// SPDX-License-Identifier: GPL-2.0-only #include <linux/mm.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/compiler.h> #include <linux/export.h> #include <linux/err.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/signal.h> #include <linux/sched/task_stack.h> #include <linux/security.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/mman.h> #include <linux/hugetlb.h> #include <linux/vmalloc.h> #include <linux/userfaultfd_k.h> #include <linux/elf.h> #include <linux/elf-randomize.h> #include <linux/personality.h> #include <linux/random.h> #include <linux/processor.h> #include <linux/sizes.h> #include <linux/compat.h> #include <linux/uaccess.h> #include "internal.h" #include "swap.h" /** * kfree_const - conditionally free memory * @x: pointer to the memory * * Function calls kfree only if @x is not in .rodata section. */ void kfree_const(const void *x) { if (!is_kernel_rodata((unsigned long)x)) kfree(x); } EXPORT_SYMBOL(kfree_const); /** * kstrdup - allocate space for and copy an existing string * @s: the string to duplicate * @gfp: the GFP mask used in the kmalloc() call when allocating memory * * Return: newly allocated copy of @s or %NULL in case of error */ char *kstrdup(const char *s, gfp_t gfp) { size_t len; char *buf; if (!s) return NULL; len = strlen(s) + 1; buf = kmalloc_track_caller(len, gfp); if (buf) memcpy(buf, s, len); return buf; } EXPORT_SYMBOL(kstrdup); /** * kstrdup_const - conditionally duplicate an existing const string * @s: the string to duplicate * @gfp: the GFP mask used in the kmalloc() call when allocating memory * * Note: Strings allocated by kstrdup_const should be freed by kfree_const and * must not be passed to krealloc(). * * Return: source string if it is in .rodata section otherwise * fallback to kstrdup. */ const char *kstrdup_const(const char *s, gfp_t gfp) { if (is_kernel_rodata((unsigned long)s)) return s; return kstrdup(s, gfp); } EXPORT_SYMBOL(kstrdup_const); /** * kstrndup - allocate space for and copy an existing string * @s: the string to duplicate * @max: read at most @max chars from @s * @gfp: the GFP mask used in the kmalloc() call when allocating memory * * Note: Use kmemdup_nul() instead if the size is known exactly. * * Return: newly allocated copy of @s or %NULL in case of error */ char *kstrndup(const char *s, size_t max, gfp_t gfp) { size_t len; char *buf; if (!s) return NULL; len = strnlen(s, max); buf = kmalloc_track_caller(len+1, gfp); if (buf) { memcpy(buf, s, len); buf[len] = '\0'; } return buf; } EXPORT_SYMBOL(kstrndup); /** * kmemdup - duplicate region of memory * * @src: memory region to duplicate * @len: memory region length * @gfp: GFP mask to use * * Return: newly allocated copy of @src or %NULL in case of error, * result is physically contiguous. Use kfree() to free. */ void *kmemdup(const void *src, size_t len, gfp_t gfp) { void *p; p = kmalloc_track_caller(len, gfp); if (p) memcpy(p, src, len); return p; } EXPORT_SYMBOL(kmemdup); /** * kvmemdup - duplicate region of memory * * @src: memory region to duplicate * @len: memory region length * @gfp: GFP mask to use * * Return: newly allocated copy of @src or %NULL in case of error, * result may be not physically contiguous. Use kvfree() to free. */ void *kvmemdup(const void *src, size_t len, gfp_t gfp) { void *p; p = kvmalloc(len, gfp); if (p) memcpy(p, src, len); return p; } EXPORT_SYMBOL(kvmemdup); /** * kmemdup_nul - Create a NUL-terminated string from unterminated data * @s: The data to stringify * @len: The size of the data * @gfp: the GFP mask used in the kmalloc() call when allocating memory * * Return: newly allocated copy of @s with NUL-termination or %NULL in * case of error */ char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) { char *buf; if (!s) return NULL; buf = kmalloc_track_caller(len + 1, gfp); if (buf) { memcpy(buf, s, len); buf[len] = '\0'; } return buf; } EXPORT_SYMBOL(kmemdup_nul); /** * memdup_user - duplicate memory region from user space * * @src: source address in user space * @len: number of bytes to copy * * Return: an ERR_PTR() on failure. Result is physically * contiguous, to be freed by kfree(). */ void *memdup_user(const void __user *src, size_t len) { void *p; p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); if (!p) return ERR_PTR(-ENOMEM); if (copy_from_user(p, src, len)) { kfree(p); return ERR_PTR(-EFAULT); } return p; } EXPORT_SYMBOL(memdup_user); /** * vmemdup_user - duplicate