// SPDX-License-Identifier: GPL-2.0-only /* * Stress userfaultfd syscall. * * Copyright (C) 2015 Red Hat, Inc. * * This test allocates two virtual areas and bounces the physical * memory across the two virtual areas (from area_src to area_dst) * using userfaultfd. * * There are three threads running per CPU: * * 1) one per-CPU thread takes a per-page pthread_mutex in a random * page of the area_dst (while the physical page may still be in * area_src), and increments a per-page counter in the same page, * and checks its value against a verification region. * * 2) another per-CPU thread handles the userfaults generated by * thread 1 above. userfaultfd blocking reads or poll() modes are * exercised interleaved. * * 3) one last per-CPU thread transfers the memory in the background * at maximum bandwidth (if not already transferred by thread * 2). Each cpu thread takes cares of transferring a portion of the * area. * * When all threads of type 3 completed the transfer, one bounce is * complete. area_src and area_dst are then swapped. All threads are * respawned and so the bounce is immediately restarted in the * opposite direction. * * per-CPU threads 1 by triggering userfaults inside * pthread_mutex_lock will also verify the atomicity of the memory * transfer (UFFDIO_COPY). */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../kselftest.h" #ifdef __NR_userfaultfd static unsigned long nr_cpus, nr_pages, nr_pages_per_cpu, page_size; #define BOUNCE_RANDOM (1<<0) #define BOUNCE_RACINGFAULTS (1<<1) #define BOUNCE_VERIFY (1<<2) #define BOUNCE_POLL (1<<3) static int bounces; #define TEST_ANON 1 #define TEST_HUGETLB 2 #define TEST_SHMEM 3 static int test_type; /* exercise the test_uffdio_*_eexist every ALARM_INTERVAL_SECS */ #define ALARM_INTERVAL_SECS 10 static volatile bool test_uffdio_copy_eexist = true; static volatile bool test_uffdio_zeropage_eexist = true; /* Whether to test uffd write-protection */ static bool test_uffdio_wp = false; /* Whether to test uffd minor faults */ static bool test_uffdio_minor = false; static bool map_shared; static int shm_fd; static int huge_fd; static char *huge_fd_off0; static unsigned long long *count_verify; static int uffd = -1; static int uffd_flags, finished, *pipefd; static char *area_src, *area_src_alias, *area_dst, *area_dst_alias; static char *zeropage; pthread_attr_t attr; /* Userfaultfd test statistics */ struct uffd_stats { int cpu; unsigned long missing_faults; unsigned long wp_faults; unsigned long minor_faults; }; /* pthread_mutex_t starts at page offset 0 */ #define area_mutex(___area, ___nr) \ ((pthread_mutex_t *) ((___area) + (___nr)*page_size)) /* * count is placed in the page after pthread_mutex_t naturally aligned * to avoid non alignment faults on non-x86 archs. */ #define area_count(___area, ___nr) \ ((volatile unsigned long long *) ((unsigned long) \ ((___area) + (___nr)*page_size + \ sizeof(pthread_mutex_t) + \ sizeof(unsigned long long) - 1) & \ ~(unsigned long)(sizeof(unsigned long long) \ - 1))) const char *examples = "# Run anonymous memory test on 100MiB region with 99999 bounces:\n" "./userfaultfd anon 100 99999\n\n" "# Run share memory test on 1GiB region with 99 bounces:\n" "./userfaultfd shmem 1000 99\n\n" "# Run hugetlb memory test on 256MiB region with 50 bounces (using /dev/hugepages/hugefile):\n" "./userfaultfd hugetlb 256 50 /dev/hugepages/hugefile\n\n" "# Run the same hugetlb test but using shmem:\n" "./userfaultfd hugetlb_shared 256 50 /dev/hugepages/hugefile\n\n" "# 10MiB-~6GiB 999 bounces anonymous test, " "continue forever unless an error triggers\n" "while ./userfaultfd anon $[RANDOM % 6000 + 10] 999; do true; done\n\n"; static void usage(void) { fprintf(stderr, "\nUsage: ./userfaultfd " "[hugetlbfs_file]\n\n"); fprintf(stderr, "Supported : anon, hugetlb, " "hugetlb_shared, shmem\n\n"); fprintf(stderr, "Examples:\n\n"); fprintf(stderr, "%s", examples); exit(1); } #define _err(fmt, ...) \ do { \ int ret = errno; \ fprintf(stderr, "ERROR: " fmt, ##__VA_ARGS__); \ fprintf(stderr, " (errno=%d, line=%d)\n", \ ret, __LINE__); \ } while (0) #define err(fmt, ...) \ do { \ _err(fmt, ##__VA_ARGS__); \ exit(1); \ } while (0) static void uffd_stats_reset(struct uffd_stats *uffd_stats, unsigned long n_cpus) { int i; for (i = 0; i < n_cpus; i++) { uffd_stats[i].cpu = i; uffd_stats[i].missing_faults = 0; uffd_stats[i].wp_faults = 0; uffd_stats[i].minor_faults = 0; } } static void uffd_stats_report(struct uffd_stats *stats, int n_cpus) { int i; unsigned long long miss_total = 0, wp_total = 0, minor_total = 0; for (i = 0; i < n_cpus; i++) { miss_total += stats[i].missing_faults; wp_total += stats[i].wp_faults; minor_total += stats[i].minor_faults; } printf("userfaults: "); if (miss_total) { printf("%llu missing (", miss_total); for (i = 0; i < n_cpus; i++) printf("%lu+", stats[i].missing_faults); printf("\b) "); } if (wp_total) { printf("%llu wp (", wp_total); for (i = 0; i < n_cpus; i++) printf("%lu+", stats[i].wp_faults); printf("\b) "); } if (minor_total) { printf("%llu minor (", minor_total); for (i = 0; i < n_cpus; i++) printf("%lu+", stats[i].minor_faults); printf("\b)"); } printf("\n"); } static void anon_release_pages(char *rel_area) { if (madvise(rel_area, nr_pages * page_size, MADV_DONTNEED)) err("madvise(MADV_DONTNEED) failed"); } static void anon_allocate_area(void **alloc_area) { *alloc_area = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); if (*alloc_area == MAP_FAILED) err("mmap of anonymous memory failed"); } static void noop_alias_mapping(__u64 *start, size_t len, unsigned long offset) { } static void hugetlb_release_pages(char *rel_area) { if (fallocate(huge_fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, rel_area == huge_fd_off0 ? 