/* * linux/mm/page_alloc.c * * Manages the free list, the system allocates free pages here. * Note that kmalloc() lives in slab.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * Swap reorganised 29.12.95, Stephen Tweedie * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) */ #include <linux/stddef.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/interrupt.h> #include <linux/pagemap.h> #include <linux/bootmem.h> #include <linux/compiler.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/suspend.h> #include <linux/pagevec.h> #include <linux/blkdev.h> #include <linux/slab.h> #include <linux/notifier.h> #include <linux/topology.h> #include <linux/sysctl.h> #include <linux/cpu.h> #include <linux/cpuset.h> #include <linux/memory_hotplug.h> #include <linux/nodemask.h> #include <linux/vmalloc.h> #include <linux/mempolicy.h> #include <linux/stop_machine.h> #include <linux/sort.h> #include <linux/pfn.h> #include <linux/backing-dev.h> #include <linux/fault-inject.h> #include <asm/tlbflush.h> #include <asm/div64.h> #include "internal.h" /* * Array of node states. */ nodemask_t node_states[NR_NODE_STATES] __read_mostly = { [N_POSSIBLE] = NODE_MASK_ALL, [N_ONLINE] = { { [0] = 1UL } }, #ifndef CONFIG_NUMA [N_NORMAL_MEMORY] = { { [0] = 1UL } }, #ifdef CONFIG_HIGHMEM [N_HIGH_MEMORY] = { { [0] = 1UL } }, #endif [N_CPU] = { { [0] = 1UL } }, #endif /* NUMA */ }; EXPORT_SYMBOL(node_states); unsigned long totalram_pages __read_mostly; unsigned long totalreserve_pages __read_mostly; long nr_swap_pages; int percpu_pagelist_fraction; static void __free_pages_ok(struct page *page, unsigned int order); /* * results with 256, 32 in the lowmem_reserve sysctl: * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) * 1G machine -> (16M dma, 784M normal, 224M high) * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA * * TBD: should special case ZONE_DMA32 machines here - in those we normally * don't need any ZONE_NORMAL reservation */ int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { #ifdef CONFIG_ZONE_DMA 256, #endif #ifdef CONFIG_ZONE_DMA32 256, #endif #ifdef CONFIG_HIGHMEM 32, #endif 32, }; EXPORT_SYMBOL(totalram_pages); static char * const zone_names[MAX_NR_ZONES] = { #ifdef CONFIG_ZONE_DMA "DMA", #endif #ifdef CONFIG_ZONE_DMA32 "DMA32", #endif "Normal", #ifdef CONFIG_HIGHMEM "HighMem", #endif "Movable", }; int min_free_kbytes = 1024; unsigned long __meminitdata nr_kernel_pages; unsigned long __meminitdata nr_all_pages; static unsigned long __meminitdata dma_reserve; #ifdef CONFIG_ARCH_POPULATES_NODE_MAP /* * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct * ranges of memory (RAM) that may be registered with add_active_range(). * Ranges passed to add_active_range() will be merged if possible * so the number of times add_active_range() can be called is * related to the number of nodes and the number of holes */ #ifdef CONFIG_MAX_ACTIVE_REGIONS /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS #else #if MAX_NUMNODES >= 32 /* If there can be many nodes, allow up to 50 holes per node */ #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) #else /* By default, allow up to 256 distinct regions */ #define MAX_ACTIVE_REGIONS 256 #endif #endif static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; static int __meminitdata nr_nodemap_entries; static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ unsigned long __initdata required_kernelcore; unsigned long __initdata required_movablecore; unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ int movable_zone; EXPORT_SYMBOL(movable_zone); #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ #if MAX_NUMNODES > 1 int nr_node_ids __read_mostly = MAX_NUMNODES; EXPORT_SYMBOL(nr_node_ids); #endif #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY int page_group_by_mobility_disabled __read_mostly; static inline int get_pageblock_migratetype(struct page *page) { if (unlikely(page_group_by_mobility_disabled)) return MIGRATE_UNMOVABLE; return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); } static void set_pageblock_migratetype(struct page *page, int migratetype) { set_pageblock_flags_group(page, (unsigned long)migratetype, PB_migrate, PB_migrate_end); } static inline int allocflags_to_migratetype(gfp_t gfp_flags, int order) { WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); if (unlikely(page_group_by_mobility_disabled)) return MIGRATE_UNMOVABLE; /* Cluster high-order atomic allocations together */ if (unlikely(order > 0) && (!(gfp_flags & __GFP_WAIT) || in_interrupt())) return MIGRATE_HIGHATOMIC; /* Cluster based on mobility */ return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) | ((gfp_flags & __GFP_RECLAIMABLE) != 0); } #else static inline int get_pageblock_migratetype(struct page *page) { return MIGRATE_UNMOVABLE; } static void set_pageblock_migratetype(struct page *page, int migratetype) { } static inline int allocflags_to_migratetype(gfp_t gfp_flags, int order) { return MIGRATE_UNMOVABLE; } #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */ #ifdef CONFIG_DEBUG_VM static int page_outside_zone_boundaries(struct zone *zone, struct page *page) { int ret = 0; unsigned seq; unsigned long pfn = page_to_pfn(page); do { seq = zone_span_seqbegin(zone); if (pfn >= zone->zone_start_pfn + zone->spanned_pages) ret = 1; else if (pfn < zone->zone_start_pfn) ret = 1; } while (zone_span_seqretry(zone, seq)); return ret; } static int page_is_consistent(struct zone *zone, struct page *page) { if (!pfn_valid_within(page_to_pfn(page))) return 0; if (zone != page_zone(page)) return 0; return 1; } /* * Temporary debugging check for pages not lying within a given zone. */ static int bad_range(struct zone *zone, struct page *page) { if (page_outside_zone_boundaries(zone, page)) return 1; if (!page_is_consistent(zone, page)) return 1; return 0; } #else static inline int bad_range(struct zone *zone, struct page *page) { return 0; } #endif static void bad_page(struct page *page) { printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" KERN_EMERG "Trying to fix it up, but a reboot is needed\n" KERN_EMERG "Backtrace:\n", current->comm, page, (int)(2*sizeof(unsigned long)), (unsigned long)page->flags, page->mapping, page_mapcount(page), page_count(page)); dump_stack(); page->flags &= ~(1 << PG_lru | 1 << PG_private | 1 << PG_locked | 1 << PG_active | 1 << PG_dirty | 1 << PG_reclaim | 1 << PG_slab | 1 << PG_swapcache | 1 << PG_writeback | 1 << PG_buddy ); set_page_count(page, 0); reset_page_mapcount(page); page->mapping = NULL; add_taint(TAINT_BAD_PAGE); } /* * Higher-order pages are called "compound pages". They are structured thusly: * * The first PAGE_SIZE page is called the "head page". * * The remaining PAGE_SIZE pages are called "tail pages". * * All pages have PG_compound set. All pages have their ->private pointing at * the head page (even the head page has this). * * The first tail page's ->lru.next holds the address of the compound page's * put_page() function. Its ->lru.prev holds the order of allocation. * This usage means that zero-order pages may not be compound. */ static void free_compound_page(struct page *page) { __free_pages_ok(page, compound_order(page)); } static void prep_compound_page(struct page *page, unsigned long order) { int i; int