memory region from user space * * @src: source address in user space * @len: number of bytes to copy * * Return: an ERR_PTR() on failure. Result may be not * physically contiguous. Use kvfree() to free. */ void *vmemdup_user(const void __user *src, size_t len) { void *p; p = kvmalloc(len, GFP_USER); if (!p) return ERR_PTR(-ENOMEM); if (copy_from_user(p, src, len)) { kvfree(p); return ERR_PTR(-EFAULT); } return p; } EXPORT_SYMBOL(vmemdup_user); /** * strndup_user - duplicate an existing string from user space * @s: The string to duplicate * @n: Maximum number of bytes to copy, including the trailing NUL. * * Return: newly allocated copy of @s or an ERR_PTR() in case of error */ char *strndup_user(const char __user *s, long n) { char *p; long length; length = strnlen_user(s, n); if (!length) return ERR_PTR(-EFAULT); if (length > n) return ERR_PTR(-EINVAL); p = memdup_user(s, length); if (IS_ERR(p)) return p; p[length - 1] = '\0'; return p; } EXPORT_SYMBOL(strndup_user); /** * memdup_user_nul - duplicate memory region from user space and NUL-terminate * * @src: source address in user space * @len: number of bytes to copy * * Return: an ERR_PTR() on failure. */ void *memdup_user_nul(const void __user *src, size_t len) { char *p; /* * Always use GFP_KERNEL, since copy_from_user() can sleep and * cause pagefault, which makes it pointless to use GFP_NOFS * or GFP_ATOMIC. */ p = kmalloc_track_caller(len + 1, GFP_KERNEL); if (!p) return ERR_PTR(-ENOMEM); if (copy_from_user(p, src, len)) { kfree(p); return ERR_PTR(-EFAULT); } p[len] = '\0'; return p; } EXPORT_SYMBOL(memdup_user_nul); /* Check if the vma is being used as a stack by this task */ int vma_is_stack_for_current(struct vm_area_struct *vma) { struct task_struct * __maybe_unused t = current; return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); } /* * Change backing file, only valid to use during initial VMA setup. */ void vma_set_file(struct vm_area_struct *vma, struct file *file) { /* Changing an anonymous vma with this is illegal */ get_file(file); swap(vma->vm_file, file); fput(file); } EXPORT_SYMBOL(vma_set_file); #ifndef STACK_RND_MASK #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ #endif unsigned long randomize_stack_top(unsigned long stack_top) { unsigned long random_variable = 0; if (current->flags & PF_RANDOMIZE) { random_variable = get_random_long(); random_variable &= STACK_RND_MASK; random_variable <<= PAGE_SHIFT; } #ifdef CONFIG_STACK_GROWSUP return PAGE_ALIGN(stack_top) + random_variable; #else return PAGE_ALIGN(stack_top) - random_variable; #endif } /** * randomize_page - Generate a random, page aligned address * @start: The smallest acceptable address the caller will take. * @range: The size of the area, starting at @start, within which the * random address must fall. * * If @start + @range would overflow, @range is capped. * * NOTE: Historical use of randomize_range, which this replaces, presumed that * @start was already page aligned. We now align it regardless. * * Return: A page aligned address within [start, start + range). On error, * @start is returned. */ unsigned long randomize_page(unsigned long start, unsigned long range) { if (!PAGE_ALIGNED(start)) { range -= PAGE_ALIGN(start) - start; start = PAGE_ALIGN(start); } if (start > ULONG_MAX - range) range = ULONG_MAX - start; range >>= PAGE_SHIFT; if (range == 0) return start; return start + (get_random_long() % range << PAGE_SHIFT); } #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT unsigned long __weak arch_randomize_brk(struct mm_struct *mm) { /* Is the current task 32bit ? */ if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) return randomize_page(mm->brk, SZ_32M); return randomize_page(mm->brk, SZ_1G); } unsigned long arch_mmap_rnd(void) { unsigned long rnd; #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS if (is_compat_task()) rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); else #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); return rnd << PAGE_SHIFT; } static int mmap_is_legacy(struct rlimit *rlim_stack) { if (current->personality & ADDR_COMPAT_LAYOUT) return 1; if (rlim_stack->rlim_cur == RLIM_INFINITY) return 1; return sysctl_legacy_va_layout; } /* * Leave enough space between the mmap area and the stack to honour ulimit in * the face of randomisation. */ #define MIN_GAP (SZ_128M) #define MAX_GAP (STACK_TOP / 6 * 5) static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) { unsigned