// SPDX-License-Identifier: GPL-2.0 // TLV320ADCX140 Sound driver // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tlv320adcx140.h" struct adcx140_priv { struct snd_soc_component *component; struct regulator *supply_areg; struct gpio_desc *gpio_reset; struct regmap *regmap; struct device *dev; int micbias_vg; unsigned int dai_fmt; unsigned int tdm_delay; unsigned int slot_width; }; static const struct reg_default adcx140_reg_defaults[] = { { ADCX140_PAGE_SELECT, 0x00 }, { ADCX140_SW_RESET, 0x00 }, { ADCX140_SLEEP_CFG, 0x00 }, { ADCX140_SHDN_CFG, 0x05 }, { ADCX140_ASI_CFG0, 0x30 }, { ADCX140_ASI_CFG1, 0x00 }, { ADCX140_ASI_CFG2, 0x00 }, { ADCX140_ASI_CH1, 0x00 }, { ADCX140_ASI_CH2, 0x01 }, { ADCX140_ASI_CH3, 0x02 }, { ADCX140_ASI_CH4, 0x03 }, { ADCX140_ASI_CH5, 0x04 }, { ADCX140_ASI_CH6, 0x05 }, { ADCX140_ASI_CH7, 0x06 }, { ADCX140_ASI_CH8, 0x07 }, { ADCX140_MST_CFG0, 0x02 }, { ADCX140_MST_CFG1, 0x48 }, { ADCX140_ASI_STS, 0xff }, { ADCX140_CLK_SRC, 0x10 }, { ADCX140_PDMCLK_CFG, 0x40 }, { ADCX140_PDM_CFG, 0x00 }, { ADCX140_GPIO_CFG0, 0x22 }, { ADCX140_GPO_CFG1, 0x00 }, { ADCX140_GPO_CFG2, 0x00 }, { ADCX140_GPO_CFG3, 0x00 }, { ADCX140_GPO_CFG4, 0x00 }, { ADCX140_GPO_VAL, 0x00 }, { ADCX140_GPIO_MON, 0x00 }, { ADCX140_GPI_CFG0, 0x00 }, { ADCX140_GPI_CFG1, 0x00 }, { ADCX140_GPI_MON, 0x00 }, { ADCX140_INT_CFG, 0x00 }, { ADCX140_INT_MASK0, 0xff }, { ADCX140_INT_LTCH0, 0x00 }, { ADCX140_BIAS_CFG, 0x00 }, { ADCX140_CH1_CFG0, 0x00 }, { ADCX140_CH1_CFG1, 0x00 }, { ADCX140_CH1_CFG2, 0xc9 }, { ADCX140_CH1_CFG3, 0x80 }, { ADCX140_CH1_CFG4, 0x00 }, { ADCX140_CH2_CFG0, 0x00 }, { ADCX140_CH2_CFG1, 0x00 }, { ADCX140_CH2_CFG2, 0xc9 }, { ADCX140_CH2_CFG3, 0x80 }, { ADCX140_CH2_CFG4, 0x00 }, { ADCX140_CH3_CFG0, 0x00 }, { ADCX140_CH3_CFG1, 0x00 }, { ADCX140_CH3_CFG2, 0xc9 }, { ADCX140_CH3_CFG3, 0x80 }, { ADCX140_CH3_CFG4, 0x00 }, { ADCX140_CH4_CFG0, 0x00 }, { ADCX140_CH4_CFG1, 0x00 }, { ADCX140_CH4_CFG2, 0xc9 }, { ADCX140_CH4_CFG3, 0x80 }, { ADCX140_CH4_CFG4, 0x00 }, { ADCX140_CH5_CFG2, 0xc9 }, { ADCX140_CH5_CFG3, 0x80 }, { ADCX140_CH5_CFG4, 0x00 }, { ADCX140_CH6_CFG2, 0xc9 }, { ADCX140_CH6_CFG3, 0x80 }, { ADCX140_CH6_CFG4, 0x00 }, { ADCX140_CH7_CFG2, 0xc9 }, { ADCX140_CH7_CFG3, 0x80 }, { ADCX140_CH7_CFG4, 0x00 }, { ADCX140_CH8_CFG2, 0xc9 }, { ADCX140_CH8_CFG3, 0x80 }, { ADCX140_CH8_CFG4, 0x00 }, { ADCX140_DSP_CFG0, 0x01 }, { ADCX140_DSP_CFG1, 0x40 }, { ADCX140_DRE_CFG0, 0x7b }, { ADCX140_AGC_CFG0, 0xe7 }, { ADCX140_IN_CH_EN, 0xf0 }, { ADCX140_ASI_OUT_CH_EN, 0x00 }, { ADCX140_PWR_CFG, 0x00 }, { ADCX140_DEV_STS0, 0x00 }, { ADCX140_DEV_STS1, 0x80 }, }; static const struct regmap_range_cfg adcx140_ranges[] = { { .range_min = 0, .range_max = 12 * 128, .selector_reg = ADCX140_PAGE_SELECT, .selector_mask = 0xff, .selector_shift = 0, .window_start = 0, .window_len = 128, }, }; static bool adcx140_volatile(struct device *dev, unsigned int reg) { switch (reg) { case ADCX140_SW_RESET: case ADCX140_DEV_STS0: case ADCX140_DEV_STS1: case ADCX140_ASI_STS: return true; default: return false; } } static const struct regmap_config adcx140_i2c_regmap = { .reg_bits = 8, .val_bits = 8, .reg_defaults = adcx140_reg_defaults, .num_reg_defaults = ARRAY_SIZE(adcx140_reg_defaults), .cache_type = REGCACHE_FLAT, .ranges = adcx140_ranges, .num_ranges = ARRAY_SIZE(adcx140_ranges), .max_register = 12 * 128, .volatile_reg = adcx140_volatile, }; /* Digital Volume control. From -100 to 27 dB in 0.5 dB steps */ static DECLARE_TLV_DB_SCALE(dig_vol_tlv, -10000, 50, 0); /* ADC gain. From 0 to 42 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 100, 0); /* DRE Level. From -12 dB to -66 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(dre_thresh_tlv, -6600, 100, 0); /* DRE Max Gain. From 2 dB to 26 dB in 2 dB steps */ static DECLARE_TLV_DB_SCALE(dre_gain_tlv, 200, 200, 0); /* AGC Level. From -6 dB to -36 dB in 2 dB steps */ static DECLARE_TLV_DB_SCALE(agc_thresh_tlv, -3600, 200, 0); /* AGC Max Gain. From 3 dB to 42 dB in 3 dB steps */ static DECLARE_TLV_DB_SCALE(agc_gain_tlv, 300, 300, 0); static const char * const resistor_text[] = { "2.5 kOhm", "10 kOhm", "20 kOhm" }; static SOC_ENUM_SINGLE_DECL(in1_resistor_enum, ADCX140_CH1_CFG0, 2, resistor_text); static SOC_ENUM_SINGLE_DECL(in2_resistor_enum, ADCX140_CH2_CFG0, 2, resistor_text); static SOC_ENUM_SINGLE_DECL(in3_resistor_enum, ADCX140_CH3_CFG0, 2, resistor_text); static SOC_ENUM_SINGLE_DECL(in4_resistor_enum, ADCX140_CH4_CFG0, 2, resistor_text); static const struct snd_kcontrol_new in1_resistor_controls[] = { SOC_DAPM_ENUM("CH1 Resistor Select", in1_resistor_enum), }; static const struct snd_kcontrol_new in2_resistor_controls[] = { SOC_DAPM_ENUM("CH2 Resistor Select", in2_resistor_enum), }; static const struct snd_kcontrol_new in3_resistor_controls[] = { SOC_DAPM_ENUM("CH3 Resistor Select", in3_resistor_enum), }; static const struct snd_kcontrol_new in4_resistor_controls[] = { SOC_DAPM_ENUM("CH4 Resistor Select", in4_resistor_enum), }; /* Analog/Digital Selection */ static const char *adcx140_mic_sel_text[] = {"Analog", "Line In", "Digital"}; static const char *adcx140_analog_sel_text[] = {"Analog", "Line In"}; static SOC_ENUM_SINGLE_DECL(adcx140_mic1p_enum, ADCX140_CH1_CFG0, 5, adcx140_mic_sel_text); static const struct snd_kcontrol_new adcx140_dapm_mic1p_control = SOC_DAPM_ENUM("MIC1P MUX", adcx140_mic1p_enum); static SOC_ENUM_SINGLE_DECL(adcx140_mic1_analog_enum, ADCX140_CH1_CFG0, 7, adcx140_analog_sel_text); static const struct snd_kcontrol_new adcx140_dapm_mic1_analog_control = SOC_DAPM_ENUM("MIC1 Analog MUX", adcx140_mic1_analog_enum); static SOC_ENUM_SINGLE_DECL(adcx140_mic1m_enum, ADCX140_CH1_CFG0, 5, adcx140_mic_sel_text); static const struct snd_kcontrol_new adcx140_dapm_mic1m_control = SOC_DAPM_ENUM("MIC1M MUX", adcx140_mic1m_enum); static SOC_ENUM_SINGLE_DECL(adcx140_mic2p_enum, ADCX140_CH2_CFG0, 5, adcx140_mic_sel_text); static const struct snd_kcontrol_new adcx140_dapm_mic2p_control = SOC_DAPM_ENUM("MIC2P MUX", adcx140_mic2p_enum); static SOC_ENUM_SINGLE_DECL(adcx140_mic2_analog_enum, ADCX140_CH2_CFG0, 7, adcx140_analog_sel_text); static const struct snd_kcontrol_new adcx140_dapm_mic2_analog_control = SOC_DAPM_ENUM("MIC2 Analog MUX", adcx140_mic2_analog_enum); static SOC_ENUM_SINGLE_DECL(adcx140_mic2m_enum, ADCX140_CH2_CFG0, 5, adcx140_mic_sel_text); static const struct snd_kcontrol_new adcx140_dapm_mic2m_control = SOC_DAPM_ENUM("MIC2M MUX", adcx140_mic2m_enum); static SOC_ENUM_SINGLE_DECL(adcx140_mic3p_enum, ADCX140_CH3_CFG0, 5, adcx140_mic_sel_text); static const