0 : nr_pages * page_size, nr_pages * page_size)) err("fallocate() failed"); } static void hugetlb_allocate_area(void **alloc_area) { void *area_alias = NULL; char **alloc_area_alias; *alloc_area = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE, (map_shared ? MAP_SHARED : MAP_PRIVATE) | MAP_HUGETLB | (*alloc_area == area_src ? 0 : MAP_NORESERVE), huge_fd, *alloc_area == area_src ? 0 : nr_pages * page_size); if (*alloc_area == MAP_FAILED) err("mmap of hugetlbfs file failed"); if (map_shared) { area_alias = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_HUGETLB, huge_fd, *alloc_area == area_src ? 0 : nr_pages * page_size); if (area_alias == MAP_FAILED) err("mmap of hugetlb file alias failed"); } if (*alloc_area == area_src) { huge_fd_off0 = *alloc_area; alloc_area_alias = &area_src_alias; } else { alloc_area_alias = &area_dst_alias; } if (area_alias) *alloc_area_alias = area_alias; } static void hugetlb_alias_mapping(__u64 *start, size_t len, unsigned long offset) { if (!map_shared) return; /* * We can't zap just the pagetable with hugetlbfs because * MADV_DONTEED won't work. So exercise -EEXIST on a alias * mapping where the pagetables are not established initially, * this way we'll exercise the -EEXEC at the fs level. */ *start = (unsigned long) area_dst_alias + offset; } static void shmem_release_pages(char *rel_area) { if (madvise(rel_area, nr_pages * page_size, MADV_REMOVE)) err("madvise(MADV_REMOVE) failed"); } static void shmem_allocate_area(void **alloc_area) { void *area_alias = NULL; bool is_src = alloc_area == (void **)&area_src; unsigned long offset = is_src ? 0 : nr_pages * page_size; *alloc_area = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, offset); if (*alloc_area == MAP_FAILED) err("mmap of memfd failed"); area_alias = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, offset); if (area_alias == MAP_FAILED) err("mmap of memfd alias failed"); if (is_src) area_src_alias = area_alias; else area_dst_alias = area_alias; } static void shmem_alias_mapping(__u64 *start, size_t len, unsigned long offset) { *start = (unsigned long)area_dst_alias + offset; } struct uffd_test_ops { void (*allocate_area)(void **alloc_area); void (*release_pages)(char *rel_area); void (*alias_mapping)(__u64 *start, size_t len, unsigned long offset); }; static struct uffd_test_ops anon_uffd_test_ops = { .allocate_area = anon_allocate_area, .release_pages = anon_release_pages, .alias_mapping = noop_alias_mapping, }; static struct uffd_test_ops shmem_uffd_test_ops = { .allocate_area = shmem_allocate_area, .release_pages = shmem_release_pages, .alias_mapping = shmem_alias_mapping, }; static struct uffd_test_ops hugetlb_uffd_test_ops = { .allocate_area = hugetlb_allocate_area, .release_pages = hugetlb_release_pages, .alias_mapping = hugetlb_alias_mapping, }; static struct uffd_test_ops *uffd_test_ops; static inline uint64_t uffd_minor_feature(void) { if (test_type == TEST_HUGETLB && map_shared) return UFFD_FEATURE_MINOR_HUGETLBFS; else if (test_type == TEST_SHMEM) return UFFD_FEATURE_MINOR_SHMEM; else return 0; } static uint64_t get_expected_ioctls(uint64_t mode) { uint64_t ioctls = UFFD_API_RANGE_IOCTLS; if (test_type == TEST_HUGETLB) ioctls &= ~(1 << _UFFDIO_ZEROPAGE); if (!((mode & UFFDIO_REGISTER_MODE_WP) && test_uffdio_wp)) ioctls &= ~(1 << _UFFDIO_WRITEPROTECT); if (!((mode & UFFDIO_REGISTER_MODE_MINOR) && test_uffdio_minor)) ioctls &= ~(1 << _UFFDIO_CONTINUE); return ioctls; } static void assert_expected_ioctls_present(uint64_t mode, uint64_t ioctls) { uint64_t expected = get_expected_ioctls(mode); uint64_t actual = ioctls & expected; if (actual != expected) { err("missing ioctl(s): expected %"PRIx64" actual: %"PRIx64, expected, actual); } } static void userfaultfd_open(uint64_t *features) { struct uffdio_api uffdio_api; uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK | UFFD_USER_MODE_ONLY); if (uffd < 0) err("userfaultfd syscall not available in this kernel"); uffd_flags = fcntl(uffd, F_GETFD, NULL); uffdio_api.api = UFFD_API; uffdio_api.features = *features; if (ioctl(uffd, UFFDIO_API, &uffdio_api)) err("UFFDIO_API failed.\nPlease make sure to " "run with either root or ptrace capability."); if (uffdio_api.api != UFFD_API) err("UFFDIO_API error: %" PRIu64, (uint64_t)uffdio_api.api); *features = uffdio_api.features; } static inline void munmap_area(void **area) { if (*area) if (munmap(*area, nr_pages * page_size)) err("munmap"); *area = NULL; } static void uffd_test_ctx_clear(void) { size_t i; if (pipefd) { for (i = 0; i < nr_cpus * 2; ++i) { if (close(pipefd[i])) err("close pipefd"); } free(pipefd); pipefd = NULL; } if (count_verify) { free(count_verify); count_verify = NULL; } if (uffd != -1) { if (close(uffd)) err("close uffd"); uffd = -1; } huge_fd_off0 = NULL; munmap_area((void **)&area_src); munmap_area((void **)&area_src_alias); munmap_area((void **)&area_dst); munmap_area((void **)&area_dst_alias); } static void