/* Linux multicast routing support * Common logic shared by IPv4 [ipmr] and IPv6 [ip6mr] implementation */ #include #include /* Sets everything common except 'dev', since that is done under locking */ void vif_device_init(struct vif_device *v, struct net_device *dev, unsigned long rate_limit, unsigned char threshold, unsigned short flags, unsigned short get_iflink_mask) { v->dev = NULL; v->bytes_in = 0; v->bytes_out = 0; v->pkt_in = 0; v->pkt_out = 0; v->rate_limit = rate_limit; v->flags = flags; v->threshold = threshold; if (v->flags & get_iflink_mask) v->link = dev_get_iflink(dev); else v->link = dev->ifindex; } EXPORT_SYMBOL(vif_device_init); struct mr_table * mr_table_alloc(struct net *net, u32 id, struct mr_table_ops *ops, void (*expire_func)(struct timer_list *t), void (*table_set)(struct mr_table *mrt, struct net *net)) { struct mr_table *mrt; int err; mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); if (!mrt) return ERR_PTR(-ENOMEM); mrt->id = id; write_pnet(&mrt->net, net); mrt->ops = *ops; err = rhltable_init(&mrt->mfc_hash, mrt->ops.rht_params); if (err) { kfree(mrt); return ERR_PTR(err); } INIT_LIST_HEAD(&mrt->mfc_cache_list); INIT_LIST_HEAD(&mrt->mfc_unres_queue); timer_setup(&mrt->ipmr_expire_timer, expire_func, 0); mrt->mroute_reg_vif_num = -1; table_set(mrt, net); return mrt; } EXPORT_SYMBOL(mr_table_alloc); void *mr_mfc_find_parent(struct mr_table *mrt, void *hasharg, int parent) { struct rhlist_head *tmp, *list; struct mr_mfc *c; list = rhltable_lookup(&mrt->mfc_hash, hasharg, *mrt->ops.rht_params); rhl_for_each_entry_rcu(c, tmp, list, mnode) if (parent == -1 || parent == c->mfc_parent) return c; return NULL; } EXPORT_SYMBOL(mr_mfc_find_parent); void *mr_mfc_find_any_parent(struct mr_table *mrt, int vifi) { struct rhlist_head *tmp, *list; struct mr_mfc *c; list = rhltable_lookup(&mrt->mfc_hash, mrt->ops.cmparg_any, *mrt->ops.rht_params); rhl_for_each_entry_rcu(c, tmp, list, mnode) if (c->mfc_un.res.ttls[vifi] < 255) return c; return NULL; } EXPORT_SYMBOL(mr_mfc_find_any_parent); void *mr_mfc_find_any(struct mr_table *mrt, int vifi, void *hasharg) { struct rhlist_head *tmp, *list; struct mr_mfc *c, *proxy; list = rhltable_lookup(&mrt->mfc_hash, hasharg, *mrt->ops.rht_params); rhl_for_each_entry_rcu(c, tmp, list, mnode) { if (c->mfc_un.res.ttls[vifi] < 255) return c; /* It's ok if the vifi is part of the static tree */ proxy = mr_mfc_find_any_parent(mrt, c->mfc_parent); if (proxy && proxy->mfc_un.res.ttls[vifi] < 255) return c; } return mr_mfc_find_any_parent(mrt, vifi); } EXPORT_SYMBOL(mr_mfc_find_any); #ifdef CONFIG_PROC_FS void *mr_vif_seq_idx(struct net *net, struct mr_vif_iter *iter, loff_t pos) { struct mr_table *mrt = iter->mrt; for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { if (!VIF_EXISTS(mrt, iter->ct)) continue; if (pos-- == 0) return &mrt->vif_table[iter->ct]; } return NULL; } EXPORT_SYMBOL(mr_vif_seq_idx); void *mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct mr_vif_iter *iter = seq->private; struct net *net = seq_file_net(seq); struct mr_table *mrt = iter->mrt; ++*pos; if (v == SEQ_START_TOKEN) return mr_vif_seq_idx(net, iter, 0); while (++iter->ct < mrt->maxvif) { if (!VIF_EXISTS(mrt, iter->ct)) continue; return &mrt->vif_table[iter->ct]; } return NULL; } EXPORT_SYMBOL(mr_vif_seq_next); void *mr_mfc_seq_idx(struct net *net, struct mr_mfc_iter *it, loff_t pos) { struct mr_table *mrt = it->mrt; struct mr_mfc *mfc; rcu_read_lock(); it->cache = &mrt->mfc_cache_list; list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) if (pos-- == 0) return mfc; rcu_read_unlock(); spin_lock_bh(it->lock); it->cache = &mrt->mfc_unres_queue; list_for_each_entry(mfc, it->cache, list) if (pos-- == 0) return mfc; spin_unlock_bh(it->lock); it->cache = NULL; return NULL; } EXPORT_SYMBOL(mr_mfc_seq_idx); void *mr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct mr_mfc_iter *it = seq->private; struct net *net = seq_file_net(seq); struct mr_table *mrt = it->mrt; struct mr_mfc *c = v; ++*pos; if (v == SEQ_START_TOKEN) return mr_mfc_seq_idx(net, seq->private, 0); if (c->list.next != it->cache) return list_entry(c->list.next, struct mr_mfc, list); if (it->cache == &mrt->mfc_unres_queue) goto end_of_list; /* exhausted cache_array, show unresolved */ rcu_read_unlock(); it->cache = &mrt->mfc_unres_queue; spin_lock_bh(it->lock); if (!list_empty(it->cache)) return list_first_entry(it->cache, struct mr_mfc, list); end_of_list: spin_unlock_bh(it->lock); it->cache = NULL; return NULL; } EXPORT_SYMBOL(mr_mfc_seq_next); #endif int mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, struct mr_mfc *c, struct rtmsg *rtm) { struct rta_mfc_stats mfcs; struct nlattr *mp_attr; struct rtnexthop *nhp; unsigned long lastuse; int ct; /* If cache is unresolved, don't try to parse IIF and OIF */ if (c->mfc_parent >= MAXVIFS) { rtm->rtm_flags |= RTNH_F_UNRESOLVED; return -ENOENT; } if (VIF_EXISTS(mrt, c->mfc_parent) && nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0) return -EMSGSIZE; if (c->mfc_flags & MFC_OFFLOAD) rtm->rtm_flags |= RTNH_F_OFFLOAD; mp_attr = nla_nest_start_noflag(skb, RTA_MULTIPATH); if (!mp_attr) return -EMSGSIZE; for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { struct vif_device *vif; nhp = nla_reserve_nohdr(skb, sizeof(*nhp)); if (!nhp) { nla_nest_cancel(skb, mp_attr); return -EMSGSIZE; } nhp->rtnh_flags = 0; nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; vif = &mrt->vif_table[ct]; nhp->rtnh_ifindex = vif->dev->ifindex; nhp->rtnh_len = sizeof(*nhp); } } nla_nest_end(skb, mp_attr); lastuse = READ_ONCE(c->mfc_un.res.lastuse); lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0; mfcs.mfcs_packets = c->mfc_un.res.pkt; mfcs.mfcs_bytes = c->mfc_un.res.bytes; mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if; if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) || nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse), RTA_PAD)) return -EMSGSIZE; rtm->rtm_type = RTN_MULTICAST; return 1; } EXPORT_SYMBOL(mr_fill_mroute); static bool mr_mfc_uses_dev(const struct mr_table *mrt, const struct mr_mfc *c, const struct net_device *dev) { int ct; for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { const struct vif_device *vif; vif = &mrt->vif_table[ct]; if (vif->dev == dev) return true; } } return false; } int mr_table_dump(struct mr_table *mrt, struct sk_buff *skb, struct netlink_callback *cb, int (*fill)(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags), spinlock_t *lock, struct fib_dump_filter *filter) { unsigned int e = 0, s_e = cb->args[1]; unsigned int flags = NLM_F_MULTI; struct mr_mfc *mfc; int err; if (filter->filter_set) flags |= NLM_F_DUMP_FILTERED; list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) { if (e < s_e) goto next_entry; if (filter->dev && !mr_mfc_uses_dev(mrt, mfc, filter->dev)) goto next_entry; err = fill(mrt, skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, mfc, RTM_NEWROUTE, flags); if (err < 0) goto out; next_entry: e++; } spin_lock_bh(lock); list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) { if (e < s_e) goto next_entry2; if (filter->dev && !mr_mfc_uses_dev(mrt, mfc, filter->dev)) goto next_entry2; err = fill(mrt, skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, mfc, RTM_NEWROUTE, flags); if (err < 0) { spin_unlock_bh(lock); goto out; } next_entry2: e++; } spin_unlock_bh(lock); err = 0; out: cb->args[1] = e; return err; } EXPORT_SYMBOL(mr_table_dump); int mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb, struct mr_table *(*iter)(struct net *net, struct mr_table *mrt), int (*fill)(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags), spinlock_t *lock, struct fib_dump_filter *filter) { unsigned int t = 0, s_t = cb->args[0]; struct net *net = sock_net(skb->sk); struct mr_table *mrt; int err; /* multicast does not track protocol or have route type other * than RTN_MULTICAST */ if (filter->filter_set) { if (filter->protocol || filter->flags || (filter->rt_type && filter->rt_type != RTN_MULTICAST)) return skb->len; } rcu_read_lock(); for (mrt = iter(net, NULL); mrt; mrt = iter(net, mrt)) { if (t < s_t) goto next_table; err = mr_table_dump(mrt, skb, cb, fill, lock, filter); if (err < 0) break; cb->args[1] = 0; next_table: t++; } rcu_read_unlock(); cb->args[0] = t; return skb->len; } EXPORT_SYMBOL(mr_rtm_dumproute); int mr_dump(struct net *net, struct notifier_block *nb, unsigned short family, int (*rules_dump)(struct net *net, struct notifier_block *nb), struct mr_table *(*mr_iter)(struct net *net, struct mr_table *mrt), rwlock_t *mrt_lock) { struct mr_table *mrt; int err; err = rules_dump(net, nb); if (err) return err; for (mrt = mr_iter(net, NULL); mrt; mrt = mr_iter(net, mrt)) { struct vif_device *v = &mrt->vif_table[0]; struct mr_mfc *mfc; int vifi; /* Notifiy on table VIF entries */ read_lock(mrt_lock); for (vifi = 0; vifi < mrt->maxvif; vifi++, v++) { if (!v->dev) continue; err = mr_call_vif_notifier(nb, family, FIB_EVENT_VIF_ADD, v, vifi, mrt->id); if (err) break; } read_unlock(mrt_lock); if (err) return err; /* Notify on table MFC entries */ list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) { err = mr_call_mfc_notifier(nb, family, FIB_EVENT_ENTRY_ADD, mfc, mrt->id); if (err) return err; } } return 0; } EXPORT_SYMBOL(mr_dump);