long gap = rlim_stack->rlim_cur; unsigned long pad = stack_guard_gap; /* Account for stack randomization if necessary */ if (current->flags & PF_RANDOMIZE) pad += (STACK_RND_MASK << PAGE_SHIFT); /* Values close to RLIM_INFINITY can overflow. */ if (gap + pad > gap) gap += pad; if (gap < MIN_GAP) gap = MIN_GAP; else if (gap > MAX_GAP) gap = MAX_GAP; return PAGE_ALIGN(STACK_TOP - gap - rnd); } void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) { unsigned long random_factor = 0UL; if (current->flags & PF_RANDOMIZE) random_factor = arch_mmap_rnd(); if (mmap_is_legacy(rlim_stack)) { mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; mm->get_unmapped_area = arch_get_unmapped_area; } else { mm->mmap_base = mmap_base(random_factor, rlim_stack); mm->get_unmapped_area = arch_get_unmapped_area_topdown; } } #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) { mm->mmap_base = TASK_UNMAPPED_BASE; mm->get_unmapped_area = arch_get_unmapped_area; } #endif /** * __account_locked_vm - account locked pages to an mm's locked_vm * @mm: mm to account against * @pages: number of pages to account * @inc: %true if @pages should be considered positive, %false if not * @task: task used to check RLIMIT_MEMLOCK * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped * * Assumes @task and @mm are valid (i.e. at least one reference on each), and * that mmap_lock is held as writer. * * Return: * * 0 on success * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. */ int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, struct task_struct *task, bool bypass_rlim) { unsigned long locked_vm, limit; int ret = 0; mmap_assert_write_locked(mm); locked_vm = mm->locked_vm; if (inc) { if (!bypass_rlim) { limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; if (locked_vm + pages > limit) ret = -ENOMEM; } if (!ret) mm->locked_vm = locked_vm + pages; } else { WARN_ON_ONCE(pages > locked_vm); mm->locked_vm = locked_vm - pages; } pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), ret ? " - exceeded" : ""); return ret; } EXPORT_SYMBOL_GPL(__account_locked_vm); /** * account_locked_vm - account locked pages to an mm's locked_vm * @mm: mm to account against, may be NULL * @pages: number of pages to account * @inc: %true if @pages should be considered positive, %false if not * * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). * * Return: * * 0 on success, or if mm is NULL * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. */ int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) { int ret; if (pages == 0 || !mm) return 0; mmap_write_lock(mm); ret = __account_locked_vm(mm, pages, inc, current, capable(CAP_IPC_LOCK)); mmap_write_unlock(mm); return ret; } EXPORT_SYMBOL_GPL(account_locked_vm); unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long pgoff) { unsigned long ret; struct mm_struct *mm = current->mm; unsigned long populate; LIST_HEAD(uf); ret = security_mmap_file(file, prot, flag); if (!ret) { if (mmap_write_lock_killable(mm)) return -EINTR; ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, &uf); mmap_write_unlock(mm); userfaultfd_unmap_complete(mm, &uf); if (populate) mm_populate(ret, populate); } return ret; } unsigned long vm_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long offset) { if (unlikely(offset + PAGE_ALIGN(len) < offset)) return -EINVAL; if (unlikely(offset_in_page(offset))) return -EINVAL; return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); } EXPORT_SYMBOL(vm_mmap); /** * kvmalloc_node - attempt to allocate physically contiguous memory, but upon * failure, fall back to non-contiguous (vmalloc) allocation. * @size: size of the request. * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. * @node: numa node to allocate from * * Uses kmalloc to get the memory but if the allocation fails then falls back * to the vmalloc allocator. Use kvfree for freeing the memory. * * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is * preferable to the vmalloc fallback, due to visible performance drawbacks. * * Return: pointer to the allocated memory of %NULL in case of failure */ void *kvmalloc_node(size_t size, gfp_t flags, int node) { gfp_t kmalloc_flags = flags; void *ret; /* * We want to attempt a large physically contiguous block first because * it is less likely to fragment multiple larger blocks and therefore * contribute to a long term fragmentation less than vmalloc fallback. * However