nr_pages = 1 << order; set_compound_page_dtor(page, free_compound_page); set_compound_order(page, order); __SetPageHead(page); for (i = 1; i < nr_pages; i++) { struct page *p = page + i; __SetPageTail(p); p->first_page = page; } } static void destroy_compound_page(struct page *page, unsigned long order) { int i; int nr_pages = 1 << order; if (unlikely(compound_order(page) != order)) bad_page(page); if (unlikely(!PageHead(page))) bad_page(page); __ClearPageHead(page); for (i = 1; i < nr_pages; i++) { struct page *p = page + i; if (unlikely(!PageTail(p) | (p->first_page != page))) bad_page(page); __ClearPageTail(p); } } static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) { int i; VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); /* * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO * and __GFP_HIGHMEM from hard or soft interrupt context. */ VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); for (i = 0; i < (1 << order); i++) clear_highpage(page + i); } /* * function for dealing with page's order in buddy system. * zone->lock is already acquired when we use these. * So, we don't need atomic page->flags operations here. */ static inline unsigned long page_order(struct page *page) { return page_private(page); } static inline void set_page_order(struct page *page, int order) { set_page_private(page, order); __SetPageBuddy(page); } static inline void rmv_page_order(struct page *page) { __ClearPageBuddy(page); set_page_private(page, 0); } /* * Locate the struct page for both the matching buddy in our * pair (buddy1) and the combined O(n+1) page they form (page). * * 1) Any buddy B1 will have an order O twin B2 which satisfies * the following equation: * B2 = B1 ^ (1 << O) * For example, if the starting buddy (buddy2) is #8 its order * 1 buddy is #10: * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 * * 2) Any buddy B will have an order O+1 parent P which * satisfies the following equation: * P = B & ~(1 << O) * * Assumption: *_mem_map is contiguous at least up to MAX_ORDER */ static inline struct page * __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) { unsigned long buddy_idx = page_idx ^ (1 << order); return page + (buddy_idx - page_idx); } static inline unsigned long __find_combined_index(unsigned long page_idx, unsigned int order) { return (page_idx & ~(1 << order)); } /* * This function checks whether a page is free && is the buddy * we can do coalesce a page and its buddy if * (a) the buddy is not in a hole && * (b) the buddy is in the buddy system && * (c) a page and its buddy have the same order && * (d) a page and its buddy are in the same zone. * * For recording whether a page is in the buddy system, we use PG_buddy. * Setting, clearing, and testing PG_buddy is serialized by zone->lock. * * For recording page's order, we use page_private(page). */ static inline int page_is_buddy(struct page *page, struct page *buddy, int order) { if (!pfn_valid_within(page_to_pfn(buddy))) return 0; if (page_zone_id(page) != page_zone_id(buddy)) return 0; if (PageBuddy(buddy) && page_order(buddy) == order) { BUG_ON(page_count(buddy) != 0); return 1; } return 0; } /* * Freeing function for a buddy system allocator. * * The concept of a buddy system is to maintain direct-mapped table * (containing bit values) for memory blocks of various "orders". * The bottom level table contains the map for the smallest allocatable * units of memory (here, pages), and each level above it describes * pairs of units from the levels below, hence, "buddies". * At a high level, all that happens here is marking the table entry * at the bottom level available, and propagating the changes upward * as necessary, plus some accounting needed to play nicely with other * parts of the VM system. * At each level, we keep a list of pages, which are heads of continuous * free pages of length of (1 << order) and marked with PG_buddy. Page's * order is recorded in page_private(page) field. * So when we are allocating or freeing one, we can derive the state of the * other. That is, if we allocate a small block, and both were * free, the remainder of the region must be split into blocks. * If a block is freed, and its buddy is also free, then this * triggers coalescing into a block of larger size. * * -- wli */ static inline void __free_one_page(struct page *page, struct zone *zone, unsigned int order) { unsigned long page_idx; int order_size = 1 << order; int migratetype = get_pageblock_migratetype(page); if (unlikely(PageCompound(page))) destroy_compound_page(page, order); page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); VM_BUG_ON(page_idx & (order_size - 1)); VM_BUG_ON(bad_range(zone, page)); __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); while (order < MAX_ORDER-1) { unsigned long combined_idx; struct page *buddy; buddy = __page_find_buddy(page, page_idx, order); if (!page_is_buddy(page, buddy, order)) break; /* Move the buddy up one level. */ list_del(&buddy->lru); zone->free_area[order].nr_free--; rmv_page_order(buddy); combined_idx = __find_combined_index(page_idx, order); page = page + (combined_idx - page_idx); page_idx = combined_idx; order++; } set_page_order(page, order); list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); zone->free_area[order].nr_free++; } static inline int free_pages_check(struct page *page) { if (unlikely(page_mapcount(page) | (page->mapping != NULL) | (page_count(page) != 0) | (page->flags & ( 1 << PG_lru | 1 << PG_private | 1 << PG_locked | 1 << PG_active | 1 << PG_slab | 1 << PG_swapcache | 1 << PG_writeback | 1 << PG_reserved | 1 << PG_buddy )))) bad_page(page); if (PageDirty(page)) __ClearPageDirty(page); /* * For now, we report if PG_reserved was found set, but do not * clear it, and do not free the page. But we shall soon need * to do more, for when the ZERO_PAGE count wraps negative. */ return PageReserved(page); } /* * Frees a list of pages. * Assumes all pages on list are in same zone, and of same order. * count is the number of pages to free. * * If the zone was previously in an "all pages pinned" state then look to * see if this freeing clears that state. * * And clear the zone's pages_scanned counter, to hold off the "all pages are * pinned" detection logic. */ static void free_pages_bulk(struct zone *zone, int count, struct list_head *list, int order) { spin_lock(&zone->lock); zone->all_unreclaimable = 0; zone->pages_scanned = 0; while (count--) { struct page *page; VM_BUG_ON(list_empty(list)); page = list_entry(list->prev, struct page, lru); /* have to delete it as __free_one_page list manipulates */ list_del(&page->lru); __free_one_page(page, zone, order); } spin_unlock(&zone->lock); } static void free_one_page(struct zone *zone, struct page *page, int order) { spin_lock(&zone->lock); zone->all_unreclaimable = 0; zone->pages_scanned = 0; __free_one_page(page, zone, order); spin_unlock(&zone->lock); } static void __free_pages_ok(struct page *page, unsigned int order) { unsigned long flags; int i; int reserved = 0; for (i = 0 ; i < (1 << order) ; ++i) reserved += free_pages_check(page + i); if (reserved) return; if (!PageHighMem(page)) debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); arch_free_page(page, order); kernel_map_pages(page, 1 << order, 