// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2017-2018 Covalent IO, Inc. http://covalent.io #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bpf_util.h" #include "bpf_rlimit.h" #include "cgroup_helpers.h" int running; static void running_handler(int a); #ifndef TCP_ULP # define TCP_ULP 31 #endif #ifndef SOL_TLS # define SOL_TLS 282 #endif /* randomly selected ports for testing on lo */ #define S1_PORT 10000 #define S2_PORT 10001 #define BPF_SOCKMAP_FILENAME "test_sockmap_kern.o" #define BPF_SOCKHASH_FILENAME "test_sockhash_kern.o" #define CG_PATH "/sockmap" /* global sockets */ int s1, s2, c1, c2, p1, p2; int test_cnt; int passed; int failed; int map_fd[9]; struct bpf_map *maps[9]; int prog_fd[11]; int txmsg_pass; int txmsg_redir; int txmsg_drop; int txmsg_apply; int txmsg_cork; int txmsg_start; int txmsg_end; int txmsg_start_push; int txmsg_end_push; int txmsg_start_pop; int txmsg_pop; int txmsg_ingress; int txmsg_redir_skb; int txmsg_ktls_skb; int txmsg_ktls_skb_drop; int txmsg_ktls_skb_redir; int ktls; int peek_flag; int skb_use_parser; static const struct option long_options[] = { {"help", no_argument, NULL, 'h' }, {"cgroup", required_argument, NULL, 'c' }, {"rate", required_argument, NULL, 'r' }, {"verbose", optional_argument, NULL, 'v' }, {"iov_count", required_argument, NULL, 'i' }, {"length", required_argument, NULL, 'l' }, {"test", required_argument, NULL, 't' }, {"data_test", no_argument, NULL, 'd' }, {"txmsg", no_argument, &txmsg_pass, 1 }, {"txmsg_redir", no_argument, &txmsg_redir, 1 }, {"txmsg_drop", no_argument, &txmsg_drop, 1 }, {"txmsg_apply", required_argument, NULL, 'a'}, {"txmsg_cork", required_argument, NULL, 'k'}, {"txmsg_start", required_argument, NULL, 's'}, {"txmsg_end", required_argument, NULL, 'e'}, {"txmsg_start_push", required_argument, NULL, 'p'}, {"txmsg_end_push", required_argument, NULL, 'q'}, {"txmsg_start_pop", required_argument, NULL, 'w'}, {"txmsg_pop", required_argument, NULL, 'x'}, {"txmsg_ingress", no_argument, &txmsg_ingress, 1 }, {"txmsg_redir_skb", no_argument, &txmsg_redir_skb, 1 }, {"ktls", no_argument, &ktls, 1 }, {"peek", no_argument, &peek_flag, 1 }, {"whitelist", required_argument, NULL, 'n' }, {"blacklist", required_argument, NULL, 'b' }, {0, 0, NULL, 0 } }; struct test_env { const char *type; const char *subtest; const char *prepend; int test_num; int subtest_num; int succ_cnt; int fail_cnt; int fail_last; }; struct test_env env; struct sockmap_options { int verbose; bool base; bool sendpage; bool data_test; bool drop_expected; int iov_count; int iov_length; int rate; char *map; char *whitelist; char *blacklist; char *prepend; }; struct _test { char *title; void (*tester)(int cg_fd, struct sockmap_options *opt); }; static void test_start(void) { env.subtest_num++; } static void test_fail(void) { env.fail_cnt++; } static void test_pass(void) { env.succ_cnt++; } static void test_reset(void) { txmsg_start = txmsg_end = 0; txmsg_start_pop = txmsg_pop = 0; txmsg_start_push = txmsg_end_push = 0; txmsg_pass = txmsg_drop = txmsg_redir = 0; txmsg_apply = txmsg_cork = 0; txmsg_ingress = txmsg_redir_skb = 0; txmsg_ktls_skb = txmsg_ktls_skb_drop = txmsg_ktls_skb_redir = 0; skb_use_parser = 0; } static int test_start_subtest(const struct _test *t, struct sockmap_options *o) { env.type = o->map; env.subtest = t->title; env.prepend = o->prepend; env.test_num++; env.subtest_num = 0; env.fail_last = env.fail_cnt; test_reset(); return 0; } static void test_end_subtest(void) { int error = env.fail_cnt - env.fail_last; int type = strcmp(env.type, BPF_SOCKMAP_FILENAME); if (!error) test_pass(); fprintf(stdout, "#%2d/%2d %8s:%s:%s:%s\n", env.test_num, env.subtest_num, !type ? "sockmap" : "sockhash", env.prepend ? : "", env.subtest, error ? "FAIL" : "OK"); } static void test_print_results(void) { fprintf(stdout, "Pass: %d Fail: %d\n", env.succ_cnt, env.fail_cnt); } static void usage(char *argv[]) { int i; printf(" Usage: %s --cgroup \n", argv[0]); printf(" options:\n"); for (i = 0; long_options[i].name != 0; i++) { printf(" --%-12s", long_options[i].name); if (long_options[i].flag != NULL) printf(" flag (internal value:%d)\n", *long_options[i].flag); else printf(" -%c\n", long_options[i].val); } printf("\n"); } char *sock_to_string(int s) { if (s == c1) return "client1"; else if (s == c2) return "client2"; else if (s == s1) return "server1"; else if (s == s2) return "server2"; else if (s == p1) return "peer1"; else if (s == p2) return "peer2"; else return "unknown"; } static int sockmap_init_ktls(int verbose, int s) { struct tls12_crypto_info_aes_gcm_128 tls_tx = { .info = { .version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_128, }, }; struct tls12_crypto_info_aes_gcm_128 tls_rx = { .info = { .version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_128, }, }; int so_buf = 6553500; int err; err = setsockopt(s, 6, TCP_ULP, "tls", sizeof("tls")); if (err) { fprintf(stderr, "setsockopt: TCP_ULP(%s) failed with error %i\n", sock_to_string(s), err); return -EINVAL; } err = setsockopt(s, SOL_TLS, TLS_TX, (void *)&tls_tx, sizeof(tls_tx)); if (err) { fprintf(stderr, "setsockopt: TLS_TX(%s) failed with error %i\n", sock_to_string(s), err); return -EINVAL; } err = setsockopt(s, SOL_TLS, TLS_RX, (void *)&tls_rx, sizeof(tls_rx)); if (err) { fprintf(stderr, "setsockopt: TLS_RX(%s) failed with error %i\n", sock_to_string(s), err); return -EINVAL; } err = setsockopt(s, SOL_SOCKET, SO_SNDBUF, &so_buf, sizeof(so_buf)); if (err) { fprintf(stderr, "setsockopt: (%s) failed sndbuf with error %i\n", sock_to_string(s), err); return -EINVAL; } err = setsockopt(s, SOL_SOCKET, SO_RCVBUF, &so_buf, sizeof(so_buf)); if (err) { fprintf(stderr, "setsockopt: (%s) failed rcvbuf with error %i\n", sock_to_string(s), err); return -EINVAL; } if (verbose) fprintf(stdout, "socket(%s) kTLS enabled\n", sock_to_string(s)); return 0; } static int sockmap_init_sockets(int verbose) { int i, err, one = 1; struct sockaddr_in addr; int *fds[4] = {&s1, &s2, &c1, &c2}; s1 = s2 = p1 = p2 = c1 = c2 = 0; /* Init sockets */ for (i = 0; i < 4; i++) { *fds[i] = socket(AF_INET, SOCK_STREAM, 0); if (*fds[i] < 0) { perror("socket s1 failed()"); return errno; } } /* Allow reuse */ for (i = 0; i < 2; i++) { err = setsockopt(*fds[i], SOL_SOCKET, SO_REUSEADDR, (char *)&one, sizeof(one)); if (err) { perror("setsockopt failed()"); return errno; } } /* Non-blocking sockets */ for (i = 0; i < 2; i++) { err = ioctl(*fds[i], FIONBIO, (char *)&one); if (err < 0) { perror("ioctl s1 failed()"); return errno; } } /* Bind server sockets */ memset(&addr, 0, sizeof(struct sockaddr_in)); addr.sin_family = AF_INET; addr.sin_addr.s_addr = inet_addr("127.0.0.1"); addr.sin_port = htons(S1_PORT); err = bind(s1, (struct sockaddr *)&addr, sizeof(addr)); if (err < 0) { perror("bind s1 failed()"); return errno; } addr.sin_port = htons(S2_PORT); err = bind(s2, (struct sockaddr *)&addr, sizeof(addr)); if (err < 0) { perror("bind s2 failed()"); return errno; } /* Listen server sockets */ addr.sin_port = htons(S1_PORT); err = listen(s1, 32); if (err < 0) { perror("listen s1 failed()"); return errno; } addr.sin_port = htons(S2_PORT); err = listen(s2, 32); if (err < 0) { perror("listen s1 failed()"); return errno; } /* Initiate Connect */ addr.sin_port = htons(S1_PORT); err = connect(c1, (struct sockaddr *)&addr, sizeof(addr)); if (err < 0 && errno != EINPROGRESS) { perror("connect c1 failed()"); return errno; } addr.sin_port = htons(S2_PORT); err = connect(c2, (struct sockaddr *)&addr, sizeof(addr)); if (err < 0 && errno != EINPROGRESS) { perror("connect c2 failed()"); return errno; } else if (err < 0) { err = 0; } /* Accept Connecrtions */ p1 = accept(s1, NULL, NULL); if (p1 < 0) { perror("accept s1 failed()"); return errno; } p2 = accept(s2, NULL, NULL); if (p2 < 0) { perror("accept s1 failed()"); return errno; } if (verbose > 1) { printf("connected sockets: c1 <-> p1, c2 <-> p2\n"); printf("cgroups binding: c1(%i) <-> s1(%i) - - - c2(%i) <-> s2(%i)\n", c1, s1, c2, s2); } return 0; } struct msg_stats { size_t bytes_sent; size_t bytes_recvd; struct timespec start; struct timespec end; }; static int msg_loop_sendpage(int fd, int iov_length, int cnt, struct msg_stats *s, struct sockmap_options *opt) { bool drop = opt->drop_expected; unsigned char k = 0; FILE *file; int i, fp; file = tmpfile(); if (!file) { perror("create file for sendpage"); return 1; } for (i = 0; i < iov_length * cnt; i++, k++) fwrite(&k, sizeof(char), 1, file); fflush(file); fseek(file, 0, SEEK_SET); fp = fileno(file); clock_gettime(CLOCK_MONOTONIC, &s->start); for (i = 0; i < cnt; i++) { int sent; errno = 0; sent = sendfile(fd, fp, NULL, iov_length); if (!drop && sent < 0) { perror("sendpage loop error"); fclose(file); return sent; } else if (drop && sent >= 0) { printf("sendpage loop error expected: %i errno %i\n", sent, errno); fclose(file); return -EIO; } if (sent > 0) s->bytes_sent += sent; } clock_gettime(CLOCK_MONOTONIC, &s->end); fclose(file); return 0; } static void msg_free_iov(struct msghdr *msg) { int i; for (i = 0; i < msg->msg_iovlen; i++) free(msg->msg_iov[i].iov_base); free(msg->msg_iov); msg->msg_iov = NULL; msg->msg_iovlen = 0; } static int msg_alloc_iov(struct msghdr *msg, int iov_count, int iov_length, bool data, bool xmit) { unsigned char k = 0; struct iovec *iov; int i; iov = calloc(iov_count, sizeof(struct iovec)); if (!iov) return errno; for (i = 0; i < iov_count; i++) { unsigned char *d = calloc(iov_length, sizeof(char)); if (!d) { fprintf(stderr, "iov_count %i/%i OOM\n", i, iov_count); goto unwind_iov; } iov[i].iov_base = d; iov[i].iov_len = iov_length; if (data && xmit) { int j; for (j = 0; j < iov_length; j++) d[j] = k++; } } msg->msg_iov = iov; msg->msg_iovlen = iov_count; return 0; unwind_iov: for (i--; i >= 0 ; i--) free(msg->msg_iov[i].iov_base); return -ENOMEM; } static int msg_verify_data(struct msghdr *msg, int size, int chunk_sz) { int i, j = 0, bytes_cnt = 0; unsigned char k = 0; for (i = 0; i < msg->msg_iovlen; i++) { unsigned char *d = msg->msg_iov[i].iov_base; /* Special case test for skb ingress + ktls */ if (i == 0 && txmsg_ktls_skb) { if (msg->msg_iov[i].iov_len < 4) return -EIO; if (txmsg_ktls_skb_redir) { if (memcmp(&d[13], "PASS", 4) != 0) { fprintf(stderr, "detected redirect ktls_skb data error with skb ingress update @iov[%i]:%i \"%02x %02x %02x %02x\" != \"PASS\"\n", i, 0, d[13], d[14], d[15], d[16]); return -EIO; } d[13] = 0; d[14] = 1; d[15] = 2; d[16] = 3; j = 13; } else if (txmsg_ktls_skb) { if (memcmp(d, "PASS", 4) != 0) { fprintf(stderr, "detected ktls_skb data error with skb ingress update @iov[%i]:%i \"%02x %02x %02x %02x\" != \"PASS\"\n", i, 0, d[0], d[1], d[2], d[3]); return -EIO; } d[0] = 0; d[1] = 1; d[2] = 2; d[3] = 3; } } for (; j < msg->msg_iov[i].iov_len && size; j++) { if (d[j] != k++) { fprintf(stderr, "detected data corruption @iov[%i]:%i %02x != %02x, %02x ?= %02x\n", i, j, d[j], k - 1, d[j+1], k); return -EIO; } bytes_cnt++; if (bytes_cnt == chunk_sz) { k = 0; bytes_cnt = 0; } size--; } } return 0; } static int msg_loop(int fd, int iov_count, int iov_length, int cnt, struct msg_stats *s, bool tx, struct sockmap_options *opt) { struct msghdr msg = {0}, msg_peek = {0}; int err, i, flags = MSG_NOSIGNAL; bool drop = opt->drop_expected; bool data = opt->data_test; err = msg_alloc_iov(&msg, iov_count, iov_length, data, tx); if (err) goto out_errno; if (peek_flag) { err = msg_alloc_iov(&msg_peek, iov_count, iov_length, data, tx); if (err) goto out_errno; } if (tx) { clock_gettime(CLOCK_MONOTONIC, &s->start); for (i = 0; i < cnt; i++) { int sent; errno = 0; sent = sendmsg(fd, &msg, flags); if (!drop && sent < 0) { perror("sendmsg loop error"); goto out_errno; } else if (drop && sent >= 0) { fprintf(stderr, "sendmsg loop error expected: %i errno %i\n", sent, errno); errno = -EIO; goto out_errno; } if (sent > 0) s->bytes_sent += sent; } clock_gettime(CLOCK_MONOTONIC, &s->end); } else { int slct, recvp = 0, recv, max_fd = fd; float total_bytes, txmsg_pop_total; int fd_flags = O_NONBLOCK; struct timeval timeout; fd_set w; fcntl(fd, fd_flags); /* Account for pop bytes noting each iteration of apply will * call msg_pop_data helper so we need to account for this * by calculating the number of apply iterations. Note user * of the tool can create cases where no data is sent by * manipulating pop/push/pull/etc. For example txmsg_apply 1 * with txmsg_pop 1 will try to apply 1B at a time but each * iteration will then pop 1B so no data will ever be sent. * This is really only useful for testing edge cases in code * paths. */ total_bytes = (float)iov_count * (float)iov_length * (float)cnt; if (txmsg_apply) txmsg_pop_total = txmsg_pop * (total_bytes / txmsg_apply); else txmsg_pop_total = txmsg_pop * cnt; total_bytes -= txmsg_pop_total; err = clock_gettime(CLOCK_MONOTONIC, &s->start); if (err < 0) perror("recv start time"); while (s->bytes_recvd < total_bytes) { if (txmsg_cork) { timeout.tv_sec = 0; timeout.tv_usec = 300000; } else { timeout.tv_sec = 3; timeout.tv_usec = 0; } /* FD sets */ FD_ZERO(&w); FD_SET(fd, &w); slct = select(max_fd + 1, &w, NULL, NULL, &timeout); if (slct == -1) { perror("select()"); clock_gettime(CLOCK_MONOTONIC, &s->end); goto out_errno; } else if (!slct) { if (opt->verbose) fprintf(stderr, "unexpected timeout: recved %zu/%f pop_total %f\n", s->bytes_recvd, total_bytes, txmsg_pop_total); errno = -EIO; clock_gettime(CLOCK_MONOTONIC, &s->end); goto out_errno; } errno = 0; if (peek_flag) { flags |= MSG_PEEK; recvp = recvmsg(fd, &msg_peek, flags); if (recvp < 0) { if (errno != EWOULDBLOCK) { clock_gettime(CLOCK_MONOTONIC, &s->end); goto out_errno; } } flags = 0; } recv = recvmsg(fd, &msg, flags); if (recv < 0) { if (errno != EWOULDBLOCK) { clock_gettime(CLOCK_MONOTONIC, &s->end); perror("recv failed()"); goto out_errno; } } s->bytes_recvd += recv; if (data) { int chunk_sz = opt->sendpage ? iov_length * cnt : iov_length * iov_count; errno = msg_verify_data(&msg, recv, chunk_sz); if (errno) { perror("data verify msg failed"); goto out_errno; } if (recvp) { errno = msg_verify_data(&msg_peek, recvp, chunk_sz); if (errno) { perror("data verify msg_peek failed"); goto out_errno; } } } } clock_gettime(CLOCK_MONOTONIC, &s->end); } msg_free_iov(&msg); msg_free_iov(&msg_peek); return err; out_errno: msg_free_iov(&msg); msg_free_iov(&msg_peek); return errno; } static float giga = 1000000000; static inline float sentBps(struct msg_stats s) { return s.bytes_sent / (s.end.tv_sec - s.start.tv_sec); } static inline float recvdBps(struct msg_stats s) { return s.bytes_recvd / (s.end.tv_sec - s.start.tv_sec); } static int sendmsg_test(struct sockmap_options *opt) { float sent_Bps = 0, recvd_Bps = 0; int rx_fd, txpid, rxpid, err = 0; struct msg_stats s = {0}; int iov_count = opt->iov_count; int iov_buf = opt->iov_length; int rx_status, tx_status; int cnt = opt->rate; errno = 0; if (opt->base) rx_fd = p1; else rx_fd = p2; if (ktls) { /* Redirecting into non-TLS socket which sends into a TLS * socket is not a valid test. So in this case lets not * enable kTLS but still run the test. */ if (!txmsg_redir || (txmsg_redir && txmsg_ingress)) { err = sockmap_init_ktls(opt->verbose, rx_fd); if (err) return err; } err = sockmap_init_ktls(opt->verbose, c1); if (err) return err; } rxpid = fork(); if (rxpid == 0) { iov_buf -= (txmsg_pop - txmsg_start_pop + 1); if (opt->drop_expected || txmsg_ktls_skb_drop) _exit(0); if (!iov_buf) /* zero bytes sent case */ _exit(0); if (opt->sendpage) iov_count = 1; err = msg_loop(rx_fd, iov_count, iov_buf, cnt, &s, false, opt); if (opt->verbose > 1) fprintf(stderr, "msg_loop_rx: iov_count %i iov_buf %i cnt %i err %i\n", iov_count, iov_buf, cnt, err); if (s.end.tv_sec - s.start.tv_sec) { sent_Bps = sentBps(s); recvd_Bps = recvdBps(s); } if (opt->verbose > 1) fprintf(stdout, "rx_sendmsg: TX: %zuB %fB/s %fGB/s RX: %zuB %fB/s %fGB/s %s\n", s.bytes_sent, sent_Bps, sent_Bps/giga, s.bytes_recvd, recvd_Bps, recvd_Bps/giga, peek_flag ? "(peek_msg)" : ""); if (err && txmsg_cork) err = 0; exit(err ? 1 : 0); } else if (rxpid == -1) { perror("msg_loop_rx"); return errno; } txpid = fork(); if (txpid == 0) { if (opt->sendpage) err = msg_loop_sendpage(c1, iov_buf, cnt, &s, opt); else err = msg_loop(c1, iov_count, iov_buf, cnt, &s, true, opt); if (err) fprintf(stderr, "msg_loop_tx: iov_count %i iov_buf %i cnt %i err %i\n", iov_count, iov_buf, cnt, err); if (s.end.tv_sec - s.start.tv_sec) { sent_Bps = sentBps(s); recvd_Bps = recvdBps(s); } if (opt->verbose > 1) fprintf(stdout, "tx_sendmsg: TX: %zuB %fB/s %f GB/s RX: %zuB %fB/s %fGB/s\n", s.bytes_sent, sent_Bps, sent_Bps/giga, s.bytes_recvd, recvd_Bps, recvd_Bps/giga); exit(err ? 1 : 0); } else if (txpid == -1) { perror("msg_loop_tx"); return errno; } assert(waitpid(rxpid, &rx_status, 0) == rxpid); assert(waitpid(txpid, &tx_status, 0) == txpid); if (WIFEXITED(rx_status)) { err = WEXITSTATUS(rx_status); if (err) { fprintf(stderr, "rx thread exited with err %d.\n", err); goto out; } } if (WIFEXITED(tx_status)) { err = WEXITSTATUS(tx_status); if (err) fprintf(stderr, "tx thread exited with err %d.\n", err); } out: return err; } static int forever_ping_pong(int rate, struct sockmap_options *opt) { struct timeval timeout; char buf[1024] = {0}; int sc; timeout.tv_sec = 10; timeout.tv_usec = 0; /* Ping/Pong data from client to server */ sc = send(c1, buf, sizeof(buf), 0); if (sc < 0) { perror("send failed()"); return sc; } do { int s, rc, i, max_fd = p2; fd_set w; /* FD sets */ FD_ZERO(&w); FD_SET(c1, &w); FD_SET(c2, &w); FD_SET(p1, &w); FD_SET(p2, &w); s = select(max_fd + 1, &w, NULL, NULL, &timeout); if (s == -1) { perror("select()"); break; } else if (!s) { fprintf(stderr, "unexpected timeout\n"); break; } for (i = 0; i <= max_fd && s > 0; ++i) { if (!FD_ISSET(i, &w)) continue; s--; rc = recv(i, buf, sizeof(buf), 0); if (rc < 0) { if (errno != EWOULDBLOCK) { perror("recv failed()"); return rc; } } if (rc == 0) { close(i); break; } sc = send(i, buf, rc, 0); if (sc < 0) { perror("send failed()"); return sc; } } if (rate) sleep(rate); if (opt->verbose) { printf("."); fflush(stdout); } } while (running); return 0; } enum { SELFTESTS, PING_PONG, SENDMSG, BASE, BASE_SENDPAGE, SENDPAGE, }; static int run_options(struct sockmap_options *options, int cg_fd, int test) { int i, key, next_key, err, tx_prog_fd = -1, zero = 0; /* If base test skip BPF setup */ if (test == BASE || test == BASE_SENDPAGE) goto run; /* Attach programs to sockmap */ err = bpf_prog_attach(prog_fd[0], map_fd[0], BPF_SK_SKB_STREAM_PARSER, 0); if (err) { fprintf(stderr, "ERROR: bpf_prog_attach (sockmap %i->%i): %d (%s)\n", prog_fd[0], map_fd[0], err, strerror(errno)); return err; } err = bpf_prog_attach(prog_fd[1], map_fd[0], BPF_SK_SKB_STREAM_VERDICT, 0); if (err) { fprintf(stderr, "ERROR: bpf_prog_attach (sockmap): %d (%s)\n", err, strerror(errno)); return err; } /* Attach programs to TLS sockmap */ if (txmsg_ktls_skb) { err = bpf_prog_attach(prog_fd[0], map_fd[8], BPF_SK_SKB_STREAM_PARSER, 0); if (err) { fprintf(stderr, "ERROR: bpf_prog_attach (TLS sockmap %i->%i): %d (%s)\n", prog_fd[0], map_fd[8], err, strerror(errno)); return err; } err = bpf_prog_attach(prog_fd[2], map_fd[8], BPF_SK_SKB_STREAM_VERDICT, 0); if (err) { fprintf(stderr, "ERROR: bpf_prog_attach (TLS sockmap): %d (%s)\n", err, strerror(errno)); return err; } } /* Attach to cgroups */ err = bpf_prog_attach(prog_fd[3], cg_fd, BPF_CGROUP_SOCK_OPS, 0); if (err) { fprintf(stderr, "ERROR: bpf_prog_attach (groups): %d (%s)\n", err, strerror(errno)); return err; } run: err = sockmap_init_sockets(options->verbose); if (err) { fprintf(stderr, "ERROR: test socket failed: %d\n", err); goto out; } /* Attach txmsg program to sockmap */ if (txmsg_pass) tx_prog_fd = prog_fd[4]; else if (txmsg_redir) tx_prog_fd = prog_fd[5]; else if (txmsg_apply) tx_prog_fd = prog_fd[6]; else if (txmsg_cork) tx_prog_fd = prog_fd[7]; else if (txmsg_drop) tx_prog_fd = prog_fd[8]; else tx_prog_fd = 0; if (tx_prog_fd) { int redir_fd, i = 0; err = bpf_prog_attach(tx_prog_fd, map_fd[1], BPF_SK_MSG_VERDICT, 0); if (err) { fprintf(stderr, "ERROR: bpf_prog_attach (txmsg): %d (%s)\n", err, strerror(errno)); goto out; } err = bpf_map_update_elem(map_fd[1], &i, &c1, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (txmsg): %d (%s\n", err, strerror(errno)); goto out; } if (txmsg_redir) redir_fd = c2; else redir_fd = c1; err = bpf_map_update_elem(map_fd[2], &i, &redir_fd, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (txmsg): %d (%s\n", err, strerror(errno)); goto out; } if (txmsg_apply) { err = bpf_map_update_elem(map_fd[3], &i, &txmsg_apply, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (apply_bytes): %d (%s\n", err, strerror(errno)); goto out; } } if (txmsg_cork) { err = bpf_map_update_elem(map_fd[4], &i, &txmsg_cork, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (cork_bytes): %d (%s\n", err, strerror(errno)); goto out; } } if (txmsg_start) { err = bpf_map_update_elem(map_fd[5], &i, &txmsg_start, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (txmsg_start): %d (%s)\n", err, strerror(errno)); goto out; } } if (txmsg_end) { i = 1; err = bpf_map_update_elem(map_fd[5], &i, &txmsg_end, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (txmsg_end): %d (%s)\n", err, strerror(errno)); goto out; } } if (txmsg_start_push) { i = 2; err = bpf_map_update_elem(map_fd[5], &i, &txmsg_start_push, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (txmsg_start_push): %d (%s)\n", err, strerror(errno)); goto out; } } if (txmsg_end_push) { i = 3; err = bpf_map_update_elem(map_fd[5], &i, &txmsg_end_push, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem %i@%i (txmsg_end_push): %d (%s)\n", txmsg_end_push, i, err, strerror(errno)); goto out; } } if (txmsg_start_pop) { i = 4; err = bpf_map_update_elem(map_fd[5], &i, &txmsg_start_pop, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem %i@%i (txmsg_start_pop): %d (%s)\n", txmsg_start_pop, i, err, strerror(errno)); goto out; } } else { i = 4; bpf_map_update_elem(map_fd[5], &i, &txmsg_start_pop, BPF_ANY); } if (txmsg_pop) { i = 5; err = bpf_map_update_elem(map_fd[5], &i, &txmsg_pop, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem %i@%i (txmsg_pop): %d (%s)\n", txmsg_pop, i, err, strerror(errno)); goto out; } } else { i = 5; bpf_map_update_elem(map_fd[5], &i, &txmsg_pop, BPF_ANY); } if (txmsg_ingress) { int in = BPF_F_INGRESS; i = 0; err = bpf_map_update_elem(map_fd[6], &i, &in, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (txmsg_ingress): %d (%s)\n", err, strerror(errno)); } i = 1; err = bpf_map_update_elem(map_fd[1], &i, &p1, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (p1 txmsg): %d (%s)\n", err, strerror(errno)); } err = bpf_map_update_elem(map_fd[2], &i, &p1, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (p1 redir): %d (%s)\n", err, strerror(errno)); } i = 2; err = bpf_map_update_elem(map_fd[2], &i, &p2, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (p2 txmsg): %d (%s)\n", err, strerror(errno)); } } if (txmsg_ktls_skb) { int ingress = BPF_F_INGRESS; i = 0; err = bpf_map_update_elem(map_fd[8], &i, &p2, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (c1 sockmap): %d (%s)\n", err, strerror(errno)); } if (txmsg_ktls_skb_redir) { i = 1; err = bpf_map_update_elem(map_fd[7], &i, &ingress, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (txmsg_ingress): %d (%s)\n", err, strerror(errno)); } } if (txmsg_ktls_skb_drop) { i = 1; err = bpf_map_update_elem(map_fd[7], &i, &i, BPF_ANY); } } if (txmsg_redir_skb) { int skb_fd = (test == SENDMSG || test == SENDPAGE) ? p2 : p1; int ingress = BPF_F_INGRESS; i = 0; err = bpf_map_update_elem(map_fd[7], &i, &ingress, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (txmsg_ingress): %d (%s)\n", err, strerror(errno)); } i = 3; err = bpf_map_update_elem(map_fd[0], &i, &skb_fd, BPF_ANY); if (err) { fprintf(stderr, "ERROR: bpf_map_update_elem (c1 sockmap): %d (%s)\n", err, strerror(errno)); } } } if (skb_use_parser) { i = 2; err = bpf_map_update_elem(map_fd[7], &i, &skb_use_parser, BPF_ANY); } if (txmsg_drop) options->drop_expected = true; if (test == PING_PONG) err = forever_ping_pong(options->rate, options); else if (test == SENDMSG) { options->base = false; options->sendpage = false; err = sendmsg_test(options); } else if (test == SENDPAGE) { options->base = false; options->sendpage = true; err = sendmsg_test(options); } else if (test == BASE) { options->base = true; options->sendpage = false; err = sendmsg_test(options); } else if (test == BASE_SENDPAGE) { options->base = true; options->sendpage = true; err = sendmsg_test(options); } else fprintf(stderr, "unknown test\n"); out: /* Detatch and zero all the maps */ bpf_prog_detach2(prog_fd[3], cg_fd, BPF_CGROUP_SOCK_OPS); bpf_prog_detach2(prog_fd[0], map_fd[0], BPF_SK_SKB_STREAM_PARSER); bpf_prog_detach2(prog_fd[1], map_fd[0], BPF_SK_SKB_STREAM_VERDICT); bpf_prog_detach2(prog_fd[0], map_fd[8], BPF_SK_SKB_STREAM_PARSER); bpf_prog_detach2(prog_fd[2], map_fd[8], BPF_SK_SKB_STREAM_VERDICT); if (tx_prog_fd >= 0) bpf_prog_detach2(tx_prog_fd, map_fd[1], BPF_SK_MSG_VERDICT); for (i = 0; i < 8; i++) { key = next_key = 0; bpf_map_update_elem(map_fd[i], &key, &zero, BPF_ANY); while (bpf_map_get_next_key(map_fd[i], &key, &next_key) == 0) { bpf_map_update_elem(map_fd[i], &key, &zero, BPF_ANY); key = next_key; } } close(s1); close(s2); close(p1); close(p2); close(c1); close(c2); return err; } static char *test_to_str(int test) { switch (test) { case SENDMSG: return "sendmsg"; case SENDPAGE: return "sendpage"; } return "unknown"; } #define OPTSTRING 60 static void test_options(char *options) { char tstr[OPTSTRING]; memset(options, 0, OPTSTRING); if (txmsg_pass) strncat(options, "pass,", OPTSTRING); if (txmsg_redir) strncat(options, "redir,", OPTSTRING); if (txmsg_drop) strncat(options, "drop,", OPTSTRING); if (txmsg_apply) { snprintf(tstr, OPTSTRING, "apply %d,", txmsg_apply); strncat(options, tstr, OPTSTRING); } if (txmsg_cork) { snprintf(tstr, OPTSTRING, "cork %d,", txmsg_cork); strncat(options, tstr, OPTSTRING); } if (txmsg_start) { snprintf(tstr, OPTSTRING, "start %d,", txmsg_start); strncat(options, tstr, OPTSTRING); } if (txmsg_end) { snprintf(tstr, OPTSTRING, "end %d,", txmsg_end); strncat(options, tstr, OPTSTRING); } if (txmsg_start_pop) { snprintf(tstr, OPTSTRING, "pop (%d,%d),", txmsg_start_pop, txmsg_start_pop + txmsg_pop); strncat(options, tstr, OPTSTRING); } if (txmsg_ingress) strncat(options, "ingress,", OPTSTRING); if (txmsg_redir_skb) strncat(options, "redir_skb,", OPTSTRING); if (txmsg_ktls_skb) strncat(options, "ktls_skb,", OPTSTRING); if (ktls) strncat(options, "ktls,", OPTSTRING); if (peek_flag) strncat(options, "peek,", OPTSTRING); } static int __test_exec(int cgrp, int test, struct sockmap_options *opt) { char *options = calloc(OPTSTRING, sizeof(char)); int err; if (test == SENDPAGE) opt->sendpage = true; else opt->sendpage = false; if (txmsg_drop) opt->drop_expected = true; else opt->drop_expected = false; test_options(options); if (opt->verbose) { fprintf(stdout, " [TEST %i]: (%i, %i, %i, %s, %s): ", test_cnt, opt->rate, opt->iov_count, opt->iov_length, test_to_str(test), options); fflush(stdout); } err = run_options(opt, cgrp, test); if (opt->verbose) fprintf(stdout, " %s\n", !err ? "PASS" : "FAILED"); test_cnt++; !err ? passed++ : failed++; free(options); return err; } static void test_exec(int cgrp, struct sockmap_options *opt) { int type = strcmp(opt->map, BPF_SOCKMAP_FILENAME); int err; if (type == 0) { test_start(); err = __test_exec(cgrp, SENDMSG, opt); if (err) test_fail(); } else { test_start(); err = __test_exec(cgrp, SENDPAGE, opt); if (err) test_fail(); } } static void test_send_one(struct sockmap_options *opt, int cgrp) { opt->iov_length = 1; opt->iov_count = 1; opt->rate = 1; test_exec(cgrp, opt); opt->iov_length = 1; opt->iov_count = 1024; opt->rate = 1; test_exec(cgrp, opt); opt->iov_length = 1024; opt->iov_count = 1; opt->rate = 1; test_exec(cgrp, opt); } static void test_send_many(struct sockmap_options *opt, int cgrp) { opt->iov_length = 3; opt->iov_count = 1; opt->rate = 512; test_exec(cgrp, opt); opt->rate = 100; opt->iov_count = 1; opt->iov_length = 5; test_exec(cgrp, opt); } static void test_send_large(struct sockmap_options *opt, int cgrp) { opt->iov_length = 256; opt->iov_count = 1024; opt->rate = 2; test_exec(cgrp, opt); } static void test_send(struct sockmap_options *opt, int cgrp) { test_send_one(opt, cgrp); test_send_many(opt, cgrp); test_send_large(opt, cgrp); sched_yield(); } static void test_txmsg_pass(int cgrp, struct sockmap_options *opt) { /* Test small and large iov_count values with pass/redir/apply/cork */ txmsg_pass = 1; test_send(opt, cgrp); } static void test_txmsg_redir(int cgrp, struct sockmap_options *opt) { txmsg_redir = 1; test_send(opt, cgrp); } static void test_txmsg_drop(int cgrp, struct sockmap_options *opt) { txmsg_drop = 1; test_send(opt, cgrp); } static void test_txmsg_ingress_redir(int cgrp, struct sockmap_options *opt) { txmsg_pass = txmsg_drop = 0; txmsg_ingress = txmsg_redir = 1; test_send(opt, cgrp); } static void test_txmsg_skb(int cgrp, struct sockmap_options *opt) { bool data = opt->data_test; int k = ktls; opt->data_test = true; ktls = 1; txmsg_pass = txmsg_drop = 0; txmsg_ingress = txmsg_redir = 0; txmsg_ktls_skb = 1; txmsg_pass = 1; /* Using data verification so ensure iov layout is * expected from test receiver side. e.g. has enough * bytes to write test code. */ opt->iov_length = 100; opt->iov_count = 1; opt->rate = 1; test_exec(cgrp, opt); txmsg_ktls_skb_drop = 1; test_exec(cgrp, opt); txmsg_ktls_skb_drop = 0; txmsg_ktls_skb_redir = 1; test_exec(cgrp, opt); opt->data_test = data; ktls = k; } /* Test cork with hung data. This tests poor usage patterns where * cork can leave data on the ring if user program is buggy and * doesn't flush them somehow. They do take some time however * because they wait for a timeout. Test pass, redir and cork with * apply logic. Use cork size of 4097 with send_large to avoid * aligning cork size with send size. */ static void test_txmsg_cork_hangs(int