make sure that larger requests are not too disruptive - no * OOM killer and no allocation failure warnings as we have a fallback. */ if (size > PAGE_SIZE) { kmalloc_flags |= __GFP_NOWARN; if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) kmalloc_flags |= __GFP_NORETRY; /* nofail semantic is implemented by the vmalloc fallback */ kmalloc_flags &= ~__GFP_NOFAIL; } ret = kmalloc_node(size, kmalloc_flags, node); /* * It doesn't really make sense to fallback to vmalloc for sub page * requests */ if (ret || size <= PAGE_SIZE) return ret; /* non-sleeping allocations are not supported by vmalloc */ if (!gfpflags_allow_blocking(flags)) return NULL; /* Don't even allow crazy sizes */ if (unlikely(size > INT_MAX)) { WARN_ON_ONCE(!(flags & __GFP_NOWARN)); return NULL; } /* * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, * since the callers already cannot assume anything * about the resulting pointer, and cannot play * protection games. */ return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, node, __builtin_return_address(0)); } EXPORT_SYMBOL(kvmalloc_node); /** * kvfree() - Free memory. * @addr: Pointer to allocated memory. * * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). * It is slightly more efficient to use kfree() or vfree() if you are certain * that you know which one to use. * * Context: Either preemptible task context or not-NMI interrupt. */ void kvfree(const void *addr) { if (is_vmalloc_addr(addr)) vfree(addr); else kfree(addr); } EXPORT_SYMBOL(kvfree); /** * kvfree_sensitive - Free a data object containing sensitive information. * @addr: address of the data object to be freed. * @len: length of the data object. * * Use the special memzero_explicit() function to clear the content of a * kvmalloc'ed object containing sensitive data to make sure that the * compiler won't optimize out the data clearing. */ void kvfree_sensitive(const void *addr, size_t len) { if (likely(!ZERO_OR_NULL_PTR(addr))) { memzero_explicit((void *)addr, len); kvfree(addr); } } EXPORT_SYMBOL(kvfree_sensitive); void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) { void *newp; if (oldsize >= newsize) return (void *)p; newp = kvmalloc(newsize, flags); if (!newp) return NULL; memcpy(newp, p, oldsize); kvfree(p); return newp; } EXPORT_SYMBOL(kvrealloc); /** * __vmalloc_array - allocate memory for a virtually contiguous array. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ void *__vmalloc_array(size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; return __vmalloc(bytes, flags); } EXPORT_SYMBOL(__vmalloc_array); /** * vmalloc_array - allocate memory for a virtually contiguous array. * @n: number of elements. * @size: element size. */ void *vmalloc_array(size_t n, size_t size) { return __vmalloc_array(n, size, GFP_KERNEL); } EXPORT_SYMBOL(vmalloc_array); /** * __vcalloc - allocate and zero memory for a virtually contiguous array. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ void *__vcalloc(size_t n, size_t size, gfp_t flags) { return __vmalloc_array(n, size, flags | __GFP_ZERO); } EXPORT_SYMBOL(__vcalloc); /** * vcalloc - allocate and zero memory for a virtually contiguous array. * @n: number of elements. * @size: element size. */ void *vcalloc(size_t n, size_t size) { return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO); } EXPORT_SYMBOL(vcalloc); /* Neutral page->mapping pointer to address_space or anon_vma or other */ void *page_rmapping(struct page *page) { return folio_raw_mapping(page_folio(page)); } struct anon_vma *folio_anon_vma(struct folio *folio) { unsigned long mapping = (unsigned long)folio->mapping; if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) return NULL; return (void *)(mapping - PAGE_MAPPING_ANON); } /** * folio_mapping - Find the mapping where this folio is stored. * @folio: The folio. * * For folios which are in the page cache, return the mapping that this * page belongs to. Folios in the swap cache return the swap mapping * this page is stored in (which is different from the mapping for the * swap file or swap device where the data is stored). * * You can call this for folios which aren't in the swap cache or page * cache and it will return NULL. */ struct address_space *folio_mapping(struct folio *folio) { struct address_space *mapping; /* This happens if someone calls flush_dcache_page on slab page */ if (unlikely(folio_test_slab(folio))) return NULL; if (unlikely(folio_test_swapcache(folio))) return