struct snd_kcontrol_new adcx140_dapm_mic3p_control = SOC_DAPM_ENUM("MIC3P MUX", adcx140_mic3p_enum); static SOC_ENUM_SINGLE_DECL(adcx140_mic3_analog_enum, ADCX140_CH3_CFG0, 7, adcx140_analog_sel_text); static const struct snd_kcontrol_new adcx140_dapm_mic3_analog_control = SOC_DAPM_ENUM("MIC3 Analog MUX", adcx140_mic3_analog_enum); static SOC_ENUM_SINGLE_DECL(adcx140_mic3m_enum, ADCX140_CH3_CFG0, 5, adcx140_mic_sel_text); static const struct snd_kcontrol_new adcx140_dapm_mic3m_control = SOC_DAPM_ENUM("MIC3M MUX", adcx140_mic3m_enum); static SOC_ENUM_SINGLE_DECL(adcx140_mic4p_enum, ADCX140_CH4_CFG0, 5, adcx140_mic_sel_text); static const struct snd_kcontrol_new adcx140_dapm_mic4p_control = SOC_DAPM_ENUM("MIC4P MUX", adcx140_mic4p_enum); static SOC_ENUM_SINGLE_DECL(adcx140_mic4_analog_enum, ADCX140_CH4_CFG0, 7, adcx140_analog_sel_text); static const struct snd_kcontrol_new adcx140_dapm_mic4_analog_control = SOC_DAPM_ENUM("MIC4 Analog MUX", adcx140_mic4_analog_enum); static SOC_ENUM_SINGLE_DECL(adcx140_mic4m_enum, ADCX140_CH4_CFG0, 5, adcx140_mic_sel_text); static const struct snd_kcontrol_new adcx140_dapm_mic4m_control = SOC_DAPM_ENUM("MIC4M MUX", adcx140_mic4m_enum); static const struct snd_kcontrol_new adcx140_dapm_ch1_en_switch = SOC_DAPM_SINGLE("Switch", ADCX140_ASI_OUT_CH_EN, 7, 1, 0); static const struct snd_kcontrol_new adcx140_dapm_ch2_en_switch = SOC_DAPM_SINGLE("Switch", ADCX140_ASI_OUT_CH_EN, 6, 1, 0); static const struct snd_kcontrol_new adcx140_dapm_ch3_en_switch = SOC_DAPM_SINGLE("Switch", ADCX140_ASI_OUT_CH_EN, 5, 1, 0); static const struct snd_kcontrol_new adcx140_dapm_ch4_en_switch = SOC_DAPM_SINGLE("Switch", ADCX140_ASI_OUT_CH_EN, 4, 1, 0); static const struct snd_kcontrol_new adcx140_dapm_ch1_dre_en_switch = SOC_DAPM_SINGLE("Switch", ADCX140_CH1_CFG0, 0, 1, 0); static const struct snd_kcontrol_new adcx140_dapm_ch2_dre_en_switch = SOC_DAPM_SINGLE("Switch", ADCX140_CH2_CFG0, 0, 1, 0); static const struct snd_kcontrol_new adcx140_dapm_ch3_dre_en_switch = SOC_DAPM_SINGLE("Switch", ADCX140_CH3_CFG0, 0, 1, 0); static const struct snd_kcontrol_new adcx140_dapm_ch4_dre_en_switch = SOC_DAPM_SINGLE("Switch", ADCX140_CH4_CFG0, 0, 1, 0); static const struct snd_kcontrol_new adcx140_dapm_dre_en_switch = SOC_DAPM_SINGLE("Switch", ADCX140_DSP_CFG1, 3, 1, 0); /* Output Mixer */ static const struct snd_kcontrol_new adcx140_output_mixer_controls[] = { SOC_DAPM_SINGLE("Digital CH1 Switch", 0, 0, 0, 0), SOC_DAPM_SINGLE("Digital CH2 Switch", 0, 0, 0, 0), SOC_DAPM_SINGLE("Digital CH3 Switch", 0, 0, 0, 0), SOC_DAPM_SINGLE("Digital CH4 Switch", 0, 0, 0, 0), }; static const struct snd_soc_dapm_widget adcx140_dapm_widgets[] = { /* Analog Differential Inputs */ SND_SOC_DAPM_INPUT("MIC1P"), SND_SOC_DAPM_INPUT("MIC1M"), SND_SOC_DAPM_INPUT("MIC2P"), SND_SOC_DAPM_INPUT("MIC2M"), SND_SOC_DAPM_INPUT("MIC3P"), SND_SOC_DAPM_INPUT("MIC3M"), SND_SOC_DAPM_INPUT("MIC4P"), SND_SOC_DAPM_INPUT("MIC4M"), SND_SOC_DAPM_OUTPUT("CH1_OUT"), SND_SOC_DAPM_OUTPUT("CH2_OUT"), SND_SOC_DAPM_OUTPUT("CH3_OUT"), SND_SOC_DAPM_OUTPUT("CH4_OUT"), SND_SOC_DAPM_OUTPUT("CH5_OUT"), SND_SOC_DAPM_OUTPUT("CH6_OUT"), SND_SOC_DAPM_OUTPUT("CH7_OUT"), SND_SOC_DAPM_OUTPUT("CH8_OUT"), SND_SOC_DAPM_MIXER("Output Mixer", SND_SOC_NOPM, 0, 