0); local_irq_save(flags); __count_vm_events(PGFREE, 1 << order); free_one_page(page_zone(page), page, order); local_irq_restore(flags); } /* * permit the bootmem allocator to evade page validation on high-order frees */ void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) { if (order == 0) { __ClearPageReserved(page); set_page_count(page, 0); set_page_refcounted(page); __free_page(page); } else { int loop; prefetchw(page); for (loop = 0; loop < BITS_PER_LONG; loop++) { struct page *p = &page[loop]; if (loop + 1 < BITS_PER_LONG) prefetchw(p + 1); __ClearPageReserved(p); set_page_count(p, 0); } set_page_refcounted(page); __free_pages(page, order); } } /* * The order of subdivision here is critical for the IO subsystem. * Please do not alter this order without good reasons and regression * testing. Specifically, as large blocks of memory are subdivided, * the order in which smaller blocks are delivered depends on the order * they're subdivided in this function. This is the primary factor * influencing the order in which pages are delivered to the IO * subsystem according to empirical testing, and this is also justified * by considering the behavior of a buddy system containing a single * large block of memory acted on by a series of small allocations. * This behavior is a critical factor in sglist merging's success. * * -- wli */ static inline void expand(struct zone *zone, struct page *page, int low, int high, struct free_area *area, int migratetype) { unsigned long size = 1 << high; while (high > low) { area--; high--; size >>= 1; VM_BUG_ON(bad_range(zone, &page[size])); list_add(&page[size].lru, &area->free_list[migratetype]); area->nr_free++; set_page_order(&page[size], high); } } /* * This page is about to be returned from the page allocator */ static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) { if (unlikely(page_mapcount(page) | (page->mapping != NULL) | (page_count(page) != 0) | (page->flags & ( 1 << PG_lru | 1 << PG_private | 1 << PG_locked | 1 << PG_active | 1 << PG_dirty | 1 << PG_slab | 1 << PG_swapcache | 1 << PG_writeback | 1 << PG_reserved | 1 << PG_buddy )))) bad_page(page); /* * For now, we report if PG_reserved was found set, but do not * clear it, and do not allocate the page: as a safety net. */ if (PageReserved(page)) return 1; page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead | 1 << PG_referenced | 1 << PG_arch_1 | 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk); set_page_private(page, 0); set_page_refcounted(page); arch_alloc_page(page, order); kernel_map_pages(page, 1 << order, 1); if (gfp_flags & __GFP_ZERO) prep_zero_page(page, order, gfp_flags); if (order && (gfp_flags & __GFP_COMP)) prep_compound_page(page, order); return 0; } #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY /* * This array describes the order lists are fallen back to when * the free lists for the desirable migrate type are depleted */ static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_HIGHATOMIC }, [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_HIGHATOMIC }, [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,MIGRATE_HIGHATOMIC }, [MIGRATE_HIGHATOMIC] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,MIGRATE_MOVABLE}, }; /* * Move the free pages in a range to the free lists of the requested type. * Note that start_page and end_pages are not aligned in a MAX_ORDER_NR_PAGES * boundary. If alignment is required, use move_freepages_block() */ int move_freepages(struct zone *zone, struct page *start_page, struct page *end_page, int migratetype) { struct page *page; unsigned long order; int blocks_moved = 0; #ifndef CONFIG_HOLES_IN_ZONE /* * page_zone is not safe to call in this context when * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant * anyway as we check zone boundaries in move_freepages_block(). * Remove at a later date when no bug reports exist related to * CONFIG_PAGE_GROUP_BY_MOBILITY */ BUG_ON(page_zone(start_page) != page_zone(end_page)); #endif for (page = start_page; page <= end_page;) { if (!pfn_valid_within(page_to_pfn(page))) { page++; continue; } if (!PageBuddy(page)) { page++; continue; } order = page_order(page); list_del(&page->lru); list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); page += 1 << order; blocks_moved++; } return blocks_moved; } int move_freepages_block(struct zone *zone, struct page *page, int migratetype) { unsigned long start_pfn, end_pfn; struct page *start_page, *end_page; start_pfn = page_to_pfn(page); start_pfn = start_pfn & ~(MAX_ORDER_NR_PAGES-1); start_page = pfn_to_page(start_pfn); end_page = start_page + MAX_ORDER_NR_PAGES - 1; end_pfn = start_pfn + MAX_ORDER_NR_PAGES - 1; /* Do not cross zone boundaries */ if (start_pfn < zone->zone_start_pfn) start_page = page; if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) return 0; return move_freepages(zone, start_page, end_page, migratetype); } /* Return the page with the lowest PFN in the list */ static struct page *min_page(struct list_head *list) { unsigned long min_pfn = -1UL; struct page *min_page = NULL, *page;; list_for_each_entry(page, list, lru) { unsigned long pfn = page_to_pfn(page); if (pfn < min_pfn) { min_pfn = pfn; min_page = page; } } return min_page; } /* Remove an element from the buddy allocator from the fallback list */ static struct page *__rmqueue_fallback(struct zone *zone, int order, int start_migratetype) { struct free_area * area; int current_order; struct page *page; int migratetype, i; int nonatomic_fallback_atomic = 0; retry: /* Find the largest possible block of pages in the other list */ for (current_order = MAX_ORDER-1; current_order >= order; --current_order) { for (i = 0; i < MIGRATE_TYPES - 1; i++) { migratetype = fallbacks[start_migratetype][i]; /* * Make it hard to fallback to blocks used for * high-order atomic allocations */ if (migratetype == MIGRATE_HIGHATOMIC && start_migratetype != MIGRATE_UNMOVABLE && !nonatomic_fallback_atomic) continue; area = &(zone->free_area[current_order]); if (list_empty(&area->free_list[migratetype])) continue; /* Bias kernel allocations towards low pfns */ page = list_entry(area->free_list[migratetype].next, struct page, lru); if (unlikely(start_migratetype != MIGRATE_MOVABLE)) page = min_page(&area->free_list[migratetype]); area->nr_free--; /* * If breaking a large block of pages, move all free * pages to the preferred allocation list */ if (unlikely(current_order >= MAX_ORDER / 2)) { migratetype = start_migratetype; move_freepages_block(zone, page, migratetype); } /* Remove the page from the freelists */ list_del(&page->lru); rmv_page_order(page); __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); if (current_order == MAX_ORDER - 1) set_pageblock_migratetype(page, start_migratetype); expand(zone, page, order, current_order, area, migratetype); return page; } } /* Allow fallback to high-order atomic blocks if memory is that low */ if (!nonatomic_fallback_atomic) { nonatomic_fallback_atomic = 1; goto retry; } return NULL; } #else static struct page *__rmqueue_fallback(struct zone *zone, int order, int start_migratetype) { return NULL; } #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */ /* * Do the hard work of removing an element from the buddy allocator. * Call me with the zone->lock already held. */ static struct