swap_address_space(folio_swap_entry(folio)); mapping = folio->mapping; if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) return NULL; return mapping; } EXPORT_SYMBOL(folio_mapping); /** * folio_copy - Copy the contents of one folio to another. * @dst: Folio to copy to. * @src: Folio to copy from. * * The bytes in the folio represented by @src are copied to @dst. * Assumes the caller has validated that @dst is at least as large as @src. * Can be called in atomic context for order-0 folios, but if the folio is * larger, it may sleep. */ void folio_copy(struct folio *dst, struct folio *src) { long i = 0; long nr = folio_nr_pages(src); for (;;) { copy_highpage(folio_page(dst, i), folio_page(src, i)); if (++i == nr) break; cond_resched(); } } int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; int sysctl_overcommit_ratio __read_mostly = 50; unsigned long sysctl_overcommit_kbytes __read_mostly; int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_dointvec(table, write, buffer, lenp, ppos); if (ret == 0 && write) sysctl_overcommit_kbytes = 0; return ret; } static void sync_overcommit_as(struct work_struct *dummy) { percpu_counter_sync(&vm_committed_as); } int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ctl_table t; int new_policy = -1; int ret; /* * The deviation of sync_overcommit_as could be big with loose policy * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply * with the strict "NEVER", and to avoid possible race condition (even * though user usually won't too frequently do the switching to policy * OVERCOMMIT_NEVER), the switch is done in the following order: * 1. changing the batch * 2. sync percpu count on each CPU * 3. switch the policy */ if (write) { t = *table; t.data = &new_policy; ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); if (ret || new_policy == -1) return ret; mm_compute_batch(new_policy); if (new_policy == OVERCOMMIT_NEVER) schedule_on_each_cpu(sync_overcommit_as); sysctl_overcommit_memory = new_policy; } else { ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); } return ret; } int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write) sysctl_overcommit_ratio = 0; return ret; } /* * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used */ unsigned long vm_commit_limit(void) { unsigned long allowed; if (sysctl_overcommit_kbytes) allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); else allowed = ((totalram_pages() - hugetlb_total_pages()) * sysctl_overcommit_ratio / 100); allowed += total_swap_pages; return allowed; } /* * Make sure vm_committed_as in one cacheline and not cacheline shared with * other variables. It can be updated by several CPUs frequently. */ struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; /* * The global memory commitment made in the system can be a metric * that can be used to drive ballooning decisions when Linux is hosted * as a guest. On Hyper-V, the host implements a policy engine for dynamically * balancing memory across competing virtual machines that are hosted. * Several metrics drive this policy engine including the guest reported * memory commitment. * * The time cost of this is very low for small platforms, and for big * platform like a 2S/36C/72T Skylake server, in worst case where * vm_committed_as's spinlock is under severe contention, the time cost * could be about 30~40 microseconds. */ unsigned long vm_memory_committed(void) { return percpu_counter_sum_positive(&vm_committed_as); } EXPORT_SYMBOL_GPL(vm_memory_committed); /* * Check that a process has enough memory to allocate a new virtual * mapping. 0 means there is enough memory for the allocation to * succeed and -ENOMEM implies there is not. * * We currently support three overcommit policies, which are set via the * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst * * Strict overcommit modes added 2002 Feb 26 by Alan Cox. * Additional code 2002 Jul 20 by Robert Love. * * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. * * Note this is a helper function intended to be used by LSMs which * wish to use this logic. */ int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) { long allowed; vm_acct_memory(pages); /* * Sometimes we want to use more memory than we have */ if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) return 0; if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { if (pages > totalram_pages() + total_swap_pages) goto