cgrp, struct sockmap_options *opt) { txmsg_pass = 1; txmsg_redir = 0; txmsg_cork = 4097; txmsg_apply = 4097; test_send_large(opt, cgrp); txmsg_pass = 0; txmsg_redir = 1; txmsg_apply = 0; txmsg_cork = 4097; test_send_large(opt, cgrp); txmsg_pass = 0; txmsg_redir = 1; txmsg_apply = 4097; txmsg_cork = 4097; test_send_large(opt, cgrp); } static void test_txmsg_pull(int cgrp, struct sockmap_options *opt) { /* Test basic start/end */ txmsg_start = 1; txmsg_end = 2; test_send(opt, cgrp); /* Test >4k pull */ txmsg_start = 4096; txmsg_end = 9182; test_send_large(opt, cgrp); /* Test pull + redirect */ txmsg_redir = 0; txmsg_start = 1; txmsg_end = 2; test_send(opt, cgrp); /* Test pull + cork */ txmsg_redir = 0; txmsg_cork = 512; txmsg_start = 1; txmsg_end = 2; test_send_many(opt, cgrp); /* Test pull + cork + redirect */ txmsg_redir = 1; txmsg_cork = 512; txmsg_start = 1; txmsg_end = 2; test_send_many(opt, cgrp); } static void test_txmsg_pop(int cgrp, struct sockmap_options *opt) { /* Test basic pop */ txmsg_start_pop = 1; txmsg_pop = 2; test_send_many(opt, cgrp); /* Test pop with >4k */ txmsg_start_pop = 4096; txmsg_pop = 4096; test_send_large(opt, cgrp); /* Test pop + redirect */ txmsg_redir = 1; txmsg_start_pop = 1; txmsg_pop = 2; test_send_many(opt, cgrp); /* Test pop + cork */ txmsg_redir = 0; txmsg_cork = 512; txmsg_start_pop = 1; txmsg_pop = 2; test_send_many(opt, cgrp); /* Test pop + redirect + cork */ txmsg_redir = 1; txmsg_cork = 4; txmsg_start_pop = 1; txmsg_pop = 2; test_send_many(opt, cgrp); } static void test_txmsg_push(int cgrp, struct sockmap_options *opt) { /* Test basic push */ txmsg_start_push = 1; txmsg_end_push = 1; test_send(opt, cgrp); /* Test push 4kB >4k */ txmsg_start_push = 4096; txmsg_end_push = 4096; test_send_large(opt, cgrp); /* Test push + redirect */ txmsg_redir = 1; txmsg_start_push = 1; txmsg_end_push = 2; test_send_many(opt, cgrp); /* Test push + cork */ txmsg_redir = 0; txmsg_cork = 512; txmsg_start_push = 1; txmsg_end_push = 2; test_send_many(opt, cgrp); } static void test_txmsg_push_pop(int cgrp, struct sockmap_options *opt) { txmsg_start_push = 1; txmsg_end_push = 10; txmsg_start_pop = 5; txmsg_pop = 4; test_send_large(opt, cgrp); } static void test_txmsg_apply(int cgrp, struct sockmap_options *opt) { txmsg_pass = 1; txmsg_redir = 0; txmsg_apply = 1; txmsg_cork = 0; test_send_one(opt, cgrp); txmsg_pass = 0; txmsg_redir = 1; txmsg_apply = 1; txmsg_cork = 0; test_send_one(opt, cgrp); txmsg_pass = 1; txmsg_redir = 0; txmsg_apply = 1024; txmsg_cork = 0; test_send_large(opt, cgrp); txmsg_pass = 0; txmsg_redir = 1; txmsg_apply = 1024; txmsg_cork = 0; test_send_large(opt, cgrp); } static void test_txmsg_cork(int cgrp, struct sockmap_options *opt) { txmsg_pass = 1; txmsg_redir = 0; txmsg_apply = 0; txmsg_cork = 1; test_send(opt, cgrp); txmsg_pass = 1; txmsg_redir = 0; txmsg_apply = 1; txmsg_cork = 1; test_send(opt, cgrp); } static void test_txmsg_ingress_parser(int cgrp, struct sockmap_options *opt) { txmsg_pass = 1; skb_use_parser = 512; opt->iov_length = 256; opt->iov_count = 1; opt->rate = 2; test_exec(cgrp, opt); } char *map_names[] = { "sock_map", "sock_map_txmsg", "sock_map_redir", "sock_apply_bytes", "sock_cork_bytes", "sock_bytes", "sock_redir_flags", "sock_skb_opts", "tls_sock_map", }; int prog_attach_type[] = { BPF_SK_SKB_STREAM_PARSER, BPF_SK_SKB_STREAM_VERDICT, BPF_SK_SKB_STREAM_VERDICT, BPF_CGROUP_SOCK_OPS, BPF_SK_MSG_VERDICT, BPF_SK_MSG_VERDICT, BPF_SK_MSG_VERDICT, BPF_SK_MSG_VERDICT, BPF_SK_MSG_VERDICT, BPF_SK_MSG_VERDICT, BPF_SK_MSG_VERDICT, }; int prog_type[] = { BPF_PROG_TYPE_SK_SKB, BPF_PROG_TYPE_SK_SKB, BPF_PROG_TYPE_SK_SKB, BPF_PROG_TYPE_SOCK_OPS, BPF_PROG_TYPE_SK_MSG, BPF_PROG_TYPE_SK_MSG, BPF_PROG_TYPE_SK_MSG, BPF_PROG_TYPE_SK_MSG, BPF_PROG_TYPE_SK_MSG, BPF_PROG_TYPE_SK_MSG, BPF_PROG_TYPE_SK_MSG, }; static int populate_progs(char *bpf_file) { struct bpf_program *prog; struct bpf_object *obj; int i = 0; long err; obj = bpf_object__open(bpf_file); err = libbpf_get_error(obj); if (err) { char err_buf[256]; libbpf_strerror(err, err_buf, sizeof(err_buf)); printf("Unable to load eBPF objects in file '%s' : %s\n", bpf_file, err_buf); return -1; } bpf_object__for_each_program(prog, obj) { bpf_program__set_type(prog, prog_type[i]); bpf_program__set_expected_attach_type(prog, prog_attach_type[i]); i++; } i = bpf_object__load(obj); i = 0; bpf_object__for_each_program(prog, obj) { prog_fd[i] = bpf_program__fd(prog); i++; } for (i = 0; i < sizeof(map_fd)/sizeof(int); i++) { maps[i] = bpf_object__find_map_by_name(obj, map_names[i]); map_fd[i] = bpf_map__fd(maps[i]); if (map_fd[i] < 0) { fprintf(stderr, "load_bpf_file: (%i) %s\n", map_fd[i], strerror(errno)); return -1; } } return 0; } struct _test test[] = { {"txmsg test passthrough", test_txmsg_pass}, {"txmsg test redirect", test_txmsg_redir}, {"txmsg test drop", test_txmsg_drop}, {"txmsg test ingress redirect", test_txmsg_ingress_redir}, {"txmsg test skb", test_txmsg_skb}, {"txmsg test apply", test_txmsg_apply}, {"txmsg test