summaryrefslogtreecommitdiff
path: root/Documentation/bpf/llvm_reloc.rst
blob: e4a777a6a3a24ba977e0100cb6d53db6a294d28d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
.. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)

====================
BPF LLVM Relocations
====================

This document describes LLVM BPF backend relocation types.

Relocation Record
=================

LLVM BPF backend records each relocation with the following 16-byte
ELF structure::

  typedef struct
  {
    Elf64_Addr    r_offset;  // Offset from the beginning of section.
    Elf64_Xword   r_info;    // Relocation type and symbol index.
  } Elf64_Rel;

For example, for the following code::

  int g1 __attribute__((section("sec")));
  int g2 __attribute__((section("sec")));
  static volatile int l1 __attribute__((section("sec")));
  static volatile int l2 __attribute__((section("sec")));
  int test() {
    return g1 + g2 + l1 + l2;
  }

Compiled with ``clang -target bpf -O2 -c test.c``, the following is
the code with ``llvm-objdump -dr test.o``::

       0:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
                0000000000000000:  R_BPF_64_64  g1
       2:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
       3:       18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll
                0000000000000018:  R_BPF_64_64  g2
       5:       61 20 00 00 00 00 00 00 r0 = *(u32 *)(r2 + 0)
       6:       0f 10 00 00 00 00 00 00 r0 += r1
       7:       18 01 00 00 08 00 00 00 00 00 00 00 00 00 00 00 r1 = 8 ll
                0000000000000038:  R_BPF_64_64  sec
       9:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
      10:       0f 10 00 00 00 00 00 00 r0 += r1
      11:       18 01 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 r1 = 12 ll
                0000000000000058:  R_BPF_64_64  sec
      13:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
      14:       0f 10 00 00 00 00 00 00 r0 += r1
      15:       95 00 00 00 00 00 00 00 exit

There are four relocations in the above for four ``LD_imm64`` instructions.
The following ``llvm-readelf -r test.o`` shows the binary values of the four
relocations::

  Relocation section '.rel.text' at offset 0x190 contains 4 entries:
      Offset             Info             Type               Symbol's Value  Symbol's Name
  0000000000000000  0000000600000001 R_BPF_64_64            0000000000000000 g1
  0000000000000018  0000000700000001 R_BPF_64_64            0000000000000004 g2
  0000000000000038  0000000400000001 R_BPF_64_64            0000000000000000 sec
  0000000000000058  0000000400000001 R_BPF_64_64            0000000000000000 sec

Each relocation is represented by ``Offset`` (8 bytes) and ``Info`` (8 bytes).
For example, the first relocation corresponds to the first instruction
(Offset 0x0) and the corresponding ``Info`` indicates the relocation type
of ``R_BPF_64_64`` (type 1) and the entry in the symbol table (entry 6).
The following is the symbol table with ``llvm-readelf -s test.o``::

  Symbol table '.symtab' contains 8 entries:
     Num:    Value          Size Type    Bind   Vis       Ndx Name
       0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT   UND
       1: 0000000000000000     0 FILE    LOCAL  DEFAULT   ABS test.c
       2: 0000000000000008     4 OBJECT  LOCAL  DEFAULT     4 l1
       3: 000000000000000c     4 OBJECT  LOCAL  DEFAULT     4 l2
       4: 0000000000000000     0 SECTION LOCAL  DEFAULT     4 sec
       5: 0000000000000000   128 FUNC    GLOBAL DEFAULT     2 test
       6: 0000000000000000     4 OBJECT  GLOBAL DEFAULT     4 g1
       7: 0000000000000004     4 OBJECT  GLOBAL DEFAULT     4 g2

The 6th entry is global variable ``g1`` with value 0.

Similarly, the second relocation is at ``.text`` offset ``0x18``, instruction 3,
has a type of ``R_BPF_64_64`` and refers to entry 7 in the symbol table.
The second relocation resolves to global variable ``g2`` which has a symbol
value 4. The symbol value represents the offset from the start of ``.data``
section where the initial value of the global variable ``g2`` is stored.