uffd_test_ctx_init(uint64_t features) { unsigned long nr, cpu; uffd_test_ctx_clear(); uffd_test_ops->allocate_area((void **)&area_src); uffd_test_ops->allocate_area((void **)&area_dst); userfaultfd_open(&features); count_verify = malloc(nr_pages * sizeof(unsigned long long)); if (!count_verify) err("count_verify"); for (nr = 0; nr < nr_pages; nr++) { *area_mutex(area_src, nr) = (pthread_mutex_t)PTHREAD_MUTEX_INITIALIZER; count_verify[nr] = *area_count(area_src, nr) = 1; /* * In the transition between 255 to 256, powerpc will * read out of order in my_bcmp and see both bytes as * zero, so leave a placeholder below always non-zero * after the count, to avoid my_bcmp to trigger false * positives. */ *(area_count(area_src, nr) + 1) = 1; } /* * After initialization of area_src, we must explicitly release pages * for area_dst to make sure it's fully empty. Otherwise we could have * some area_dst pages be errornously initialized with zero pages, * hence we could hit memory corruption later in the test. * * One example is when THP is globally enabled, above allocate_area() * calls could have the two areas merged into a single VMA (as they * will have the same VMA flags so they're mergeable). When we * initialize the area_src above, it's possible that some part of * area_dst could have been faulted in via one huge THP that will be * shared between area_src and area_dst. It could cause some of the * area_dst won't be trapped by missing userfaults. * * This release_pages() will guarantee even if that happened, we'll * proactively split the thp and drop any accidentally initialized * pages within area_dst. */ uffd_test_ops->release_pages(area_dst); pipefd = malloc(sizeof(int) * nr_cpus * 2); if (!pipefd) err("pipefd"); for (cpu = 0; cpu < nr_cpus; cpu++) if (pipe2(&pipefd[cpu * 2], O_CLOEXEC | O_NONBLOCK)) err("pipe"); } static int my_bcmp(char *str1, char *str2, size_t n) { unsigned long i; for (i = 0; i < n; i++) if (str1[i] != str2[i]) return 1; return 0; } static void wp_range(int ufd, __u64 start, __u64 len, bool wp) { struct uffdio_writeprotect prms; /* Write protection page faults */ prms.range.start = start; prms.range.len = len; /* Undo write-protect, do wakeup after that */ prms.mode = wp ? UFFDIO_WRITEPROTECT_MODE_WP : 0; if (ioctl(ufd, UFFDIO_WRITEPROTECT, &prms)) err("clear WP failed: address=0x%"PRIx64, (uint64_t)start); } static void continue_range(int ufd, __u64 start, __u64 len) { struct uffdio_continue req; int ret; req.range.start = start; req.range.len = len; req.mode = 0; if (ioctl(ufd, UFFDIO_CONTINUE, &req)) err("UFFDIO_CONTINUE failed for address 0x%" PRIx64, (uint64_t)start); /* * Error handling within the kernel for continue is subtly different * from copy or zeropage, so it may be a source of bugs. Trigger an * error (-EEXIST) on purpose, to verify doing so doesn't cause a BUG. */ req.mapped = 0; ret = ioctl(ufd, UFFDIO_CONTINUE, &req); if (ret >= 0 || req.mapped != -EEXIST) err("failed to exercise UFFDIO_CONTINUE error handling, ret=%d, mapped=%" PRId64, ret, (int64_t) req.mapped); } static void *locking_thread(void *arg) { unsigned long cpu = (unsigned long) arg; unsigned long page_nr = *(&(page_nr)); /* uninitialized warning */ unsigned long long count; if (!(bounces & BOUNCE_RANDOM)) { page_nr = -bounces; if (!(bounces & BOUNCE_RACINGFAULTS)) page_nr += cpu * nr_pages_per_cpu; } while (!finished) { if (bounces & BOUNCE_RANDOM) { if (getrandom(&page_nr, sizeof(page_nr), 0) != sizeof(page_nr)) err("getrandom failed"); } else page_nr += 1; page_nr %= nr_pages; pthread_mutex_lock(area_mutex(area_dst, page_nr)); count = *area_count(area_dst, page_nr); if (count != count_verify[page_nr]) err("page_nr %lu memory corruption %llu %llu", page_nr, count, count_verify[page_nr]); count++; *area_count(area_dst, page_nr) = count_verify[page_nr] = count; pthread_mutex_unlock(area_mutex(area_dst, page_nr)); } return NULL; } static void retry_copy_page(int ufd, struct uffdio_copy *uffdio_copy, unsigned long offset) { uffd_test_ops->alias_mapping(&uffdio_copy->dst, uffdio_copy->len, offset); if (ioctl(ufd, UFFDIO_COPY, uffdio_copy)) { /* real retval in ufdio_copy.copy */ if (uffdio_copy->copy != -EEXIST) err("UFFDIO_COPY retry error: %"PRId64, (int64_t)uffdio_copy->copy); } else { err("UFFDIO_COPY retry unexpected: %"PRId64, (int64_t)uffdio_copy->copy); } } static void wake_range(int ufd, unsigned long addr, unsigned long len) { struct uffdio_range uffdio_wake; uffdio_wake.start = addr; uffdio_wake.len = len; if (ioctl(ufd, UFFDIO_WAKE, &uffdio_wake)) fprintf(stderr, "error waking %lu\n", addr), exit(1); } static int __copy_page(int ufd, unsigned long offset, bool retry) { struct uffdio_copy uffdio_copy; if (offset >= nr_pages * page_size) err("unexpected offset %lu\n", offset); uffdio_copy.dst = (unsigned long) area_dst + offset; uffdio_copy.src = (unsigned long) area_src + offset; uffdio_copy.len = page_size; if (test_uffdio_wp) uffdio_copy.mode = UFFDIO_COPY_MODE_WP; else uffdio_copy.mode = 0; uffdio_copy.copy = 0; if (ioctl(ufd, UFFDIO_COPY, &uffdio_copy)) { /* real retval in ufdio_copy.copy */ if (uffdio_copy.copy != -EEXIST) err("UFFDIO_COPY error: %"PRId64, (int64_t)uffdio_copy.copy); wake_range(ufd, uffdio_copy.dst, page_size); } else if (uffdio_copy.copy != page_size) { err("UFFDIO_COPY error: %"PRId64, (int64_t)uffdio_copy.copy); } else { if (test_uffdio_copy_eexist && retry) { test_uffdio_copy_eexist = false; retry_copy_page(ufd, &uffdio_copy, offset); } return 1; } return 0; } static int copy_page_retry(int ufd, unsigned long offset) { return __copy_page(ufd, offset, true); } static int copy_page(int ufd, unsigned long offset) { return __copy_page(ufd, offset, false); } static int uffd_read_msg(int ufd, struct uffd_msg *msg) { int ret = read(uffd, msg, sizeof(*msg)); if (ret != sizeof(*msg)) { if (ret < 0) { if (errno == EAGAIN || errno == EINTR) return 1; err("blocking read error"); } else { err("short read"); } } return 0; } static void uffd_handle_page_fault(struct uffd_msg *msg, struct uffd_stats *stats) { unsigned long offset; if (msg->event != UFFD_EVENT_PAGEFAULT) err("unexpected msg event %u", msg->event); if (msg->arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WP) { /* Write protect page faults */ wp_range(uffd, msg->arg.pagefault.address, page_size, false); stats->wp_faults++; } else if (msg->arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_MINOR) { uint8_t *area; int b; /* * Minor page faults * * To prove we can modify the original range for testing * purposes, we're going to bit flip this range before * continuing. * * Note that this requires all minor page fault tests operate on * area_dst (non-UFFD-registered) and area_dst_alias * (UFFD-registered). */ area = (uint8_t *)(area_dst + ((char *)msg->arg.pagefault.address - area_dst_alias)); for (b = 0; b < page_size; ++b) area[b] = ~area[b]; continue_range(uffd, msg->arg.pagefault.address, page_size); stats->minor_faults++; } else { /* Missing page faults */ if (msg->arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE) err("unexpected write fault"); offset = (char *)(unsigned long)msg->arg.pagefault.address - area_dst; offset &= ~(page_size-1); if (copy_page(uffd, offset)) stats->missing_faults++; } } static void *uffd_poll_thread(void *arg) { struct uffd_stats *stats = (struct uffd_stats *)arg; unsigned long cpu = stats->cpu; struct pollfd pollfd[2]; struct uffd_msg msg; struct uffdio_register uffd_reg; int ret; char tmp_chr; pollfd[0].fd = uffd; pollfd[0].events = POLLIN; pollfd[1].fd = pipefd[cpu*2]; pollfd[1].events = POLLIN; for (;;) { ret = poll(pollfd, 2, -1); if (ret <= 0) { if (errno == EINTR || errno == EAGAIN) continue; err("poll error: %d", ret); } if (pollfd[1].revents & POLLIN) { if (read(pollfd[1].fd, &tmp_chr, 1) != 1) err("read pipefd error"); break; } if (!(pollfd[0].revents & POLLIN)) err("pollfd[0].revents %d", pollfd[0].revents); if (uffd_read_msg(uffd, &msg)) continue; switch (msg.event) { default: err("unexpected msg event %u\n", msg.event); break; case UFFD_EVENT_PAGEFAULT: uffd_handle_page_fault(&msg, stats); break; case UFFD_EVENT_FORK: close(uffd); uffd = msg.arg.fork.ufd; pollfd[0].fd = uffd; break; case UFFD_EVENT_REMOVE: uffd_reg.range.start = msg.arg.remove.start; uffd_reg.range.len = msg.arg.remove.end - msg.arg.remove.start; if (ioctl(uffd, UFFDIO_UNREGISTER, &uffd_reg.range)) err("remove failure"); break; case UFFD_EVENT_REMAP: area_dst = (char *)(unsigned long)msg.arg.remap.to; break; } } return NULL; } pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER; static void *uffd_read_thread(void *arg) { struct uffd_stats *stats = (struct uffd_stats *)arg; struct uffd_msg msg; pthread_mutex_unlock(&uffd_read_mutex); /* from here cancellation is ok */ for (;;) { if (uffd_read_msg(uffd, &msg)) continue; uffd_handle_page_fault(&msg, stats); } return NULL; } static void *background_thread(void *arg) { unsigned long cpu = (unsigned long) arg; unsigned long page_nr, start_nr, mid_nr, end_nr; start_nr = cpu * nr_pages_per_cpu; end_nr = (cpu+1) * nr_pages_per_cpu; mid_nr = (start_nr + end_nr) / 2; /* Copy the first half of the pages */ for (page_nr = start_nr; page_nr < mid_nr; page_nr++) copy_page_retry(uffd, page_nr * page_size); /* * If we need to test uffd-wp, set it up now. Then we'll have * at least the first half of the pages mapped already which * can be write-protected for testing */ if (test_uffdio_wp) wp_range(uffd, (unsigned long)area_dst + start_nr * page_size, nr_pages_per_cpu * page_size, true); /* * Continue the 2nd half of the page copying, handling write * protection faults if any */ for (page_nr = mid_nr; page_nr < end_nr; page_nr++) copy_page_retry(uffd, page_nr * page_size); return NULL; } static int stress(struct uffd_stats *uffd_stats) { unsigned long cpu; pthread_t locking_threads[nr_cpus]; pthread_t uffd_threads[nr_cpus]; pthread_t background_threads[nr_cpus]; finished = 0; for (cpu = 0; cpu < nr_cpus; cpu++) { if (pthread_create(&locking_threads[cpu], &attr, locking_thread, (void *)cpu)) return 1; if (bounces & BOUNCE_POLL) { if (pthread_create(&uffd_threads[cpu], &attr, uffd_poll_thread, (void *)&uffd_stats[cpu])) return 1; } else { if (pthread_create(&uffd_threads[cpu], &attr, uffd_read_thread, (void *)&uffd_stats[cpu])) return 1; pthread_mutex_lock(&uffd_read_mutex); } if (pthread_create(&background_threads[cpu], &attr, background_thread, (void *)cpu)) return 1; } for (cpu = 0; cpu < nr_cpus; cpu++) if (pthread_join(background_threads[cpu], NULL)) return 1; /* * Be strict and immediately zap area_src, the whole area has * been transferred already by the background treads. The * area_src could then be faulted in in a racy