page *__rmqueue(struct zone *zone, unsigned int order, int migratetype) { struct free_area * area; unsigned int current_order; struct page *page; /* Find a page of the appropriate size in the preferred list */ for (current_order = order; current_order < MAX_ORDER; ++current_order) { area = &(zone->free_area[current_order]); if (list_empty(&area->free_list[migratetype])) continue; page = list_entry(area->free_list[migratetype].next, struct page, lru); list_del(&page->lru); rmv_page_order(page); area->nr_free--; __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); expand(zone, page, order, current_order, area, migratetype); goto got_page; } page = __rmqueue_fallback(zone, order, migratetype); got_page: return page; } /* * Obtain a specified number of elements from the buddy allocator, all under * a single hold of the lock, for efficiency. Add them to the supplied list. * Returns the number of new pages which were placed at *list. */ static int rmqueue_bulk(struct zone *zone, unsigned int order, unsigned long count, struct list_head *list, int migratetype) { int i; spin_lock(&zone->lock); for (i = 0; i < count; ++i) { struct page *page = __rmqueue(zone, order, migratetype); if (unlikely(page == NULL)) break; list_add(&page->lru, list); set_page_private(page, migratetype); } spin_unlock(&zone->lock); return i; } #ifdef CONFIG_NUMA /* * Called from the vmstat counter updater to drain pagesets of this * currently executing processor on remote nodes after they have * expired. * * Note that this function must be called with the thread pinned to * a single processor. */ void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) { unsigned long flags; int to_drain; local_irq_save(flags); if (pcp->count >= pcp->batch) to_drain = pcp->batch; else to_drain = pcp->count; free_pages_bulk(zone, to_drain, &pcp->list, 0); pcp->count -= to_drain; local_irq_restore(flags); } #endif static void __drain_pages(unsigned int cpu) { unsigned long flags; struct zone *zone; int i; for_each_zone(zone) { struct per_cpu_pageset *pset; if (!populated_zone(zone)) continue; pset = zone_pcp(zone, cpu); for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { struct per_cpu_pages *pcp; pcp = &pset->pcp[i]; local_irq_save(flags); free_pages_bulk(zone, pcp->count, &pcp->list, 0); pcp->count = 0; local_irq_restore(flags); } } } #ifdef CONFIG_HIBERNATION void mark_free_pages(struct zone *zone) { unsigned long pfn, max_zone_pfn; unsigned long flags; int order, t; struct list_head *curr; if (!zone->spanned_pages) return; spin_lock_irqsave(&zone->lock, flags); max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); if (!swsusp_page_is_forbidden(page)) swsusp_unset_page_free(page); } for_each_migratetype_order(order, t) { list_for_each(curr, &zone->free_area[order].free_list[t]) { unsigned long i; pfn = page_to_pfn(list_entry(curr, struct page, lru)); for (i = 0; i < (1UL << order); i++) swsusp_set_page_free(pfn_to_page(pfn + i)); } } spin_unlock_irqrestore(&zone->lock, flags); } #endif /* CONFIG_PM */ #if defined(CONFIG_HIBERNATION) || defined(CONFIG_PAGE_GROUP_BY_MOBILITY) /* * Spill all of this CPU's per-cpu pages back into the buddy allocator. */ void drain_local_pages(void) { unsigned long flags; local_irq_save(flags); __drain_pages(smp_processor_id()); local_irq_restore(flags); } void smp_drain_local_pages(void *arg) { drain_local_pages(); } /* * Spill all the per-cpu pages from all CPUs back into the buddy allocator */ void drain_all_local_pages(void) { unsigned long flags; local_irq_save(flags); __drain_pages(smp_processor_id()); local_irq_restore(flags); smp_call_function(smp_drain_local_pages, NULL, 0, 1); } #else void drain_all_local_pages(void) {} #endif /* CONFIG_HIBERNATION || CONFIG_PAGE_GROUP_BY_MOBILITY */ /* * Free a 0-order page */ static void fastcall free_hot_cold_page(struct page *page, int cold) { struct zone *zone = page_zone(page); struct per_cpu_pages *pcp; unsigned long flags; if (PageAnon(page)) page->mapping = NULL; if (free_pages_check(page)) return; if (!PageHighMem(page)) debug_check_no_locks_freed(page_address(page), PAGE_SIZE); arch_free_page(page, 0); kernel_map_pages(page, 1, 0); pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; local_irq_save(flags); __count_vm_event(PGFREE); list_add(&page->lru, &pcp->list); set_page_private(page, get_pageblock_migratetype(page)); pcp->count++; if (pcp->count >= pcp->high) { free_pages_bulk(zone, pcp->batch, &pcp->list, 0); pcp->count -= pcp->batch; } local_irq_restore(flags); put_cpu(); } void fastcall free_hot_page(struct page *page) { free_hot_cold_page(page, 0); } void fastcall free_cold_page(struct page *page) { free_hot_cold_page(page, 1); } /* * split_page takes a non-compound higher-order page, and splits it into * n (1<<order) sub-pages: page[0..n] * Each sub-page must be freed individually. * * Note: this is probably too low level an operation for use in drivers. * Please consult with lkml before using this in your driver. */ void split_page(struct page *page, unsigned int order) { int i; VM_BUG_ON(PageCompound(page)); VM_BUG_ON(!page_count(page)); for (i = 1; i < (1 << order); i++) set_page_refcounted(page + i); } /* * Really, prep_compound_page() should be called from __rmqueue_bulk(). But * we cheat by calling it from here, in the order > 0 path. Saves a branch * or two. */ static struct page *buffered_rmqueue(struct zonelist *zonelist, struct zone *zone, int order, gfp_t gfp_flags) { unsigned long flags; struct page *page; int cold = !!(gfp_flags & __GFP_COLD); int cpu; int migratetype = allocflags_to_migratetype(gfp_flags, order); again: cpu = get_cpu(); if (likely(order == 0)) { struct per_cpu_pages *pcp; pcp = &zone_pcp(zone, cpu)->pcp[cold]; local_irq_save(flags); if (!pcp->count) { pcp->count = rmqueue_bulk(zone, 0, pcp->batch, &pcp->list, migratetype); if (unlikely(!pcp->count)) goto failed; } #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY /* Find a page of the appropriate migrate type */ list_for_each_entry(page, &pcp->list, lru) if (page_private(page) == migratetype) break; /* Allocate more to the pcp list if necessary */ if (unlikely(&page->lru == &pcp->list)) { pcp->count += rmqueue_bulk(zone, 0, pcp->batch, &pcp->list, migratetype); page = list_entry(pcp->list.next, struct page, lru); } #else page = list_entry(pcp->list.next, struct page, lru); #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */ list_del(&page->lru); pcp->count--; } else { spin_lock_irqsave(&zone->lock, flags); page = __rmqueue(zone, order, migratetype); spin_unlock(&zone->lock); if (!page) goto failed; } __count_zone_vm_events(PGALLOC, zone, 1 << order); zone_statistics(zonelist, zone); local_irq_restore(flags); put_cpu(); VM_BUG_ON(bad_range(zone, page)); if (prep_new_page(page, order, gfp_flags)) goto again; return page; failed: local_irq_restore(flags); put_cpu(); return NULL; } #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ #define ALLOC_HARDER 0x10 /* try to alloc harder */ #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ #ifdef CONFIG_FAIL_PAGE_ALLOC static struct fail_page_alloc_attr { struct fault_attr attr; u32 ignore_gfp_highmem; u32 ignore_gfp_wait; u32 min_order; #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS struct dentry *ignore_gfp_highmem_file; struct