0, &adcx140_output_mixer_controls[0], ARRAY_SIZE(adcx140_output_mixer_controls)), /* Input Selection to MIC_PGA */ SND_SOC_DAPM_MUX("MIC1P Input Mux", SND_SOC_NOPM, 0, 0, &adcx140_dapm_mic1p_control), SND_SOC_DAPM_MUX("MIC2P Input Mux", SND_SOC_NOPM, 0, 0, &adcx140_dapm_mic2p_control), SND_SOC_DAPM_MUX("MIC3P Input Mux", SND_SOC_NOPM, 0, 0, &adcx140_dapm_mic3p_control), SND_SOC_DAPM_MUX("MIC4P Input Mux", SND_SOC_NOPM, 0, 0, &adcx140_dapm_mic4p_control), /* Input Selection to MIC_PGA */ SND_SOC_DAPM_MUX("MIC1 Analog Mux", SND_SOC_NOPM, 0, 0, &adcx140_dapm_mic1_analog_control), SND_SOC_DAPM_MUX("MIC2 Analog Mux", SND_SOC_NOPM, 0, 0, &adcx140_dapm_mic2_analog_control), SND_SOC_DAPM_MUX("MIC3 Analog Mux", SND_SOC_NOPM, 0, 0, &adcx140_dapm_mic3_analog_control), SND_SOC_DAPM_MUX("MIC4 Analog Mux", SND_SOC_NOPM, 0, 0, &adcx140_dapm_mic4_analog_control), SND_SOC_DAPM_MUX("MIC1M Input Mux", SND_SOC_NOPM, 0, 0, &adcx140_dapm_mic1m_control), SND_SOC_DAPM_MUX("MIC2M Input Mux", SND_SOC_NOPM, 0, 0, &adcx140_dapm_mic2m_control), SND_SOC_DAPM_MUX("MIC3M Input Mux", SND_SOC_NOPM, 0, 0, &adcx140_dapm_mic3m_control), SND_SOC_DAPM_MUX("MIC4M Input Mux", SND_SOC_NOPM, 0, 0, &adcx140_dapm_mic4m_control), SND_SOC_DAPM_PGA("MIC_GAIN_CTL_CH1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("MIC_GAIN_CTL_CH2", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("MIC_GAIN_CTL_CH3", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("MIC_GAIN_CTL_CH4", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_ADC("CH1_ADC", "CH1 Capture", ADCX140_IN_CH_EN, 7, 0), SND_SOC_DAPM_ADC("CH2_ADC", "CH2 Capture", ADCX140_IN_CH_EN, 6, 0), SND_SOC_DAPM_ADC("CH3_ADC", "CH3 Capture", ADCX140_IN_CH_EN, 5, 0), SND_SOC_DAPM_ADC("CH4_ADC", "CH4 Capture", ADCX140_IN_CH_EN, 4, 0), SND_SOC_DAPM_SWITCH("CH1_ASI_EN", SND_SOC_NOPM, 0, 0, &adcx140_dapm_ch1_en_switch), SND_SOC_DAPM_SWITCH("CH2_ASI_EN", SND_SOC_NOPM, 0, 0, &adcx140_dapm_ch2_en_switch), SND_SOC_DAPM_SWITCH("CH3_ASI_EN", SND_SOC_NOPM, 0, 0, &adcx140_dapm_ch3_en_switch), SND_SOC_DAPM_SWITCH("CH4_ASI_EN", SND_SOC_NOPM, 0, 0, &adcx140_dapm_ch4_en_switch), SND_SOC_DAPM_SWITCH("DRE_ENABLE", SND_SOC_NOPM, 0, 0, &adcx140_dapm_dre_en_switch), SND_SOC_DAPM_SWITCH("CH1_DRE_EN", SND_SOC_NOPM, 0, 0, &adcx140_dapm_ch1_dre_en_switch), SND_SOC_DAPM_SWITCH("CH2_DRE_EN", SND_SOC_NOPM, 0, 0, &adcx140_dapm_ch2_dre_en_switch), SND_SOC_DAPM_SWITCH("CH3_DRE_EN", SND_SOC_NOPM, 0, 0, &adcx140_dapm_ch3_dre_en_switch), SND_SOC_DAPM_SWITCH("CH4_DRE_EN", SND_SOC_NOPM, 0, 0, &adcx140_dapm_ch4_dre_en_switch), SND_SOC_DAPM_MUX("IN1 Analog Mic Resistor", SND_SOC_NOPM, 0, 0, in1_resistor_controls), SND_SOC_DAPM_MUX("IN2 Analog Mic Resistor", SND_SOC_NOPM, 0, 0, in2_resistor_controls), SND_SOC_DAPM_MUX("IN3 Analog Mic Resistor", SND_SOC_NOPM, 0, 0, in3_resistor_controls), SND_SOC_DAPM_MUX("IN4 Analog Mic Resistor", SND_SOC_NOPM, 0, 0, in4_resistor_controls), }; static const struct snd_soc_dapm_route adcx140_audio_map[] = { /* Outputs */ {"CH1_OUT", NULL, "Output Mixer"}, {"CH2_OUT", NULL, "Output Mixer"}, {"CH3_OUT", NULL, "Output Mixer"}, {"CH4_OUT", NULL, "Output