way by still * running uffdio_threads reading zeropages after we zapped * area_src (but they're guaranteed to get -EEXIST from * UFFDIO_COPY without writing zero pages into area_dst * because the background threads already completed). */ uffd_test_ops->release_pages(area_src); finished = 1; for (cpu = 0; cpu < nr_cpus; cpu++) if (pthread_join(locking_threads[cpu], NULL)) return 1; for (cpu = 0; cpu < nr_cpus; cpu++) { char c; if (bounces & BOUNCE_POLL) { if (write(pipefd[cpu*2+1], &c, 1) != 1) err("pipefd write error"); if (pthread_join(uffd_threads[cpu], (void *)&uffd_stats[cpu])) return 1; } else { if (pthread_cancel(uffd_threads[cpu])) return 1; if (pthread_join(uffd_threads[cpu], NULL)) return 1; } } return 0; } sigjmp_buf jbuf, *sigbuf; static void sighndl(int sig, siginfo_t *siginfo, void *ptr) { if (sig == SIGBUS) { if (sigbuf) siglongjmp(*sigbuf, 1); abort(); } } /* * For non-cooperative userfaultfd test we fork() a process that will * generate pagefaults, will mremap the area monitored by the * userfaultfd and at last this process will release the monitored * area. * For the anonymous and shared memory the area is divided into two * parts, the first part is accessed before mremap, and the second * part is accessed after mremap. Since hugetlbfs does not support * mremap, the entire monitored area is accessed in a single pass for * HUGETLB_TEST. * The release of the pages currently generates event for shmem and * anonymous memory (UFFD_EVENT_REMOVE), hence it is not checked * for hugetlb. * For signal test(UFFD_FEATURE_SIGBUS), signal_test = 1, we register * monitored area, generate pagefaults and test that signal is delivered. * Use UFFDIO_COPY to allocate missing page and retry. For signal_test = 2 * test robustness use case - we release monitored area, fork a process * that will generate pagefaults and verify signal is generated. * This also tests UFFD_FEATURE_EVENT_FORK event along with the signal * feature. Using monitor thread, verify no userfault events are generated. */ static int faulting_process(int signal_test) { unsigned long nr; unsigned long long count; unsigned long split_nr_pages; unsigned long lastnr; struct sigaction act; unsigned long signalled = 0; if (test_type != TEST_HUGETLB) split_nr_pages = (nr_pages + 1) / 2; else split_nr_pages = nr_pages; if (signal_test) { sigbuf = &jbuf; memset(&act, 0, sizeof(act)); act.sa_sigaction = sighndl; act.sa_flags = SA_SIGINFO; if (sigaction(SIGBUS, &act, 0)) err("sigaction"); lastnr = (unsigned long)-1; } for (nr = 0; nr < split_nr_pages; nr++) { int steps = 1; unsigned long offset = nr * page_size; if (signal_test) { if (sigsetjmp(*sigbuf, 1) != 0) { if (steps == 1 && nr == lastnr) err("Signal repeated"); lastnr = nr; if (signal_test == 1) { if (steps == 1) { /* This is a MISSING request */ steps++; if (copy_page(uffd, offset)) signalled++; } else { /* This is a WP request */ assert(steps == 2); wp_range(uffd, (__u64)area_dst + offset, page_size, false); } } else { signalled++; continue; } } } count = *area_count(area_dst, nr); if (count != count_verify[nr]) err("nr %lu memory corruption %llu %llu\n", nr, count, count_verify[nr]); /* * Trigger write protection if there is by writing * the same value back. */ *area_count(area_dst, nr) = count; } if (signal_test) return signalled != split_nr_pages; if (test_type == TEST_HUGETLB) return 0; area_dst = mremap(area_dst, nr_pages * page_size, nr_pages * page_size, MREMAP_MAYMOVE | MREMAP_FIXED, area_src); if (area_dst == MAP_FAILED) err("mremap"); /* Reset area_src since we just clobbered it */ area_src = NULL; for (; nr < nr_pages; nr++) { count = *area_count(area_dst, nr); if (count != count_verify[nr]) { err("nr %lu memory corruption %llu %llu\n", nr, count, count_verify[nr]); } /* * Trigger write protection if there is by writing * the same value back. */ *area_count(area_dst, nr) = count; } uffd_test_ops->release_pages(area_dst); for (nr = 0; nr < nr_pages; nr++) if (my_bcmp(area_dst + nr * page_size, zeropage, page_size)) err("nr %lu is not zero", nr); return 0; } static void retry_uffdio_zeropage(int ufd, struct uffdio_zeropage *uffdio_zeropage, unsigned long offset) { uffd_test_ops->alias_mapping(&uffdio_zeropage->range.start, uffdio_zeropage->range.len, offset); if (ioctl(ufd, UFFDIO_ZEROPAGE, uffdio_zeropage)) { if (uffdio_zeropage->zeropage != -EEXIST) err("UFFDIO_ZEROPAGE error: %"PRId64, (int64_t)uffdio_zeropage->zeropage); } else { err("UFFDIO_ZEROPAGE error: %"PRId64, (int64_t)uffdio_zeropage->zeropage); } } static int __uffdio_zeropage(int ufd, unsigned long offset, bool retry) { struct uffdio_zeropage uffdio_zeropage; int ret; bool has_zeropage = get_expected_ioctls(0) & (1 << _UFFDIO_ZEROPAGE); __s64 res; if (offset >= nr_pages * page_size) err("unexpected offset %lu", offset); uffdio_zeropage.range.start = (unsigned long) area_dst + offset; uffdio_zeropage.range.len = page_size; uffdio_zeropage.mode = 0; ret = ioctl(ufd, UFFDIO_ZEROPAGE, &uffdio_zeropage); res = uffdio_zeropage.zeropage; if (ret) { /* real retval in ufdio_zeropage.zeropage */ if (has_zeropage) err("UFFDIO_ZEROPAGE error: %"PRId64, (int64_t)res); else if (res != -EINVAL) err("UFFDIO_ZEROPAGE not -EINVAL"); } else if (has_zeropage) { if (res != page_size) { err("UFFDIO_ZEROPAGE unexpected size"); } else { if (test_uffdio_zeropage_eexist && retry) { test_uffdio_zeropage_eexist = false; retry_uffdio_zeropage(ufd, &uffdio_zeropage, offset); } return 1; } } else err("UFFDIO_ZEROPAGE succeeded"); return 0; } static int uffdio_zeropage(int ufd, unsigned long offset) { return __uffdio_zeropage(ufd, offset, false); } /* exercise UFFDIO_ZEROPAGE */ static int userfaultfd_zeropage_test(void) { struct uffdio_register uffdio_register; printf("testing UFFDIO_ZEROPAGE: "); fflush(stdout); uffd_test_ctx_init(0); uffdio_register.range.start = (unsigned long) area_dst; uffdio_register.range.len = nr_pages * page_size; uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; if (test_uffdio_wp) uffdio_register.mode |= UFFDIO_REGISTER_MODE_WP; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) err("register failure"); assert_expected_ioctls_present( uffdio_register.mode, uffdio_register.ioctls); if (uffdio_zeropage(uffd, 0)) if (my_bcmp(area_dst, zeropage, page_size)) err("zeropage is not zero"); printf("done.\n"); return 0; } static int userfaultfd_events_test(void) { struct uffdio_register uffdio_register; pthread_t uffd_mon; int err, features; pid_t pid; char c; struct uffd_stats stats = { 0 }; printf("testing events (fork, remap, remove): "); fflush(stdout); features = UFFD_FEATURE_EVENT_FORK | UFFD_FEATURE_EVENT_REMAP | UFFD_FEATURE_EVENT_REMOVE; uffd_test_ctx_init(features); fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); uffdio_register.range.start = (unsigned long) area_dst; uffdio_register.range.len = nr_pages * page_size; uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; if (test_uffdio_wp) uffdio_register.mode |= UFFDIO_REGISTER_MODE_WP; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) err("register failure"); assert_expected_ioctls_present( uffdio_register.mode, uffdio_register.ioctls); if (pthread_create(&uffd_mon, &attr, uffd_poll_thread, &stats)) err("uffd_poll_thread create"); pid = fork(); if (pid < 0) err("fork"); if (!pid) exit(faulting_process(0)); waitpid(pid, &err, 0); if (err) err("faulting process failed"); if (write(pipefd[1], &c, sizeof(c)) != sizeof(c)) err("pipe write"); if (pthread_join(uffd_mon, NULL)) return 1; uffd_stats_report(&stats, 1); return stats.missing_faults != nr_pages; } static int userfaultfd_sig_test(void) { struct uffdio_register uffdio_register; unsigned long userfaults; pthread_t uffd_mon; int err, features; pid_t pid; char c; struct uffd_stats stats = { 0 }; printf("testing signal delivery: "); fflush(stdout); features = UFFD_FEATURE_EVENT_FORK|UFFD_FEATURE_SIGBUS; uffd_test_ctx_init(features); fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); uffdio_register.range.start = (unsigned long) area_dst; uffdio_register.range.len = nr_pages * page_size; uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; if (test_uffdio_wp) uffdio_register.mode |= UFFDIO_REGISTER_MODE_WP; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) err("register failure"); assert_expected_ioctls_present( uffdio_register.mode, uffdio_register.ioctls); if (faulting_process(1)) err("faulting process failed"); uffd_test_ops->release_pages(area_dst); if (pthread_create(&uffd_mon, &attr, uffd_poll_thread, &stats)) err("uffd_poll_thread create"); pid = fork(); if (pid < 0) err("fork"); if (!pid) exit(faulting_process(2)); waitpid(pid, &err, 0); if (err) err("faulting process failed"); if (write(pipefd[1], &c, sizeof(c)) != sizeof(c)) err("pipe write"); if (pthread_join(uffd_mon, (void **)&userfaults)) return 1; printf("done.\n"); if (userfaults) err("Signal test failed, userfaults: %ld", userfaults); return userfaults != 0; } static int userfaultfd_minor_test(void) { struct uffdio_register uffdio_register; unsigned long p; pthread_t uffd_mon; uint8_t expected_byte; void *expected_page; char c; struct uffd_stats stats = { 0 }; if (!test_uffdio_minor) return 0; printf("testing minor faults: "); fflush(stdout); uffd_test_ctx_init(uffd_minor_feature()); uffdio_register.range.start = (unsigned long)area_dst_alias; uffdio_register.range.len = nr_pages * page_size; uffdio_register.mode = UFFDIO_REGISTER_MODE_MINOR; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) err("register failure"); assert_expected_ioctls_present( uffdio_register.mode, uffdio_register.ioctls); /* * After registering with UFFD, populate the non-UFFD-registered side of * the shared mapping. This should *not* trigger any UFFD minor faults. */ for (p = 0; p < nr_pages; ++p) { memset(area_dst + (p * page_size), p % ((uint8_t)-1), page_size); } if (pthread_create(&uffd_mon, &attr, uffd_poll_thread, &stats)) err("uffd_poll_thread create"); /* * Read each of the pages back using the UFFD-registered mapping. We * expect that the first time we touch a page, it will result in a minor * fault. uffd_poll_thread will resolve the fault by bit-flipping the * page's contents, and then issuing a CONTINUE ioctl. */ if (posix_memalign(&expected_page, page_size, page_size)) err("out of memory"); for (p = 0; p < nr_pages; ++p) { expected_byte = ~((uint8_t)(p % ((uint8_t)-1))); memset(expected_page, expected_byte, page_size); if (my_bcmp(expected_page, area_dst_alias + (p * page_size), page_size)) err("unexpected page contents after minor fault"); } if (write(pipefd[1], &c, sizeof(c)) != sizeof(c)) err("pipe write"); if (pthread_join(uffd_mon, NULL)) return 1; uffd_stats_report(&stats, 1); return stats.missing_faults != 0 || stats.minor_faults != nr_pages; } #define BIT_ULL(nr) (1ULL << (nr)) #define PM_SOFT_DIRTY BIT_ULL(55) #define PM_MMAP_EXCLUSIVE BIT_ULL(56) #define PM_UFFD_WP BIT_ULL(57) #define PM_FILE BIT_ULL(61) #define PM_SWAP BIT_ULL(62) #define PM_PRESENT BIT_ULL(63) static int pagemap_open(void) { int fd = open("/proc/self/pagemap", O_RDONLY); if (fd < 0) err("open pagemap"); return fd; } static uint64_t pagemap_read_vaddr(int fd, void *vaddr) { uint64_t value; int ret; ret = pread(fd, &value, sizeof(uint64_t), ((uint64_t)vaddr >> 12) * sizeof(uint64_t)); if (ret != sizeof(uint64_t)) err("pread() on pagemap failed"); return value; } /* This macro let __LINE__ works in err() */ #define pagemap_check_wp(value, wp) do { \ if (!!