dentry *ignore_gfp_wait_file; struct dentry *min_order_file; #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ } fail_page_alloc = { .attr = FAULT_ATTR_INITIALIZER, .ignore_gfp_wait = 1, .ignore_gfp_highmem = 1, .min_order = 1, }; static int __init setup_fail_page_alloc(char *str) { return setup_fault_attr(&fail_page_alloc.attr, str); } __setup("fail_page_alloc=", setup_fail_page_alloc); static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) { if (order < fail_page_alloc.min_order) return 0; if (gfp_mask & __GFP_NOFAIL) return 0; if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) return 0; if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) return 0; return should_fail(&fail_page_alloc.attr, 1 << order); } #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS static int __init fail_page_alloc_debugfs(void) { mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; struct dentry *dir; int err; err = init_fault_attr_dentries(&fail_page_alloc.attr, "fail_page_alloc"); if (err) return err; dir = fail_page_alloc.attr.dentries.dir; fail_page_alloc.ignore_gfp_wait_file = debugfs_create_bool("ignore-gfp-wait", mode, dir, &fail_page_alloc.ignore_gfp_wait); fail_page_alloc.ignore_gfp_highmem_file = debugfs_create_bool("ignore-gfp-highmem", mode, dir, &fail_page_alloc.ignore_gfp_highmem); fail_page_alloc.min_order_file = debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); if (!fail_page_alloc.ignore_gfp_wait_file || !fail_page_alloc.ignore_gfp_highmem_file || !fail_page_alloc.min_order_file) { err = -ENOMEM; debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); debugfs_remove(fail_page_alloc.min_order_file); cleanup_fault_attr_dentries(&fail_page_alloc.attr); } return err; } late_initcall(fail_page_alloc_debugfs); #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ #else /* CONFIG_FAIL_PAGE_ALLOC */ static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) { return 0; } #endif /* CONFIG_FAIL_PAGE_ALLOC */ /* * Return 1 if free pages are above 'mark'. This takes into account the order * of the allocation. */ int zone_watermark_ok(struct zone *z, int order, unsigned long mark, int classzone_idx, int alloc_flags) { /* free_pages my go negative - that's OK */ long min = mark; long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; int o; if (alloc_flags & ALLOC_HIGH) min -= min / 2; if (alloc_flags & ALLOC_HARDER) min -= min / 4; if (free_pages <= min + z->lowmem_reserve[classzone_idx]) return 0; for (o = 0; o < order; o++) { /* At the next order, this order's pages become unavailable */ free_pages -= z->free_area[o].nr_free << o; /* Require fewer higher order pages to be free */ min >>= 1; if (free_pages <= min) return 0; } return 1; } #ifdef CONFIG_NUMA /* * zlc_setup - Setup for "zonelist cache". Uses cached zone data to * skip over zones that are not allowed by the cpuset, or that have * been recently (in last second) found to be nearly full. See further * comments in mmzone.h. Reduces cache footprint of zonelist scans * that have to skip over alot of full or unallowed zones. * * If the zonelist cache is present in the passed in zonelist, then * returns a pointer to the allowed node mask (either the current * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) * * If the zonelist cache is not available for this zonelist, does * nothing and returns NULL. * * If the fullzones BITMAP in the zonelist cache is stale (more than * a second since last zap'd) then we zap it out (clear its bits.) * * We hold off even calling zlc_setup, until after we've checked the * first zone in the zonelist, on the theory that most allocations will * be satisfied from that first zone, so best to examine that zone as * quickly as we can. */ static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) { struct zonelist_cache *zlc; /* cached zonelist speedup info */ nodemask_t *allowednodes; /* zonelist_cache approximation */ zlc = zonelist->zlcache_ptr; if (!zlc) return NULL; if (jiffies - zlc->last_full_zap > 1 * HZ) { bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); zlc->last_full_zap = jiffies; } allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? &cpuset_current_mems_allowed : &node_states[N_HIGH_MEMORY]; return allowednodes; } /* * Given 'z' scanning a zonelist, run a couple of quick checks to see * if it is worth looking at further for free memory: * 1) Check that the zone isn't thought to be full (doesn't have its * bit set in the zonelist_cache fullzones BITMAP). * 2) Check that the zones node (obtained from the zonelist_cache * z_to_n[] mapping) is allowed in the passed in allowednodes mask. * Return true (non-zero) if zone is worth looking at further, or * else return false (zero) if it is not. * * This check -ignores- the distinction between various watermarks, * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is * found to be full for any variation of these watermarks, it will * be considered full for up to one second by all requests, unless * we are so low on memory on all allowed nodes that we are forced * into the second scan of the zonelist. * * In the second scan we ignore this zonelist cache and exactly * apply the watermarks to all zones, even it is slower to do so. * We are low on memory in the second scan, and should leave no stone * unturned looking for a free page. */ static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, nodemask_t *allowednodes) { struct zonelist_cache *zlc; /* cached zonelist speedup info */ int i; /* index of *z in zonelist zones */ int n; /* node that zone *z is on */ zlc = zonelist->zlcache_ptr; if (!zlc) return 1; i = z - zonelist->zones; n = zlc->z_to_n[i]; /* This zone is worth trying if it is allowed but not full */ return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); } /* * Given 'z' scanning a zonelist, set the corresponding bit in * zlc->fullzones, so that subsequent attempts to allocate a page * from that zone don't waste time re-examining it. */ static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) { struct zonelist_cache *zlc; /* cached zonelist speedup info */ int i; /* index of *z in zonelist zones */ zlc = zonelist->zlcache_ptr; if (!zlc) return; i = z - zonelist->zones; set_bit(i, zlc->fullzones); } #else /* CONFIG_NUMA */ static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) { return NULL; } static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, nodemask_t *allowednodes) { return 1; } static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) { } #endif /* CONFIG_NUMA */ /* * get_page_from_freelist goes through the zonelist trying to allocate * a page. */ static struct page * get_page_from_freelist(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, int alloc_flags) { struct zone **z; struct page *page = NULL; int classzone_idx = zone_idx(zonelist->zones[0]); struct zone *zone; nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ int zlc_active = 0; /* set if using zonelist_cache */ int did_zlc_setup = 0; /* just call zlc_setup() one time */ enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */ zonelist_scan: /* * Scan zonelist, looking for a zone with enough free. * See also cpuset_zone_allowed() comment in kernel/cpuset.c. */ z = zonelist->zones; do { /* * In NUMA, this could be a policy zonelist which