Mixer"}, {"CH1_ASI_EN", "Switch", "CH1_ADC"}, {"CH2_ASI_EN", "Switch", "CH2_ADC"}, {"CH3_ASI_EN", "Switch", "CH3_ADC"}, {"CH4_ASI_EN", "Switch", "CH4_ADC"}, {"DRE_ENABLE", "Switch", "CH1_DRE_EN"}, {"DRE_ENABLE", "Switch", "CH2_DRE_EN"}, {"DRE_ENABLE", "Switch", "CH3_DRE_EN"}, {"DRE_ENABLE", "Switch", "CH4_DRE_EN"}, {"CH1_DRE_EN", "Switch", "CH1_ADC"}, {"CH2_DRE_EN", "Switch", "CH2_ADC"}, {"CH3_DRE_EN", "Switch", "CH3_ADC"}, {"CH4_DRE_EN", "Switch", "CH4_ADC"}, /* Mic input */ {"CH1_ADC", NULL, "MIC_GAIN_CTL_CH1"}, {"CH2_ADC", NULL, "MIC_GAIN_CTL_CH2"}, {"CH3_ADC", NULL, "MIC_GAIN_CTL_CH3"}, {"CH4_ADC", NULL, "MIC_GAIN_CTL_CH4"}, {"MIC_GAIN_CTL_CH1", NULL, "IN1 Analog Mic Resistor"}, {"MIC_GAIN_CTL_CH1", NULL, "IN1 Analog Mic Resistor"}, {"MIC_GAIN_CTL_CH2", NULL, "IN2 Analog Mic Resistor"}, {"MIC_GAIN_CTL_CH2", NULL, "IN2 Analog Mic Resistor"}, {"MIC_GAIN_CTL_CH3", NULL, "IN3 Analog Mic Resistor"}, {"MIC_GAIN_CTL_CH3", NULL, "IN3 Analog Mic Resistor"}, {"MIC_GAIN_CTL_CH4", NULL, "IN4 Analog Mic Resistor"}, {"MIC_GAIN_CTL_CH4", NULL, "IN4 Analog Mic Resistor"}, {"IN1 Analog Mic Resistor", "2.5 kOhm", "MIC1P Input Mux"}, {"IN1 Analog Mic Resistor", "10 kOhm", "MIC1P Input Mux"}, {"IN1 Analog Mic Resistor", "20 kOhm", "MIC1P Input Mux"}, {"IN1 Analog Mic Resistor", "2.5 kOhm", "MIC1M Input Mux"}, {"IN1 Analog Mic Resistor", "10 kOhm", "MIC1M Input Mux"}, {"IN1 Analog Mic Resistor", "20 kOhm", "MIC1M Input Mux"}, {"IN2 Analog Mic Resistor", "2.5 kOhm", "MIC2P Input Mux"}, {"IN2 Analog Mic Resistor", "10 kOhm", "MIC2P Input Mux"}, {"IN2 Analog Mic Resistor", "20 kOhm", "MIC2P Input Mux"}, {"IN2 Analog Mic Resistor", "2.5 kOhm", "MIC2M Input Mux"}, {"IN2 Analog Mic Resistor", "10 kOhm", "MIC2M Input Mux"}, {"IN2 Analog Mic Resistor", "20 kOhm", "MIC2M Input Mux"}, {"IN3 Analog Mic Resistor", "2.5 kOhm", "MIC3P Input Mux"}, {"IN3 Analog Mic Resistor", "10 kOhm", "MIC3P Input Mux"}, {"IN3 Analog Mic Resistor", "20 kOhm", "MIC3P Input Mux"}, {"IN3 Analog Mic Resistor", "2.5 kOhm", "MIC3M Input Mux"}, {"IN3 Analog Mic Resistor", "10 kOhm", "MIC3M Input Mux"}, {"IN3 Analog Mic Resistor", "20 kOhm", "MIC3M Input Mux"}, {"IN4 Analog Mic Resistor", "2.5 kOhm", "MIC4P Input Mux"}, {"IN4 Analog Mic Resistor", "10 kOhm", "MIC4P Input Mux"}, {"IN4 Analog Mic Resistor", "20 kOhm", "MIC4P Input Mux"}, {"IN4 Analog Mic Resistor", "2.5 kOhm", "MIC4M Input Mux"}, {"IN4 Analog Mic Resistor", "10 kOhm", "MIC4M Input Mux"}, {"IN4 Analog Mic Resistor", "20 kOhm", "MIC4M Input Mux"}, {"MIC1 Analog Mux", "Line In", "MIC1P"}, {"MIC2 Analog Mux", "Line In", "MIC2P"}, {"MIC3 Analog Mux", "Line In", "MIC3P"}, {"MIC4 Analog Mux", "Line In", "MIC4P"}, {"MIC1P Input Mux", "Analog", "MIC1P"}, {"MIC1M Input Mux", "Analog", "MIC1M"}, {"MIC2P Input Mux", "Analog", "MIC2P"}, {"MIC2M Input Mux", "Analog", "MIC2M"}, {"MIC3P Input Mux", "Analog", "MIC3P"}, {"MIC3M Input Mux", "Analog", "MIC3M"}, {"MIC4P Input Mux", "Analog", "MIC4P"}, {"MIC4M Input Mux", "Analog", "MIC4M"}, }; static const struct snd_kcontrol_new adcx140_snd_controls[] = { SOC_SINGLE_TLV("Analog CH1 Mic Gain Volume", ADCX140_CH1_CFG1, 2, 42, 0, adc_tlv), SOC_SINGLE_TLV("Analog CH2 Mic Gain Volume", ADCX140_CH1_CFG2, 2, 42, 0, adc_tlv), SOC_SINGLE_TLV("Analog CH3 Mic Gain Volume", ADCX140_CH1_CFG3, 2, 42, 0, adc_tlv), SOC_SINGLE_TLV("Analog CH4 Mic Gain Volume", ADCX140_CH1_CFG4, 2, 42, 0, adc_tlv), SOC_SINGLE_TLV("DRE