(value & PM_UFFD_WP) != wp) \ err("pagemap uffd-wp bit error: 0x%"PRIx64, value); \ } while (0) static int pagemap_test_fork(bool present) { pid_t child = fork(); uint64_t value; int fd, result; if (!child) { /* Open the pagemap fd of the child itself */ fd = pagemap_open(); value = pagemap_read_vaddr(fd, area_dst); /* * After fork() uffd-wp bit should be gone as long as we're * without UFFD_FEATURE_EVENT_FORK */ pagemap_check_wp(value, false); /* Succeed */ exit(0); } waitpid(child, &result, 0); return result; } static void userfaultfd_pagemap_test(unsigned int test_pgsize) { struct uffdio_register uffdio_register; int pagemap_fd; uint64_t value; /* Pagemap tests uffd-wp only */ if (!test_uffdio_wp) return; /* Not enough memory to test this page size */ if (test_pgsize > nr_pages * page_size) return; printf("testing uffd-wp with pagemap (pgsize=%u): ", test_pgsize); /* Flush so it doesn't flush twice in parent/child later */ fflush(stdout); uffd_test_ctx_init(0); if (test_pgsize > page_size) { /* This is a thp test */ if (madvise(area_dst, nr_pages * page_size, MADV_HUGEPAGE)) err("madvise(MADV_HUGEPAGE) failed"); } else if (test_pgsize == page_size) { /* This is normal page test; force no thp */ if (madvise(area_dst, nr_pages * page_size, MADV_NOHUGEPAGE)) err("madvise(MADV_NOHUGEPAGE) failed"); } uffdio_register.range.start = (unsigned long) area_dst; uffdio_register.range.len = nr_pages * page_size; uffdio_register.mode = UFFDIO_REGISTER_MODE_WP; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) err("register failed"); pagemap_fd = pagemap_open(); /* Touch the page */ *area_dst = 1; wp_range(uffd, (uint64_t)area_dst, test_pgsize, true); value = pagemap_read_vaddr(pagemap_fd, area_dst); pagemap_check_wp(value, true); /* Make sure uffd-wp bit dropped when fork */ if (pagemap_test_fork(true)) err("Detected stall uffd-wp bit in child"); /* Exclusive required or PAGEOUT won't work */ if (!(value & PM_MMAP_EXCLUSIVE)) err("multiple mapping detected: 0x%"PRIx64, value); if (madvise(area_dst, test_pgsize, MADV_PAGEOUT)) err("madvise(MADV_PAGEOUT) failed"); /* Uffd-wp should persist even swapped out */ value = pagemap_read_vaddr(pagemap_fd, area_dst); pagemap_check_wp(value, true); /* Make sure uffd-wp bit dropped when fork */ if (pagemap_test_fork(false)) err("Detected stall uffd-wp bit in child"); /* Unprotect; this tests swap pte modifications */ wp_range(uffd, (uint64_t)area_dst, page_size, false); value = pagemap_read_vaddr(pagemap_fd, area_dst); pagemap_check_wp(value, false); /* Fault in the page from disk */ *area_dst = 2; value = pagemap_read_vaddr(pagemap_fd, area_dst); pagemap_check_wp(value, false); close(pagemap_fd); printf("done\n"); } static int userfaultfd_stress(void) { void *area; char *tmp_area; unsigned long nr; struct uffdio_register uffdio_register; struct uffd_stats uffd_stats[nr_cpus]; uffd_test_ctx_init(0); if (posix_memalign(&area, page_size, page_size)) err("out of memory"); zeropage = area; bzero(zeropage, page_size); pthread_mutex_lock(&uffd_read_mutex); pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 16*1024*1024); while (bounces--) { printf("bounces: %d, mode:", bounces); if (bounces & BOUNCE_RANDOM) printf(" rnd"); if (bounces & BOUNCE_RACINGFAULTS) printf(" racing"); if (bounces & BOUNCE_VERIFY) printf(" ver"); if (bounces & BOUNCE_POLL) printf(" poll"); else printf(" read"); printf(", "); fflush(stdout); if (bounces & BOUNCE_POLL) fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); else fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK); /* register */ uffdio_register.range.start = (unsigned long) area_dst; uffdio_register.range.len = nr_pages * page_size; uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; if (test_uffdio_wp) uffdio_register.mode |= UFFDIO_REGISTER_MODE_WP; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) err("register failure"); assert_expected_ioctls_present( uffdio_register.mode, uffdio_register.ioctls); if (area_dst_alias) { uffdio_register.range.start = (unsigned long) area_dst_alias; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) err("register failure alias"); } /* * The madvise done previously isn't enough: some * uffd_thread could have read userfaults (one of * those already resolved by the background thread) * and it may be in the process of calling * UFFDIO_COPY. UFFDIO_COPY will read the zapped * area_src and it would map a zero page in it (of * course such a UFFDIO_COPY is perfectly safe as it'd * return -EEXIST). The problem comes at the next * bounce though: that racing UFFDIO_COPY would * generate