error; return 0; } allowed = vm_commit_limit(); /* * Reserve some for root */ if (!cap_sys_admin) allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); /* * Don't let a single process grow so big a user can't recover */ if (mm) { long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); allowed -= min_t(long, mm->total_vm / 32, reserve); } if (percpu_counter_read_positive(&vm_committed_as) < allowed) return 0; error: pr_warn_ratelimited("%s: pid: %d, comm: %s, no enough memory for the allocation\n", __func__, current->pid, current->comm); vm_unacct_memory(pages); return -ENOMEM; } /** * get_cmdline() - copy the cmdline value to a buffer. * @task: the task whose cmdline value to copy. * @buffer: the buffer to copy to. * @buflen: the length of the buffer. Larger cmdline values are truncated * to this length. * * Return: the size of the cmdline field copied. Note that the copy does * not guarantee an ending NULL byte. */ int get_cmdline(struct task_struct *task, char *buffer, int buflen) { int res = 0; unsigned int len; struct mm_struct *mm = get_task_mm(task); unsigned long arg_start, arg_end, env_start, env_end; if (!mm) goto out; if (!mm->arg_end) goto out_mm; /* Shh! No looking before we're done */ spin_lock(&mm->arg_lock); arg_start = mm->arg_start; arg_end = mm->arg_end; env_start = mm->env_start; env_end = mm->env_end; spin_unlock(&mm->arg_lock); len = arg_end - arg_start; if (len > buflen) len = buflen; res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); /* * If the nul at the end of args has been overwritten, then * assume application is using setproctitle(3). */ if (res > 0 && buffer[res-1] != '\0' && len < buflen) { len = strnlen(buffer, res); if (len < res) { res = len; } else { len = env_end - env_start; if (len > buflen - res) len = buflen - res; res += access_process_vm(task, env_start, buffer+res, len, FOLL_FORCE); res = strnlen(buffer, res); } } out_mm: mmput(mm); out: return res; } int __weak memcmp_pages(struct page *page1, struct page *page2) { char *addr1, *addr2; int ret; addr1 = kmap_atomic(page1); addr2 = kmap_atomic(page2); ret = memcmp(addr1, addr2, PAGE_SIZE); kunmap_atomic(addr2); kunmap_atomic(addr1); return ret; } #ifdef CONFIG_PRINTK /** * mem_dump_obj - Print available provenance information * @object: object for which to find provenance information. * * This function uses pr_cont(), so that the caller is expected to have * printed out whatever preamble is appropriate. The provenance information * depends on the type of object and on how much debugging is enabled. * For example, for a slab-cache object, the slab name is printed, and, * if available, the return address and stack trace from the allocation * and last free path of that object. */ void mem_dump_obj(void *object) { const char *type; if (kmem_valid_obj(object)) { kmem_dump_obj(object); return; } if (vmalloc_dump_obj(object)) return; if (virt_addr_valid(object)) type = "non-slab/vmalloc memory"; else if (object == NULL) type = "NULL pointer"; else if (object == ZERO_SIZE_PTR) type = "zero-size pointer"; else type = "non-paged memory"; pr_cont(" %s\n", type); } EXPORT_SYMBOL_GPL(mem_dump_obj); #endif /* * A driver might set a page logically offline -- PageOffline() -- and * turn the page inaccessible in the hypervisor; after that, access to page * content can be fatal. * * Some special PFN walkers -- i.e., /proc/kcore -- read content of random * pages after checking PageOffline(); however, these PFN walkers can race * with drivers that set PageOffline(). * * page_offline_freeze()/page_offline_thaw() allows for a subsystem to * synchronize with such drivers, achieving that a page cannot be set * PageOffline() while frozen. * * page_offline_begin()/page_offline_end() is used by drivers that care about * such races when setting a page PageOffline(). */ static DECLARE_RWSEM(page_offline_rwsem); void page_offline_freeze(void) { down_read(&page_offline_rwsem); } void page_offline_thaw(void) { up_read(&page_offline_rwsem); } void page_offline_begin(void) { down_write(&page_offline_rwsem); } EXPORT_SYMBOL(page_offline_begin); void page_offline_end(void) { up_write(&page_offline_rwsem); } EXPORT_SYMBOL(page_offline_end); #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO void flush_dcache_folio(struct folio *folio) { long i, nr = folio_nr_pages(folio); for (i = 0; i < nr; i++) flush_dcache_page(folio_page(folio, i)); } EXPORT_SYMBOL(flush_dcache_folio); #endif