contains * zones that may not be allowed by the current gfp_mask. * Check the zone is allowed by the current flags */ if (unlikely(alloc_should_filter_zonelist(zonelist))) { if (highest_zoneidx == -1) highest_zoneidx = gfp_zone(gfp_mask); if (zone_idx(*z) > highest_zoneidx) continue; } if (NUMA_BUILD && zlc_active && !zlc_zone_worth_trying(zonelist, z, allowednodes)) continue; zone = *z; if ((alloc_flags & ALLOC_CPUSET) && !cpuset_zone_allowed_softwall(zone, gfp_mask)) goto try_next_zone; if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { unsigned long mark; if (alloc_flags & ALLOC_WMARK_MIN) mark = zone->pages_min; else if (alloc_flags & ALLOC_WMARK_LOW) mark = zone->pages_low; else mark = zone->pages_high; if (!zone_watermark_ok(zone, order, mark, classzone_idx, alloc_flags)) { if (!zone_reclaim_mode || !zone_reclaim(zone, gfp_mask, order)) goto this_zone_full; } } page = buffered_rmqueue(zonelist, zone, order, gfp_mask); if (page) break; this_zone_full: if (NUMA_BUILD) zlc_mark_zone_full(zonelist, z); try_next_zone: if (NUMA_BUILD && !did_zlc_setup) { /* we do zlc_setup after the first zone is tried */ allowednodes = zlc_setup(zonelist, alloc_flags); zlc_active = 1; did_zlc_setup = 1; } } while (*(++z) != NULL); if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { /* Disable zlc cache for second zonelist scan */ zlc_active = 0; goto zonelist_scan; } return page; } /* * This is the 'heart' of the zoned buddy allocator. */ struct page * fastcall __alloc_pages(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist) { const gfp_t wait = gfp_mask & __GFP_WAIT; struct zone **z; struct page *page; struct reclaim_state reclaim_state; struct task_struct *p = current; int do_retry; int alloc_flags; int did_some_progress; might_sleep_if(wait); if (should_fail_alloc_page(gfp_mask, order)) return NULL; restart: z = zonelist->zones; /* the list of zones suitable for gfp_mask */ if (unlikely(*z == NULL)) { /* * Happens if we have an empty zonelist as a result of * GFP_THISNODE being used on a memoryless node */ return NULL; } page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); if (page) goto got_pg; /* * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and * __GFP_NOWARN set) should not cause reclaim since the subsystem * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim * using a larger set of nodes after it has established that the * allowed per node queues are empty and that nodes are * over allocated. */ if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) goto nopage; for (z = zonelist->zones; *z; z++) wakeup_kswapd(*z, order); /* * OK, we're below the kswapd watermark and have kicked background * reclaim. Now things get more complex, so set up alloc_flags according * to how we want to proceed. * * The caller may dip into page reserves a bit more if the caller * cannot run direct reclaim, or if the caller has realtime scheduling * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). */ alloc_flags = ALLOC_WMARK_MIN; if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) alloc_flags |= ALLOC_HARDER; if (gfp_mask & __GFP_HIGH) alloc_flags |= ALLOC_HIGH; if (wait) alloc_flags |= ALLOC_CPUSET; /* * Go through the zonelist again. Let __GFP_HIGH and allocations * coming from realtime tasks go deeper into reserves. * * This is the last chance, in general, before the goto nopage. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. * See also cpuset_zone_allowed() comment in kernel/cpuset.c. */ page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); if (page) goto got_pg; /* This allocation should allow future memory freeing. */ rebalance: if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) && !in_interrupt()) { if (!(gfp_mask & __GFP_NOMEMALLOC)) { nofail_alloc: /* go through the zonelist yet again, ignoring mins */ page = get_page_from_freelist(gfp_mask, order, zonelist, ALLOC_NO_WATERMARKS); if (page) goto got_pg; if (gfp_mask & __GFP_NOFAIL) { congestion_wait(WRITE, HZ/50); goto nofail_alloc; } } goto nopage; } /* Atomic allocations - we can't balance anything */ if (!wait) goto nopage; cond_resched(); /* We now go into synchronous reclaim */ cpuset_memory_pressure_bump(); p->flags |= PF_MEMALLOC; reclaim_state.reclaimed_slab = 0; p->reclaim_state = &reclaim_state; did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask); p->reclaim_state = NULL; p->flags &= ~PF_MEMALLOC; cond_resched(); if (order != 0) drain_all_local_pages(); if (likely(did_some_progress)) { page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); if (page) goto got_pg; } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { /* * Go through the zonelist yet one more time, keep * very high watermark here, this is only to catch * a parallel oom killing, we must fail if we're still * under heavy pressure. */ page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); if (page) goto got_pg; /* The OOM killer will not help higher order allocs so fail */ if (order > PAGE_ALLOC_COSTLY_ORDER) goto nopage; out_of_memory(zonelist, gfp_mask, order); goto restart; } /* * Don't let big-order allocations loop unless the caller explicitly * requests that. Wait for some write requests to complete then retry. * * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order * <= 3, but that may not be true in other implementations. */ do_retry = 0; if (!(gfp_mask & __GFP_NORETRY)) { if ((order <= PAGE_ALLOC_COSTLY_ORDER) || (gfp_mask & __GFP_REPEAT)) do_retry = 1; if (gfp_mask & __GFP_NOFAIL) do_retry = 1; } if (do_retry) { congestion_wait(WRITE, HZ/50); goto rebalance; } nopage: if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { printk(KERN_WARNING "%s: page allocation failure." " order:%d, mode:0x%x\n", p->comm, order, gfp_mask); dump_stack(); show_mem(); } got_pg: return page; } EXPORT_SYMBOL(__alloc_pages); /* * Common helper functions. */ fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) { struct page * page; page = alloc_pages(gfp_mask, order); if (!page) return 0; return (unsigned long) page_address(page); } EXPORT_SYMBOL(__get_free_pages); fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) { struct page * page; /* * get_zeroed_page() returns a 32-bit address, which cannot represent * a highmem page */ VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); page = alloc_pages(gfp_mask | __GFP_ZERO, 0); if (page) return (unsigned long) page_address(page); return 0; } EXPORT_SYMBOL(get_zeroed_page); void __pagevec_free(struct pagevec *pvec) { int i = pagevec_count(pvec); while (--i >= 0) free_hot_cold_page(pvec->pages[i], pvec->cold); } fastcall void __free_pages(struct page *page, unsigned int order) { if (put_page_testzero(page)) { if (order == 0) free_hot_page(page); else __free_pages_ok(page, order); } } EXPORT_SYMBOL(__free_pages); fastcall void free_pages(unsigned long addr, unsigned int order) { if (addr != 0) { VM_BUG_ON(!virt_addr_valid((void *)addr)); __free_pages(virt_to_page((void *)addr), order); } } EXPORT_SYMBOL(free_pages); static unsigned int nr_free_zone_pages(int offset) { /* Just pick one node, since fallback list is circular */ pg_data_t *pgdat = NODE_DATA(numa_node_id()); unsigned int sum = 0; struct zonelist *zonelist = pgdat->node_zonelists + offset; struct zone **zonep = zonelist->zones; struct zone *zone; for (zone = *zonep++; zone; zone = *zonep++) { unsigned long size = zone->present_pages; unsigned long high = zone->pages_high; if (size > high) sum += size - high; } return sum; } /* * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL */ unsigned int nr_free_buffer_pages(void) { return nr_free_zone_pages(gfp_zone(GFP_USER)); } EXPORT_SYMBOL_GPL(nr_free_buffer_pages); /* * Amount of free RAM allocatable within all zones */ unsigned int nr_free_pagecache_pages(void) { return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); } static inline void show_node(struct zone *zone) { if (NUMA_BUILD) printk("Node %d ", zone_to_nid(zone)); } void si_meminfo(struct sysinfo *val) { val->totalram = totalram_pages; val->sharedram = 0; val->freeram = global_page_state(NR_FREE_PAGES); val->bufferram = nr_blockdev_pages(); val->totalhigh = totalhigh_pages; val->freehigh = nr_free_highpages(); val->mem_unit = PAGE_SIZE; } EXPORT_SYMBOL(si_meminfo); #ifdef CONFIG_NUMA void si_meminfo_node(struct sysinfo *val, int nid) { pg_data_t *pgdat = NODE_DATA(nid); val->totalram = pgdat->node_present_pages; val->freeram = node_page_state(nid, NR_FREE_PAGES); #ifdef CONFIG_HIGHMEM val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], NR_FREE_PAGES); #else val->totalhigh = 0; val->freehigh = 0; #endif val->mem_unit = PAGE_SIZE; } #endif #define K(x) ((x) << (PAGE_SHIFT-10)) /* * Show free area list (used inside shift_scroll-lock stuff) * We also calculate the percentage fragmentation. We do this by counting the * memory on each free list with the exception of the first item on the list. */ void show_free_areas(void) { int cpu; struct zone *zone; for_each_zone(zone) { if (!populated_zone(zone)) continue; show_node(zone); printk("%s per-cpu:\n", zone->name); for_each_online_cpu(cpu) { struct per_cpu_pageset *pageset; pageset = zone_pcp(zone, cpu); printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d " "Cold: hi:%5d, btch:%4d usd:%4d\n", cpu, pageset->pcp[0].high, pageset->pcp[0].batch, pageset->pcp[0].count, pageset->pcp[1].high, pageset->pcp[1].batch, pageset->pcp[1].count); } } printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n" " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", global_page_state(NR_ACTIVE), global_page_state(NR_INACTIVE), global_page_state(NR_FILE_DIRTY), global_page_state(NR_WRITEBACK), global_page_state(NR_UNSTABLE_NFS), global_page_state(NR_FREE_PAGES), global_page_state(NR_SLAB_RECLAIMABLE) + global_page_state(NR_SLAB_UNRECLAIMABLE), global_page_state(NR_FILE_MAPPED), global_page_state(NR_PAGETABLE), global_page_state(NR_BOUNCE)); for_each_zone(zone) { int i; if (!populated_zone(zone)) continue; show_node(zone); printk("%s" " free:%lukB" " min:%lukB" " low:%lukB" " high:%lukB" " active:%lukB" " inactive:%lukB" " present:%lukB" " pages_scanned:%lu" " all_unreclaimable? %s" "\n", zone->name, K(zone_page_state(zone, NR_FREE_PAGES)), K(zone->pages_min), K(zone->pages_low), K(zone->pages_high), K(zone_page_state(zone, NR_ACTIVE)), K(zone_page_state(zone, NR_INACTIVE)), K(zone->present_pages), zone->pages_scanned, (zone->all_unreclaimable ? "yes" : "no") ); printk("lowmem_reserve[]:"); for (i = 0; i < MAX_NR_ZONES; i++) printk(" %lu", zone->lowmem_reserve[i]); printk("\n"); } for_each_zone(zone) { unsigned long nr[MAX_ORDER], flags, order, total = 0; if (!populated_zone(zone)) continue; show_node(zone); printk("%s: ", zone->name); spin_lock_irqsave(&zone->lock, flags); for (order = 0; order < MAX_ORDER; order++) { nr[order] = zone->free_area[order].nr_free; total += nr[order] << order; } spin_unlock_irqrestore(&zone->lock, flags); for (order = 0; order < MAX_ORDER; order++) printk("%lu*%lukB ", nr[order], K(1UL) << order); printk("= %lukB\n", K(total)); } show_swap_cache_info(); } /* * Builds allocation fallback zone lists. * * Add all populated zones of a node to the zonelist. */ static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int nr_zones, enum zone_type zone_type) { struct zone *zone; BUG_ON(zone_type >= MAX_NR_ZONES); zone_type++; do { zone_type--; zone = pgdat->node_zones + zone_type; if (populated_zone(zone)) { zonelist->zones[nr_zones++] = zone; check_highest_zone(zone_type); } } while (zone_type); return nr_zones; } /* * zonelist_order: * 0 = automatic detection of better ordering. * 1 = order by ([node] distance, -zonetype) * 2 = order by (-zonetype, [node] distance) * * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create * the same zonelist. So only NUMA can configure this param. */ #define ZONELIST_ORDER_DEFAULT 0 #define ZONELIST_ORDER_NODE 1 #define ZONELIST_ORDER_ZONE 2 /* zonelist order in the kernel. * set_zonelist_order() will set this to NODE or ZONE. */ static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; #ifdef CONFIG_NUMA /* The value user specified ....changed by config */ static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; /* string for sysctl */ #define NUMA_ZONELIST_ORDER_LEN 16 char numa_zonelist_order[16] = "default"; /* * interface for configure zonelist ordering. * command line option "numa_zonelist_order" * = "[dD]efault - default, automatic configuration. * = "[nN]ode - order by node locality, then by zone within node * = "[zZ]one - order by zone, then by locality within zone */ static int __parse_numa_zonelist_order(char *s) { if (*s == 'd' || *s == 'D') { user_zonelist_order = ZONELIST_ORDER_DEFAULT; } else if (*s == 'n' || *s == 'N') { user_zonelist_order = ZONELIST_ORDER_NODE; } else if (*s == 'z' || *s == 'Z') { user_zonelist_order = ZONELIST_ORDER_ZONE; } else { printk(KERN_WARNING "Ignoring invalid numa_zonelist_order value: " "%s\n", s); return -EINVAL; } return 0; } static __init int setup_numa_zonelist_order(char *s) { if (s) return __parse_numa_zonelist_order(s); return 0; } early_param("numa_zonelist_order", setup_numa_zonelist_order); /* * sysctl handler for numa_zonelist_order */ int numa_zonelist_order_handler(ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { char saved_string[NUMA_ZONELIST_ORDER_LEN]; int ret; if (write) strncpy(saved_string, (char*)table->data, NUMA_ZONELIST_ORDER_LEN); ret = proc_dostring(table, write, file, buffer, length, ppos); if (ret) return ret; if (write) { int oldval = user_zonelist_order; if (__parse_numa_zonelist_order((char*)table->data)) { /* * bogus value. restore saved string */ strncpy((char*)table->data, saved_string, NUMA_ZONELIST_ORDER_LEN); user_zonelist_order = oldval; } else if (oldval != user_zonelist_order) build_all_zonelists(); } return 0; } #define MAX_NODE_LOAD (num_online_nodes()) static int node_load[MAX_NUMNODES]; /** * find_next_best_node - find the next node that should appear in a given node's fallback list * @node: node whose fallback list we're appending * @used_node_mask: nodemask_t of already used nodes * * We use a number of factors to determine which is the next node that should * appear on a given node's fallback list. The node should not have appeared * already in @node's fallback list, and it should be the next closest node * according to the distance array (which contains arbitrary distance values * from each node to each node in the system), and should also prefer nodes * with no CPUs, since presumably they'll have very little allocation pressure * on them otherwise. * It