Threshold", ADCX140_DRE_CFG0, 4, 9, 0, dre_thresh_tlv), SOC_SINGLE_TLV("DRE Max Gain", ADCX140_DRE_CFG0, 0, 12, 0, dre_gain_tlv), SOC_SINGLE_TLV("AGC Threshold", ADCX140_AGC_CFG0, 4, 15, 0, agc_thresh_tlv), SOC_SINGLE_TLV("AGC Max Gain", ADCX140_AGC_CFG0, 0, 13, 0, agc_gain_tlv), SOC_SINGLE_TLV("Digital CH1 Out Volume", ADCX140_CH1_CFG2, 0, 0xff, 0, dig_vol_tlv), SOC_SINGLE_TLV("Digital CH2 Out Volume", ADCX140_CH2_CFG2, 0, 0xff, 0, dig_vol_tlv), SOC_SINGLE_TLV("Digital CH3 Out Volume", ADCX140_CH3_CFG2, 0, 0xff, 0, dig_vol_tlv), SOC_SINGLE_TLV("Digital CH4 Out Volume", ADCX140_CH4_CFG2, 0, 0xff, 0, dig_vol_tlv), SOC_SINGLE_TLV("Digital CH5 Out Volume", ADCX140_CH5_CFG2, 0, 0xff, 0, dig_vol_tlv), SOC_SINGLE_TLV("Digital CH6 Out Volume", ADCX140_CH6_CFG2, 0, 0xff, 0, dig_vol_tlv), SOC_SINGLE_TLV("Digital CH7 Out Volume", ADCX140_CH7_CFG2, 0, 0xff, 0, dig_vol_tlv), SOC_SINGLE_TLV("Digital CH8 Out Volume", ADCX140_CH8_CFG2, 0, 0xff, 0, dig_vol_tlv), }; static int adcx140_reset(struct adcx140_priv *adcx140) { int ret = 0; if (adcx140->gpio_reset) { gpiod_direction_output(adcx140->gpio_reset, 0); /* 8.4.1: wait for hw shutdown (25ms) + >= 1ms */ usleep_range(30000, 100000); gpiod_direction_output(adcx140->gpio_reset, 1); } else { ret = regmap_write(adcx140->regmap, ADCX140_SW_RESET, ADCX140_RESET); } /* 8.4.2: wait >= 10 ms after entering sleep mode. */ usleep_range(10000, 100000); return 0; } static int adcx140_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; u8 data = 0; switch (params_width(params)) { case 16: data = ADCX140_16_BIT_WORD; break; case 20: data = ADCX140_20_BIT_WORD; break; case 24: data = ADCX140_24_BIT_WORD; break; case 32: data = ADCX140_32_BIT_WORD; break; default: dev_err(component->dev, "%s: Unsupported width %d\n", __func__, params_width(params)); return -EINVAL; } snd_soc_component_update_bits(component, ADCX140_ASI_CFG0, ADCX140_WORD_LEN_MSK, data); return 0; } static int adcx140_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; struct adcx140_priv *adcx140 = snd_soc_component_get_drvdata(component); u8 iface_reg1 = 0; u8 iface_reg2 = 0; /* set master/slave audio interface */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: iface_reg2 |= ADCX140_BCLK_FSYNC_MASTER; break; case SND_SOC_DAIFMT_CBS_CFS: break; case SND_SOC_DAIFMT_CBS_CFM: case SND_SOC_DAIFMT_CBM_CFS: default: dev_err(component->dev, "Invalid DAI master/slave interface\n"); return -EINVAL; } /* signal polarity */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_IF: iface_reg1 |= ADCX140_FSYNCINV_BIT; break; case SND_SOC_DAIFMT_IB_IF: iface_reg1 |= ADCX140_BCLKINV_BIT | ADCX140_FSYNCINV_BIT; break; case SND_SOC_DAIFMT_IB_NF: iface_reg1 |= ADCX140_BCLKINV_BIT; break; case SND_SOC_DAIFMT_NB_NF: break; default: dev_err(component->dev, "Invalid DAI clock signal polarity\n"); return -EINVAL; } /* interface format */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: iface_reg1 |= ADCX140_I2S_MODE_BIT; break; case SND_SOC_DAIFMT_LEFT_J: iface_reg1 |= ADCX140_LEFT_JUST_BIT; break; case SND_SOC_DAIFMT_DSP_A: case SND_SOC_DAIFMT_DSP_B: break; default: dev_err(component->dev, "Invalid DAI interface format\n"); return -EINVAL; } adcx140->dai_fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK; snd_soc_component_update_bits(component, ADCX140_ASI_CFG0, ADCX140_FSYNCINV_BIT | ADCX140_BCLKINV_BIT | ADCX140_ASI_FORMAT_MSK, iface_reg1); snd_soc_component_update_bits(component, ADCX140_MST_CFG0, ADCX140_BCLK_FSYNC_MASTER, iface_reg2); return 0; } static int adcx140_set_dai_tdm_slot(struct snd_soc_dai *codec_dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct snd_soc_component *component = codec_dai->component; struct adcx140_priv *adcx140 = snd_soc_component_get_drvdata(component); unsigned int lsb; if (tx_mask != rx_mask) { dev_err(component->dev, "tx and rx masks must be symmetric\n"); return -EINVAL; } /* TDM based on DSP mode requires slots to be adjacent */ lsb = __ffs(tx_mask); if ((lsb + 1) != __fls(tx_mask)) { dev_err(component->dev, "Invalid mask, slots must be adjacent\n"); return -EINVAL; } switch (slot_width) { case 16: case 20: case 24: case 32: break; default: dev_err(component->dev, "Unsupported slot width %d\n", slot_width); return -EINVAL; } adcx140->tdm_delay = lsb; adcx140->slot_width = slot_width; return 0; } static int adcx140_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct adcx140_priv *adcx140 = snd_soc_component_get_drvdata(component); int offset = 0; int width = adcx140->slot_width; if (!width) width = substream->runtime->sample_bits; /* TDM slot selection only valid in DSP_A/_B mode */ if (adcx140->dai_fmt == SND_SOC_DAIFMT_DSP_A) offset += (adcx140->tdm_delay * width + 1); else if (adcx140->dai_fmt == SND_SOC_DAIFMT_DSP_B) offset += adcx140->tdm_delay * width; /* Configure data offset */ snd_soc_component_update_bits(component, ADCX140_ASI_CFG1, ADCX140_TX_OFFSET_MASK, offset); return 0; } static const struct snd_soc_dai_ops adcx140_dai_ops = { .hw_params = adcx140_hw_params, .set_fmt = adcx140_set_dai_fmt, .prepare = adcx140_prepare, .set_tdm_slot = adcx140_set_dai_tdm_slot, }; static int adcx140_codec_probe(struct snd_soc_component *component) { struct adcx140_priv *adcx140 = snd_soc_component_get_drvdata(component); int sleep_cfg_val = ADCX140_WAKE_DEV; u8 bias_source; u8 vref_source; int ret; ret = device_property_read_u8(adcx140->dev, "ti,mic-bias-source", &bias_source); if (ret) bias_source = ADCX140_MIC_BIAS_VAL_VREF; if (bias_source != ADCX140_MIC_BIAS_VAL_VREF && bias_source != ADCX140_MIC_BIAS_VAL_VREF_1096 && bias_source != ADCX140_MIC_BIAS_VAL_AVDD) { dev_err(adcx140->dev, "Mic Bias source value is invalid\n"); return -EINVAL; } ret = device_property_read_u8(adcx140->dev, "ti,vref-source", &vref_source); if (ret) vref_source = ADCX140_MIC_BIAS_VREF_275V; if (vref_source != ADCX140_MIC_BIAS_VREF_275V && vref_source != ADCX140_MIC_BIAS_VREF_25V && vref_source != ADCX140_MIC_BIAS_VREF_1375V) { dev_err(adcx140->dev, "Mic Bias source value is invalid\n"); return -EINVAL; } bias_source |= vref_source; ret = adcx140_reset(adcx140); if (ret) goto out; if(adcx140->supply_areg == NULL) sleep_cfg_val |= ADCX140_AREG_INTERNAL; ret = regmap_write(adcx140->regmap, ADCX140_SLEEP_CFG, sleep_cfg_val); if (ret) { dev_err(adcx140->dev, "setting sleep config failed %d\n", ret); goto out; } /* 8.4.3: Wait >= 1ms after entering active mode. */ usleep_range(1000, 100000); ret = regmap_update_bits(adcx140->regmap, ADCX140_BIAS_CFG, ADCX140_MIC_BIAS_VAL_MSK | ADCX140_MIC_BIAS_VREF_MSK, bias_source); if (ret) dev_err(adcx140->dev, "setting MIC bias failed %d\n", ret); out: return ret; } static int adcx140_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct adcx140_priv *adcx140 = snd_soc_component_get_drvdata(component); int pwr_cfg = 0; switch (level) { case SND_SOC_BIAS_ON: case SND_SOC_BIAS_PREPARE: case SND_SOC_BIAS_STANDBY: pwr_cfg = ADCX140_PWR_CFG_BIAS_PDZ | ADCX140_PWR_CFG_PLL_PDZ | ADCX140_PWR_CFG_ADC_PDZ; break; case SND_SOC_BIAS_OFF: pwr_cfg = 0x0; break; } return regmap_write(adcx140->regmap, ADCX140_PWR_CFG, pwr_cfg); } static const struct snd_soc_component_driver soc_codec_driver_adcx140 = { .probe = adcx140_codec_probe, .set_bias_level = adcx140_set_bias_level, .controls = adcx140_snd_controls, .num_controls = ARRAY_SIZE(adcx140_snd_controls), .dapm_widgets = adcx140_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(adcx140_dapm_widgets), .dapm_routes = adcx140_audio_map, .num_dapm_routes = ARRAY_SIZE(adcx140_audio_map), .suspend_bias_off = 1, .idle_bias_on = 0, .use_pmdown_time = 1, .endianness = 1, .non_legacy_dai_naming = 1, }; static struct snd_soc_dai_driver adcx140_dai_driver[] = { { .name = "tlv320adcx140-codec", .capture = { .stream_name = "Capture", .channels_min = 2, .channels_max = ADCX140_MAX_CHANNELS, .rates = ADCX140_RATES, .formats = ADCX140_FORMATS, }, .ops = &adcx140_dai_ops, .symmetric_rates = 1, } }; static const struct of_device_id tlv320adcx140_of_match[] = { { .compatible = "ti,tlv320adc3140" }, { .compatible = "ti,tlv320adc5140" }, { .compatible = "ti,tlv320adc6140" }, {}, }; MODULE_DEVICE_TABLE(of, tlv320adcx140_of_match); static int adcx140_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct adcx140_priv *adcx140; int ret; adcx140 = devm_kzalloc(&i2c->dev, sizeof(*adcx140), GFP_KERNEL); if (!adcx140) return -ENOMEM; adcx140->gpio_reset = devm_gpiod_get_optional(adcx140->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(adcx140->gpio_reset)) dev_info(&i2c->dev, "Reset GPIO not defined\n"); adcx140->supply_areg = devm_regulator_get_optional(adcx140->dev, "areg"); if (IS_ERR(adcx140->supply_areg)) { if (PTR_ERR(adcx140->supply_areg) == -EPROBE_DEFER) return -EPROBE_DEFER; else adcx140->supply_areg = NULL; } else { ret = regulator_enable(adcx140->supply_areg); if (ret) { dev_err(adcx140->dev, "Failed to enable areg\n"); return ret; } } adcx140->regmap = devm_regmap_init_i2c(i2c, &adcx140_i2c_regmap); if (IS_ERR(adcx140->regmap)) { ret = PTR_ERR(adcx140->regmap); dev_err(&i2c->dev, "Failed to allocate register map: %d\n", ret); return ret; } adcx140->dev = &i2c->dev; i2c_set_clientdata(i2c, adcx140); return devm_snd_soc_register_component(&i2c->dev, &soc_codec_driver_adcx140, adcx140_dai_driver, 1); } static const struct i2c_device_id adcx140_i2c_id[] = { { "tlv320adc3140", 0 }, { "tlv320adc5140", 1 }, { "tlv320adc6140", 2 }, {} }; MODULE_DEVICE_TABLE(i2c, adcx140_i2c_id); static struct i2c_driver adcx140_i2c_driver = { .driver = { .name = "tlv320adcx140-codec", .of_match_table = of_match_ptr(tlv320adcx140_of_match), }, .probe = adcx140_i2c_probe, .id_table = adcx140_i2c_id, }; module_i2c_driver(adcx140_i2c_driver); MODULE_AUTHOR("Dan Murphy "); MODULE_DESCRIPTION("ASoC TLV320ADCX140 CODEC Driver"); MODULE_LICENSE("GPL v2");