blob: c5dab30d33892d743a5481f6881b816422abb2c5 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|
Memory Layout on AArch64 Linux
==============================
Author: Catalin Marinas <catalin.marinas@arm.com>
This document describes the virtual memory layout used by the AArch64
Linux kernel. The architecture allows up to 4 levels of translation
tables with a 4KB page size and up to 3 levels with a 64KB page size.
AArch64 Linux uses either 3 levels or 4 levels of translation tables
with the 4KB page configuration, allowing 39-bit (512GB) or 48-bit
(256TB) virtual addresses, respectively, for both user and kernel. With
64KB pages, only 2 levels of translation tables, allowing 42-bit (4TB)
virtual address, are used but the memory layout is the same.
User addresses have bits 63:48 set to 0 while the kernel addresses have
the same bits set to 1. TTBRx selection is given by bit 63 of the
virtual address. The swapper_pg_dir contains only kernel (global)
mappings while the user pgd contains only user (non-global) mappings.
The swapper_pg_dir address is written to TTBR1 and never written to
TTBR0.
AArch64 Linux memory layout with 4KB pages + 3 levels:
Start End Size Use
-----------------------------------------------------------------------
0000000000000000 0000007fffffffff 512GB user
ffffff8000000000 ffffffffffffffff 512GB kernel
AArch64 Linux memory layout with 4KB pages + 4 levels:
Start End Size Use
-----------------------------------------------------------------------
0000000000000000 0000ffffffffffff 256TB user
ffff000000000000 ffffffffffffffff 256TB kernel
AArch64 Linux memory layout with 64KB pages + 2 levels:
Start End Size Use
-----------------------------------------------------------------------
0000000000000000 000003ffffffffff 4TB user
fffffc0000000000 ffffffffffffffff 4TB kernel
AArch64 Linux memory layout with 64KB pages + 3 levels:
Start End Size Use
-----------------------------------------------------------------------
0000000000000000 0000ffffffffffff 256TB user
ffff000000000000 ffffffffffffffff 256TB kernel
For details of the virtual kernel memory layout please see the kernel
booting log.
Translation table lookup with 4KB pages:
+--------+--------+--------+--------+--------+--------+--------+--------+
|63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
+--------+--------+--------+--------+--------+--------+--------+--------+
| | | | | |
| | | | | v
| | | | | [11:0] in-page offset
| | | | +-> [20:12] L3 index
| | | +-----------> [29:21] L2 index
| | +---------------------> [38:30] L1 index
| +-------------------------------> [47:39] L0 index
+-------------------------------------------------> [63] TTBR0/1
Translation table lookup with 64KB pages:
+--------+--------+--------+--------+--------+--------+--------+--------+
|63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
+--------+--------+--------+--------+--------+--------+--------+--------+
| | | | |
| | | | v
| | | | [15:0] in-page offset
| | | +----------> [28:16] L3 index
| | +--------------------------> [41:29] L2 index
| +-------------------------------> [47:42] L1 index
+-------------------------------------------------> [63] TTBR0/1
When using KVM without the Virtualization Host Extensions, the
hypervisor maps kernel pages in EL2 at a fixed (and potentially
random) offset from the linear mapping. See the kern_hyp_va macro and
kvm_update_va_mask function for more details. MMIO devices such as
GICv2 gets mapped next to the HYP idmap page, as do vectors when
ARM64_HARDEN_EL2_VECTORS is selected for particular CPUs.
When using KVM with the Virtualization Host Extensions, no additional
mappings are created, since the host kernel runs directly in EL2.
|