/* * ff-transaction.c - a part of driver for RME Fireface series * * Copyright (c) 2015-2017 Takashi Sakamoto * * Licensed under the terms of the GNU General Public License, version 2. */ #include "ff.h" int snd_ff_transaction_get_clock(struct snd_ff *ff, unsigned int *rate, enum snd_ff_clock_src *src) { __le32 reg; u32 data; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, SND_FF_REG_CLOCK_CONFIG, ®, sizeof(reg), 0); if (err < 0) return err; data = le32_to_cpu(reg); /* Calculate sampling rate. */ switch ((data >> 1) & 0x03) { case 0x01: *rate = 32000; break; case 0x00: *rate = 44100; break; case 0x03: *rate = 48000; break; case 0x02: default: return -EIO; } if (data & 0x08) *rate *= 2; else if (data & 0x10) *rate *= 4; /* Calculate source of clock. */ if (data & 0x01) { *src = SND_FF_CLOCK_SRC_INTERNAL; } else { /* TODO: 0x02, 0x06, 0x07? */ switch ((data >> 10) & 0x07) { case 0x00: *src = SND_FF_CLOCK_SRC_ADAT1; break; case 0x01: *src = SND_FF_CLOCK_SRC_ADAT2; break; case 0x03: *src = SND_FF_CLOCK_SRC_SPDIF; break; case 0x04: *src = SND_FF_CLOCK_SRC_WORD; break; case 0x05: *src = SND_FF_CLOCK_SRC_LTC; break; default: return -EIO; } } return 0; } static void finish_transmit_midi_msg(struct snd_ff *ff, unsigned int port, int rcode) { struct snd_rawmidi_substream *substream = READ_ONCE(ff->rx_midi_substreams[port]); if (rcode_is_permanent_error(rcode)) { ff->rx_midi_error[port] = true; return; } if (rcode != RCODE_COMPLETE) { /* Transfer the message again, immediately. */ ff->next_ktime[port] = 0; schedule_work(&ff->rx_midi_work[port]); return; } snd_rawmidi_transmit_ack(substream, ff->rx_bytes[port]); ff->rx_bytes[port] = 0; if (!snd_rawmidi_transmit_empty(substream)) schedule_work(&ff->rx_midi_work[port]); } static void finish_transmit_midi0_msg(struct fw_card *card, int rcode, void *data, size_t length, void *callback_data) { struct snd_ff *ff = container_of(callback_data, struct snd_ff, transactions[0]); finish_transmit_midi_msg(ff, 0, rcode); } static void finish_transmit_midi1_msg(struct fw_card *card, int rcode, void *data, size_t length, void *callback_data) { struct snd_ff *ff = container_of(callback_data, struct snd_ff, transactions[1]); finish_transmit_midi_msg(ff, 1, rcode); } static inline void fill_midi_buf(struct snd_ff *ff, unsigned int port, unsigned int index, u8 byte) { ff->msg_buf[port][index] = cpu_to_le32(byte); } static void transmit_midi_msg(struct snd_ff *ff, unsigned int port) { struct snd_rawmidi_substream *substream = READ_ONCE(ff->rx_midi_substreams[port]); u8 *buf = (u8 *)ff->msg_buf[port]; int i, len; struct fw_device *fw_dev = fw_parent_device(ff->unit); unsigned long long addr; int generation; fw_transaction_callback_t callback; if (substream == NULL || snd_rawmidi_transmit_empty(substream)) return; if (ff->rx_bytes[port] > 0 || ff->rx_midi_error[port]) return; /* Do it in next chance. */ if (ktime_after(ff->next_ktime[port], ktime_get())) { schedule_work(&ff->rx_midi_work[port]); return; } len = snd_rawmidi_transmit_peek(substream, buf, SND_FF_MAXIMIM_MIDI_QUADS); if (len <= 0) return; for (i = len - 1; i >= 0; i--) fill_midi_buf(ff, port, i, buf[i]); if (port == 0) { addr = ff->spec->protocol->midi_rx_port_0_reg; callback = finish_transmit_midi0_msg; } else { addr = ff->spec->protocol->midi_rx_port_1_reg; callback = finish_transmit_midi1_msg; } /* Set interval to next transaction. */ ff->next_ktime[port] = ktime_add_ns(ktime_get(), len * 8 * NSEC_PER_SEC / 31250); ff->rx_bytes[port] = len; /* * In Linux FireWire core, when generation is updated with memory * barrier, node id has already been updated. In this module, After * this smp_rmb(), load/store instructions to memory are completed. * Thus, both of generation and node id are available with recent * values. This is a light-serialization solution to handle bus reset * events on IEEE 1394 bus. */ generation = fw_dev->generation; smp_rmb(); fw_send_request(fw_dev->card, &ff->transactions[port], TCODE_WRITE_BLOCK_REQUEST, fw_dev->node_id, generation, fw_dev->max_speed, addr, &ff->msg_buf[port], len * 4, callback, &ff->transactions[port]); } static void transmit_midi0_msg(struct work_struct *work) { struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[0]); transmit_midi_msg(ff, 0); } static void transmit_midi1_msg(struct work_struct *work) { struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[1]); transmit_midi_msg(ff, 1); } static void