The third and fourth relocations refer to static variables ``l1``
and ``l2``. From the ``.rel.text`` section above, it is not clear
to which symbols they really refer as they both refer to
symbol table entry 4, symbol ``sec``, which has ``STT_SECTION`` type
and represents a section. So for a static variable or function,
the section offset is written to the original insn
buffer, which is called ``A`` (addend). Looking at
above insn ``7`` and ``11``, they have section offset ``8`` and ``12``.
From symbol table, we can find that they correspond to entries ``2``
and ``3`` for ``l1`` and ``l2``.

In general, the ``A`` is 0 for global variables and functions,
and is the section offset or some computation result based on
section offset for static variables/functions. The non-section-offset
case refers to function calls. See below for more details.

Different Relocation Types
==========================

Six relocation types are supported. The following is an overview and
``S`` represents the value of the symbol in the symbol table::

  Enum  ELF Reloc Type     Description      BitSize  Offset        Calculation
  0     R_BPF_NONE         None
  1     R_BPF_64_64        ld_imm64 insn    32       r_offset + 4  S + A
  2     R_BPF_64_ABS64     normal data      64       r_offset      S + A
  3     R_BPF_64_ABS32     normal data      32       r_offset      S + A
  4     R_BPF_64_NODYLD32  .BTF[.ext] data  32       r_offset      S + A
  10    R_BPF_64_32        call insn        32       r_offset + 4  (S + A) / 8 - 1

For example, ``R_BPF_64_64`` relocation type is used for ``ld_imm64`` instruction.
The actual to-be-relocated data (0 or section offset)
is stored at ``r_offset + 4`` and the read/write
data bitsize is 32 (4 bytes). The relocation can be resolved with
the symbol value plus implicit addend. Note that the ``BitSize`` is 32 which
means the section offset must be less than or equal to ``UINT32_MAX`` and this
is enforced by LLVM BPF backend.

In another case, ``R_BPF_64_ABS64`` relocation type is used for normal 64-bit data.
The actual to-be-relocated data is stored at ``r_offset`` and the read/write data
bitsize is 64 (8 bytes). The relocation can be resolved with
the symbol value plus implicit addend.

Both ``R_BPF_64_ABS32`` and ``R_BPF_64_NODYLD32`` types are for 32-bit data.
But ``R_BPF_64_NODYLD32`` specifically refers to relocations in ``.BTF`` and
``.BTF.ext`` sections. For cases like bcc where llvm ``ExecutionEngine RuntimeDyld``
is involved, ``R_BPF_64_NODYLD32`` types of relocations should not be resolved
to actual function/variable address. Otherwise, ``.BTF`` and ``.BTF.ext``
become unusable by bcc and kernel.

Type ``R_BPF_64_32`` is used for call instruction. The call target section
offset is stored at ``r_offset + 4`` (32bit) and calculated as
``(S + A) / 8 - 1``.

Examples
========

Types ``R_BPF_64_64`` and ``R_BPF_64_32`` are used to resolve ``ld_imm64``
and ``call`` instructions. For example::

  __attribute__((noinline)) __attribute__((section("sec1")))
  int gfunc(int a, int b) {
    return a * b;
  }
  static __attribute__((noinline)) __attribute__((section("sec1")))
  int lfunc(int a, int b) {
    return a + b;
  }
  int global __attribute__((section("sec2")));
  int test(int a, int b) {
    return gfunc(a, b) +  lfunc(a, b) + global;
  }

Compiled with ``clang -target bpf -O2 -c test.c``, we will have
following code with `llvm-objdump -dr test.o``::

  Disassembly of section .text:

