dev> is encrypted the <fec_dev> should be too.

fec_roots <num>
    Number of generator roots. This equals to the number of parity bytes in
    the encoding data. For example, in RS(M, N) encoding, the number of roots
    is M-N.

fec_blocks <num>
    The number of encoding data blocks on the FEC device. The block size for
    the FEC device is <data_block_size>.

fec_start <offset>
    This is the offset, in <data_block_size> blocks, from the start of the
    FEC device to the beginning of the encoding data.


Theory of operation
===================

dm-verity is meant to be set up as part of a verified boot path.  This
may be anything ranging from a boot using tboot or trustedgrub to just
booting from a known-good device (like a USB drive or CD).

When a dm-verity device is configured, it is expected that the caller
has been authenticated in some way (cryptographic signatures, etc).
After instantiation, all hashes will be verified on-demand during
disk access.  If they cannot be verified up to the root node of the
tree, the root hash, then the I/O will fail.  This should detect
tampering with any data on the device and the hash data.

Cryptographic hashes are used to assert the integrity of the device on a
per-block basis. This allows for a lightweight hash computation on first read
into the page cache. Block hashes are stored linearly, aligned to the nearest
block size.

If forward error correction (FEC) support is enabled any recovery of
corrupted data will be verified using the cryptographic hash of the
corresponding data. This is why combining error correction with
integrity checking is essential.

Hash Tree
---------

Each node in the tree is a cryptographic hash.  If it is a leaf node, the hash
of some data block on disk is calculated. If it is an intermediary node,
the hash of a number of child nodes is calculated.

Each entry in the tree is a collection of neighboring nodes that fit in one
block.  The number is determined based on block_size and the size of the
selected cryptographic digest algorithm.  The hashes are linearly-ordered in
this entry and any unaligned trailing space is ignored but included when
calculating the parent node.

The tree looks something like:

alg = sha256, num_blocks = 32768, block_size = 4096

                                 [   root    ]
                                /    . . .    \
                     [entry_0]                 [entry_1]
                    /  . . .  \                 . . .   \
         [entry_0_0]   . . .  [entry_0_127]    . . . .  [entry_1_127]
           / ... \             /   . . .  \             /           \
     blk_0 ... blk_127  blk_16256   blk_16383      blk_32640 . . . blk_32767


On-disk format
==============

The verity kernel code does not read the verity metadata on-disk header.
It only reads the hash blocks which directly follow the header.
It is expected that a user-space tool will verify the integrity of the
verity header.

Alternatively, the header can be omitted and the dmsetup parameters can
be passed via the kernel command-line in a rooted chain of trust where
the command-line is verified.

Directly following the header (and with sector number padded to the next hash
block boundary) are the hash blocks which are stored a depth at a time
(starting from the root), sorted in order of increasing index.

The full specification of kernel parameters and on-disk metadata format
is available at the cryptsetup project's wiki page
  https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity

Status
======
V (for Valid) is returned if every check performed so far was valid.
If any check failed, C (for Corruption) is returned.

Example
=======
Set up a device:
  # dmsetup create vroot --readonly --table \
    "0 2097152 verity 1 /dev/sda1 /dev/sda2 4096 4096 262144 1 sha256 "\
    "4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076 "\
    "1234000000000000000000000000000000000000000000000000000000000000"

A command line tool veritysetup is available to compute or verify
the hash tree or activate the kernel device. This is available from
the cryptsetup upstream repository https://gitlab.com/cryptsetup/cryptsetup/
(as a libcryptsetup extension).

Create hash on the device:
  # veritysetup format /dev/sda1 /dev/sda2
  ...
  Root hash: 4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076

Activate the device:
  # veritysetup create vroot /dev/sda1 /dev/sda2 \
    4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076