handle_midi_msg(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *data, size_t length, void *callback_data) { struct snd_ff *ff = callback_data; __le32 *buf = data; u32 quad; u8 byte; unsigned int index; struct snd_rawmidi_substream *substream; int i; fw_send_response(card, request, RCODE_COMPLETE); for (i = 0; i < length / 4; i++) { quad = le32_to_cpu(buf[i]); /* Message in first port. */ /* * This value may represent the index of this unit when the same * units are on the same IEEE 1394 bus. This driver doesn't use * it. */ index = (quad >> 8) & 0xff; if (index > 0) { substream = READ_ONCE(ff->tx_midi_substreams[0]); if (substream != NULL) { byte = quad & 0xff; snd_rawmidi_receive(substream, &byte, 1); } } /* Message in second port. */ index = (quad >> 24) & 0xff; if (index > 0) { substream = READ_ONCE(ff->tx_midi_substreams[1]); if (substream != NULL) { byte = (quad >> 16) & 0xff; snd_rawmidi_receive(substream, &byte, 1); } } } } static int allocate_own_address(struct snd_ff *ff, int i) { struct fw_address_region midi_msg_region; int err; ff->async_handler.length = SND_FF_MAXIMIM_MIDI_QUADS * 4; ff->async_handler.address_callback = handle_midi_msg; ff->async_handler.callback_data = ff; midi_msg_region.start = 0x000100000000ull * i; midi_msg_region.end = midi_msg_region.start + ff->async_handler.length; err = fw_core_add_address_handler(&ff->async_handler, &midi_msg_region); if (err >= 0) { /* Controllers are allowed to register this region. */ if (ff->async_handler.offset & 0x0000ffffffff) { fw_core_remove_address_handler(&ff->async_handler); err = -EAGAIN; } } return err; } /* * The configuration to start asynchronous transactions for MIDI messages is in * 0x'0000'8010'051c. This register includes the other options, thus this driver * doesn't touch it and leaves the decision to userspace. The userspace MUST add * 0x04000000 to write transactions to the register to receive any MIDI * messages. * * Here, I just describe MIDI-related offsets of the register, in little-endian * order. * * Controllers are allowed to register higher 4 bytes of address to receive * the transactions. The register is 0x'0000'8010'03f4. On the other hand, the * controllers are not allowed to register lower 4 bytes of the address. They * are forced to select from 4 options by writing corresponding bits to * 0x'0000'8010'051c. * * The 3rd-6th bits in MSB of this register are used to indicate lower 4 bytes * of address to which the device transferrs the transactions. * - 6th: 0x'....'....'0000'0180 * - 5th: 0x'....'....'0000'0100 * - 4th: 0x'....'....'0000'0080 * - 3rd: 0x'....'....'0000'0000 * * This driver configure 0x'....'....'0000'0000 for units to receive MIDI * messages. 3rd bit of the register should be configured, however this driver * deligates this task to user space applications due to a restriction that * this register is write-only and the other bits have own effects. * * The 1st and 2nd bits in LSB of this register are used to cancel transferring * asynchronous transactions. These two bits have the same effect. * - 1st/2nd: cancel transferring */ int snd_ff_transaction_reregister(struct snd_ff *ff) { struct fw_card *fw_card = fw_parent_device(ff->unit)->card; u32 addr; __le32 reg; /* * Controllers are allowed to register its node ID and upper 2 byte of * local address to listen asynchronous transactions. */ addr = (fw_card->node_id << 16) | (ff->async_handler.offset >> 32); reg = cpu_to_le32(addr); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, ff->spec->protocol->midi_high_addr_reg, ®, sizeof(reg), 0); } int snd_ff_transaction_register(struct snd_ff *ff) { int i, err; /* * Allocate in Memory Space of IEC 13213, but lower 4 byte in LSB should * be zero due to device specification. */ for (i = 0; i < 0xffff; i++) { err = allocate_own_address(ff, i); if (err != -EBUSY && err != -EAGAIN) break; } if (err < 0) return err; err = snd_ff_transaction_reregister(ff); if (err < 0) return err; INIT_WORK(&ff->rx_midi_work[0], transmit_midi0_msg); INIT_WORK(&ff->rx_midi_work[1], transmit_midi1_msg); return 0; } void snd_ff_transaction_unregister(struct snd_ff *ff) { __le32 reg; if (ff->async_handler.callback_data == NULL) return; ff->async_handler.callback_data = NULL; /* Release higher 4 bytes of address. */ reg = cpu_to_le32(0x00000000); snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, ff->spec->protocol->midi_high_addr_reg, ®, sizeof(reg), 0); fw_core_remove_address_handler(&ff->async_handler); }