  0000000000000000 <test>:
         0:       bf 26 00 00 00 00 00 00 r6 = r2
         1:       bf 17 00 00 00 00 00 00 r7 = r1
         2:       85 10 00 00 ff ff ff ff call -1
                  0000000000000010:  R_BPF_64_32  gfunc
         3:       bf 08 00 00 00 00 00 00 r8 = r0
         4:       bf 71 00 00 00 00 00 00 r1 = r7
         5:       bf 62 00 00 00 00 00 00 r2 = r6
         6:       85 10 00 00 02 00 00 00 call 2
                  0000000000000030:  R_BPF_64_32  sec1
         7:       0f 80 00 00 00 00 00 00 r0 += r8
         8:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
                  0000000000000040:  R_BPF_64_64  global
        10:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
        11:       0f 10 00 00 00 00 00 00 r0 += r1
        12:       95 00 00 00 00 00 00 00 exit

  Disassembly of section sec1:

  0000000000000000 <gfunc>:
         0:       bf 20 00 00 00 00 00 00 r0 = r2
         1:       2f 10 00 00 00 00 00 00 r0 *= r1
         2:       95 00 00 00 00 00 00 00 exit

  0000000000000018 <lfunc>:
         3:       bf 20 00 00 00 00 00 00 r0 = r2
         4:       0f 10 00 00 00 00 00 00 r0 += r1
         5:       95 00 00 00 00 00 00 00 exit

The first relocation corresponds to ``gfunc(a, b)`` where ``gfunc`` has a value of 0,
so the ``call`` instruction offset is ``(0 + 0)/8 - 1 = -1``.
The second relocation corresponds to ``lfunc(a, b)`` where ``lfunc`` has a section
offset ``0x18``, so the ``call`` instruction offset is ``(0 + 0x18)/8 - 1 = 2``.
The third relocation corresponds to ld_imm64 of ``global``, which has a section
offset ``0``.

The following is an example to show how R_BPF_64_ABS64 could be generated::

  int global() { return 0; }
  struct t { void *g; } gbl = { global };

Compiled with ``clang -target bpf -O2 -g -c test.c``, we will see a
relocation below in ``.data`` section with command
``llvm-readelf -r test.o``::

  Relocation section '.rel.data' at offset 0x458 contains 1 entries:
      Offset             Info             Type               Symbol's Value  Symbol's Name
  0000000000000000  0000000700000002 R_BPF_64_ABS64         0000000000000000 global

The relocation says the first 8-byte of ``.data`` section should be
filled with address of ``global`` variable.

With ``llvm-readelf`` output, we can see that dwarf sections have a bunch of
``R_BPF_64_ABS32`` and ``R_BPF_64_ABS64`` relocations::

  Relocation section '.rel.debug_info' at offset 0x468 contains 13 entries:
      Offset             Info             Type               Symbol's Value  Symbol's Name
  0000000000000006  0000000300000003 R_BPF_64_ABS32         0000000000000000 .debug_abbrev
  000000000000000c  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
  0000000000000012  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
  0000000000000016  0000000600000003 R_BPF_64_ABS32         0000000000000000 .debug_line
  000000000000001a  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
  000000000000001e  0000000200000002 R_BPF_64_ABS64         0000000000000000 .text
  000000000000002b  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
  0000000000000037  0000000800000002 R_BPF_64_ABS64         0000000000000000 gbl
  0000000000000040  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
  ......

The .BTF/.BTF.ext sections has R_BPF_64_NODYLD32 relocations::

  Relocation section '.rel.BTF' at offset 0x538 contains 1 entries:
      Offset             Info             Type               Symbol's Value  Symbol's Name
  0000000000000084  0000000800000004 R_BPF_64_NODYLD32      0000000000000000 gbl

  Relocation section '.rel.BTF.ext' at offset 0x548 contains 2 entries:
      Offset             Info             Type               Symbol's Value  Symbol's Name
  000000000000002c  0000000200000004 R_BPF_64_NODYLD32      0000000000000000 .text
  0000000000000040  0000000200000004 R_BPF_64_NODYLD32      0000000000000000 .text