cork", test_txmsg_cork}, {"txmsg test hanging corks", test_txmsg_cork_hangs}, {"txmsg test push_data", test_txmsg_push}, {"txmsg test pull-data", test_txmsg_pull}, {"txmsg test pop-data", test_txmsg_pop}, {"txmsg test push/pop data", test_txmsg_push_pop}, {"txmsg text ingress parser", test_txmsg_ingress_parser}, }; static int check_whitelist(struct _test *t, struct sockmap_options *opt) { char *entry, *ptr; if (!opt->whitelist) return 0; ptr = strdup(opt->whitelist); if (!ptr) return -ENOMEM; entry = strtok(ptr, ","); while (entry) { if ((opt->prepend && strstr(opt->prepend, entry) != 0) || strstr(opt->map, entry) != 0 || strstr(t->title, entry) != 0) return 0; entry = strtok(NULL, ","); } return -EINVAL; } static int check_blacklist(struct _test *t, struct sockmap_options *opt) { char *entry, *ptr; if (!opt->blacklist) return -EINVAL; ptr = strdup(opt->blacklist); if (!ptr) return -ENOMEM; entry = strtok(ptr, ","); while (entry) { if ((opt->prepend && strstr(opt->prepend, entry) != 0) || strstr(opt->map, entry) != 0 || strstr(t->title, entry) != 0) return 0; entry = strtok(NULL, ","); } return -EINVAL; } static int __test_selftests(int cg_fd, struct sockmap_options *opt) { int i, err; err = populate_progs(opt->map); if (err < 0) { fprintf(stderr, "ERROR: (%i) load bpf failed\n", err); return err; } /* Tests basic commands and APIs */ for (i = 0; i < sizeof(test)/sizeof(struct _test); i++) { struct _test t = test[i]; if (check_whitelist(&t, opt) != 0) continue; if (check_blacklist(&t, opt) == 0) continue; test_start_subtest(&t, opt); t.tester(cg_fd, opt); test_end_subtest(); } return err; } static void test_selftests_sockmap(int cg_fd, struct sockmap_options *opt) { opt->map = BPF_SOCKMAP_FILENAME; __test_selftests(cg_fd, opt); } static void test_selftests_sockhash(int cg_fd, struct sockmap_options *opt) { opt->map = BPF_SOCKHASH_FILENAME; __test_selftests(cg_fd, opt); } static void test_selftests_ktls(int cg_fd, struct sockmap_options *opt) { opt->map = BPF_SOCKHASH_FILENAME; opt->prepend = "ktls"; ktls = 1; __test_selftests(cg_fd, opt); ktls = 0; } static int test_selftest(int cg_fd, struct sockmap_options *opt) { test_selftests_sockmap(cg_fd, opt); test_selftests_sockhash(cg_fd, opt); test_selftests_ktls(cg_fd, opt); test_print_results(); return 0; } int main(int argc, char **argv) { int iov_count = 1, length = 1024, rate = 1; struct sockmap_options options = {0}; int opt, longindex, err, cg_fd = 0; char *bpf_file = BPF_SOCKMAP_FILENAME; int test = SELFTESTS; bool cg_created = 0; while ((opt = getopt_long(argc, argv, ":dhv:c:r:i:l:t:p:q:n:b:", long_options, &longindex)) != -1) { switch (opt) { case 's': txmsg_start = atoi(optarg); break; case 'e': txmsg_end = atoi(optarg); break; case 'p': txmsg_start_push = atoi(optarg); break; case 'q': txmsg_end_push = atoi(optarg); break; case 'w': txmsg_start_pop = atoi(optarg); break; case 'x': txmsg_pop = atoi(optarg); break; case 'a': txmsg_apply = atoi(optarg); break; case 'k': txmsg_cork = atoi(optarg); break; case 'c': cg_fd = open(optarg, O_DIRECTORY, O_RDONLY); if (cg_fd < 0) { fprintf(stderr, "ERROR: (%i) open cg path failed: %s\n", cg_fd, optarg); return cg_fd; } break; case 'r': rate = atoi(optarg); break; case 'v': options.verbose = 1; if (optarg) options.verbose = atoi(optarg); break; case 'i': iov_count = atoi(optarg); break; case 'l': length = atoi(optarg); break; case 'd': options.data_test = true; break; case 't': if (strcmp(optarg, "ping") == 0) { test = PING_PONG; } else if (strcmp(optarg, "sendmsg") == 0) { test = SENDMSG; } else if (strcmp(optarg, "base") == 0) { test = BASE; } else if (strcmp(optarg, "base_sendpage") == 0) { test = BASE_SENDPAGE; } else if (strcmp(optarg, "sendpage") == 0) { test = SENDPAGE; } else { usage(argv); return -1; } break; case 'n': options.whitelist = strdup(optarg); if (!options.whitelist) return -ENOMEM; break; case 'b': options.blacklist = strdup(optarg); if (!options.blacklist) return -ENOMEM; case 0: break; case 'h': default: usage(argv); return -1; } } if (!cg_fd) { if (setup_cgroup_environment()) { fprintf(stderr, "ERROR: cgroup env failed\n"); return -EINVAL; } cg_fd = create_and_get_cgroup(CG_PATH); if (cg_fd < 0) { fprintf(stderr, "ERROR: (%i) open cg path failed: %s\n", cg_fd, strerror(errno)); return cg_fd; } if (join_cgroup(CG_PATH)) { fprintf(stderr, "ERROR: failed to join cgroup\n"); return -EINVAL; } cg_created = 1; } if (test == SELFTESTS) { err = test_selftest(cg_fd, &options); goto out; } err = populate_progs(bpf_file); if (err) { fprintf(stderr, "populate program: (%s) %s\n", bpf_file, strerror(errno)); return 1; } running = 1; /* catch SIGINT */ signal(SIGINT, running_handler); options.iov_count = iov_count; options.iov_length = length; options.rate = rate; err = run_options(&options, cg_fd, test); out: if (options.whitelist) free(options.whitelist); if (options.blacklist) free(options.blacklist); if (cg_created) cleanup_cgroup_environment(); close(cg_fd); return err; } void running_handler(int a) { running = 0; }