zeropages in the area_src, so invalidating * the previous MADV_DONTNEED. Without this additional * MADV_DONTNEED those zeropages leftovers in the * area_src would lead to -EEXIST failure during the * next bounce, effectively leaving a zeropage in the * area_dst. * * Try to comment this out madvise to see the memory * corruption being caught pretty quick. * * khugepaged is also inhibited to collapse THP after * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's * required to MADV_DONTNEED here. */ uffd_test_ops->release_pages(area_dst); uffd_stats_reset(uffd_stats, nr_cpus); /* bounce pass */ if (stress(uffd_stats)) return 1; /* Clear all the write protections if there is any */ if (test_uffdio_wp) wp_range(uffd, (unsigned long)area_dst, nr_pages * page_size, false); /* unregister */ if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) err("unregister failure"); if (area_dst_alias) { uffdio_register.range.start = (unsigned long) area_dst; if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) err("unregister failure alias"); } /* verification */ if (bounces & BOUNCE_VERIFY) for (nr = 0; nr < nr_pages; nr++) if (*area_count(area_dst, nr) != count_verify[nr]) err("error area_count %llu %llu %lu\n", *area_count(area_src, nr), count_verify[nr], nr); /* prepare next bounce */ tmp_area = area_src; area_src = area_dst; area_dst = tmp_area; tmp_area = area_src_alias; area_src_alias = area_dst_alias; area_dst_alias = tmp_area; uffd_stats_report(uffd_stats, nr_cpus); } if (test_type == TEST_ANON) { /* * shmem/hugetlb won't be able to run since they have different * behavior on fork() (file-backed memory normally drops ptes * directly when fork), meanwhile the pagemap test will verify * pgtable entry of fork()ed child. */ userfaultfd_pagemap_test(page_size); /* * Hard-code for x86_64 for now for 2M THP, as x86_64 is * currently the only one that supports uffd-wp */ userfaultfd_pagemap_test(page_size * 512); } return userfaultfd_zeropage_test() || userfaultfd_sig_test() || userfaultfd_events_test() || userfaultfd_minor_test(); } /* * Copied from mlock2-tests.c */ unsigned long default_huge_page_size(void) { unsigned long hps = 0; char *line = NULL; size_t linelen = 0; FILE *f = fopen("/proc/meminfo", "r"); if (!f) return 0; while (getline(&line, &linelen, f) > 0) { if (sscanf(line, "Hugepagesize: %lu kB", &hps) == 1) { hps <<= 10; break; } } free(line); fclose(f); return hps; } static void set_test_type(const char *type) { uint64_t features = UFFD_API_FEATURES; if (!strcmp(type, "anon")) { test_type = TEST_ANON; uffd_test_ops = &anon_uffd_test_ops; /* Only enable write-protect test for anonymous test */ test_uffdio_wp = true; } else if (!strcmp(type, "hugetlb")) { test_type = TEST_HUGETLB; uffd_test_ops = &hugetlb_uffd_test_ops; } else if (!strcmp(type, "hugetlb_shared")) { map_shared = true; test_type = TEST_HUGETLB; uffd_test_ops = &hugetlb_uffd_test_ops; /* Minor faults require shared hugetlb; only enable here. */ test_uffdio_minor = true; } else if (!strcmp(type, "shmem")) { map_shared = true; test_type = TEST_SHMEM; uffd_test_ops = &shmem_uffd_test_ops; test_uffdio_minor = true; } else { err("Unknown test type: %s", type); } if (test_type == TEST_HUGETLB) page_size = default_huge_page_size(); else page_size = sysconf(_SC_PAGE_SIZE); if (!page_size) err("Unable to determine page size"); if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) * 2 > page_size) err("Impossible to run this test"); /* * Whether we can test certain features depends not just on test type, * but also on whether or not this particular kernel supports the * feature. */ userfaultfd_open(&features); test_uffdio_wp = test_uffdio_wp && (features & UFFD_FEATURE_PAGEFAULT_FLAG_WP); test_uffdio_minor = test_uffdio_minor && (features & uffd_minor_feature()); close(uffd); uffd = -1; } static void sigalrm(int sig) { if (sig != SIGALRM) abort(); test_uffdio_copy_eexist = true; test_uffdio_zeropage_eexist = true; alarm(ALARM_INTERVAL_SECS); } int main(int argc, char **argv) { if (argc < 4) usage(); if (signal(SIGALRM, sigalrm) == SIG_ERR) err("failed to arm SIGALRM"); alarm(ALARM_INTERVAL_SECS); set_test_type(argv[1]); nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); nr_pages_per_cpu = atol(argv[2]) * 1024*1024 / page_size / nr_cpus; if (!nr_pages_per_cpu) { _err("invalid MiB"); usage(); } bounces = atoi(argv[3]); if (bounces <= 0) { _err("invalid bounces"); usage(); } nr_pages = nr_pages_per_cpu * nr_cpus; if (test_type == TEST_HUGETLB) { if (argc < 5) usage(); huge_fd = open(argv[4], O_CREAT | O_RDWR, 0755); if (huge_fd < 0) err("Open of %s failed", argv[4]); if (ftruncate(huge_fd, 0)) err("ftruncate %s to size 0 failed", argv[4]); } else if (test_type == TEST_SHMEM) { shm_fd = memfd_create(argv[0], 0); if (shm_fd < 0) err("memfd_create"); if (ftruncate(shm_fd, nr_pages * page_size * 2)) err("ftruncate"); if (fallocate(shm_fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, nr_pages * page_size * 2)) err("fallocate"); } printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n", nr_pages, nr_pages_per_cpu); return userfaultfd_stress(); } #else /* __NR_userfaultfd */ #warning "missing __NR_userfaultfd definition" int main(void) { printf("skip: Skipping userfaultfd test (missing __NR_userfaultfd)\n"); return KSFT_SKIP; } #endif /* __NR_userfaultfd */