returns -1 if no node is found. */ static int find_next_best_node(int node, nodemask_t *used_node_mask) { int n, val; int min_val = INT_MAX; int best_node = -1; /* Use the local node if we haven't already */ if (!node_isset(node, *used_node_mask)) { node_set(node, *used_node_mask); return node; } for_each_node_state(n, N_HIGH_MEMORY) { cpumask_t tmp; /* Don't want a node to appear more than once */ if (node_isset(n, *used_node_mask)) continue; /* Use the distance array to find the distance */ val = node_distance(node, n); /* Penalize nodes under us ("prefer the next node") */ val += (n < node); /* Give preference to headless and unused nodes */ tmp = node_to_cpumask(n); if (!cpus_empty(tmp)) val += PENALTY_FOR_NODE_WITH_CPUS; /* Slight preference for less loaded node */ val *= (MAX_NODE_LOAD*MAX_NUMNODES); val += node_load[n]; if (val < min_val) { min_val = val; best_node = n; } } if (best_node >= 0) node_set(best_node, *used_node_mask); return best_node; } /* * Build zonelists ordered by node and zones within node. * This results in maximum locality--normal zone overflows into local * DMA zone, if any--but risks exhausting DMA zone. */ static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) { enum zone_type i; int j; struct zonelist *zonelist; for (i = 0; i < MAX_NR_ZONES; i++) { zonelist = pgdat->node_zonelists + i; for (j = 0; zonelist->zones[j] != NULL; j++) ; j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); zonelist->zones[j] = NULL; } } /* * Build gfp_thisnode zonelists */ static void build_thisnode_zonelists(pg_data_t *pgdat) { enum zone_type i; int j; struct zonelist *zonelist; for (i = 0; i < MAX_NR_ZONES; i++) { zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i; j = build_zonelists_node(pgdat, zonelist, 0, i); zonelist->zones[j] = NULL; } } /* * Build zonelists ordered by zone and nodes within zones. * This results in conserving DMA zone[s] until all Normal memory is * exhausted, but results in overflowing to remote node while memory * may still exist in local DMA zone. */ static int node_order[MAX_NUMNODES]; static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) { enum zone_type i; int pos, j, node; int zone_type; /* needs to be signed */ struct zone *z; struct zonelist *zonelist; for (i = 0; i < MAX_NR_ZONES; i++) { zonelist = pgdat->node_zonelists + i; pos = 0; for (zone_type = i; zone_type >= 0; zone_type--) { for (j = 0; j < nr_nodes; j++) { node = node_order[j]; z = &NODE_DATA(node)->node_zones[zone_type]; if (populated_zone(z)) { zonelist->zones[pos++] = z; check_highest_zone(zone_type); } } } zonelist->zones[pos] = NULL; } } static int default_zonelist_order(void) { int nid, zone_type; unsigned long low_kmem_size,total_size; struct zone *z; int average_size; /* * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. * If they are really small and used heavily, the system can fall * into OOM very easily. * This function detect ZONE_DMA/DMA32 size and confgigures zone order. */ /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ low_kmem_size = 0; total_size = 0; for_each_online_node(nid) { for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { z = &NODE_DATA(nid)->node_zones[zone_type]; if (populated_zone(z)) { if (zone_type < ZONE_NORMAL) low_kmem_size += z->present_pages; total_size += z->present_pages; } } } if (!low_kmem_size || /* there are no DMA area. */ low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ return ZONELIST_ORDER_NODE; /* * look into each node's config. * If there is a node whose DMA/DMA32 memory is very big area on * local memory, NODE_ORDER may be suitable. */ average_size = total_size / (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); for_each_online_node(nid) { low_kmem_size = 0; total_size = 0; for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { z = &NODE_DATA(nid)->node_zones[zone_type]; if (populated_zone(z)) { if (zone_type < ZONE_NORMAL) low_kmem_size += z->present_pages; total_size += z->present_pages; } } if (low_kmem_size && total_size > average_size && /* ignore small node */ low_kmem_size > total_size * 70/100) return ZONELIST_ORDER_NODE; } return ZONELIST_ORDER_ZONE; } static void set_zonelist_order(void) { if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) current_zonelist_order = default_zonelist_order(); else current_zonelist_order = user_zonelist_order; } static void build_zonelists(pg_data_t *pgdat) { int j, node, load; enum zone_type i; nodemask_t used_mask; int local_node, prev_node; struct zonelist *zonelist; int order = current_zonelist_order; /* initialize zonelists */ for (i = 0; i < MAX_ZONELISTS; i++) { zonelist = pgdat->node_zonelists + i; zonelist->zones[0] = NULL; } /* NUMA-aware ordering of nodes */ local_node = pgdat->node_id; load = num_online_nodes(); prev_node = local_node; nodes_clear(used_mask); memset(node_load, 0, sizeof(node_load)); memset(node_order, 0, sizeof(node_order)); j = 0; while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { int distance = node_distance(local_node, node); /* * If another node is sufficiently far away then it is better * to reclaim pages in a zone before going off node. */ if (distance > RECLAIM_DISTANCE) zone_reclaim_mode = 1; /* * We don't want to pressure a particular node. * So adding penalty to the first node in same * distance group to make it round-robin. */ if (distance != node_distance(local_node, prev_node)) node_load[node] = load; prev_node = node; load--; if (order == ZONELIST_ORDER_NODE) build_zonelists_in_node_order(pgdat, node); else node_order[j++] = node; /* remember order */ } if (order == ZONELIST_ORDER_ZONE) { /* calculate node order -- i.e., DMA last! */ build_zonelists_in_zone_order(pgdat, j); } build_thisnode_zonelists(pgdat); } /* Construct the zonelist performance cache - see further mmzone.h */ static void build_zonelist_cache(pg_data_t *pgdat) { int i; for (i = 0; i < MAX_NR_ZONES; i++) { struct zonelist *zonelist; struct zonelist_cache *zlc; struct zone **z; zonelist = pgdat->node_zonelists + i; zonelist->zlcache_ptr = zlc = &zonelist->zlcache; bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); for (z = zonelist->zones; *z; z++) zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z); } } #else /* CONFIG_NUMA */ static void set_zonelist_order(void) { current_zonelist_order = ZONELIST_ORDER_ZONE; } static void build_zonelists(pg_data_t *pgdat) { int node, local_node; enum zone_type i,j; local_node = pgdat->node_id; for (i = 0; i < MAX_NR_ZONES; i++) { struct zonelist *zonelist; zonelist = pgdat->node_zonelists + i; j = build_zonelists_node(pgdat, zonelist, 0, i); /* * Now we build the zonelist so that it contains the zones * of all the other nodes. * We don't want to pressure a particular node, so when * building the zones for node N, we make sure that the * zones coming right after the local ones are those from * node N+1 (modulo N) */ for (node = local_node + 1; node < MAX_NUMNODES; node++) { if (!node_online(node)) continue; j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); } for (node = 0; node < local_node; node++) { if (!node_online(node)) continue; j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); } zonelist->zones[j] = NULL; } } /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ static void build_zonelist_cache(pg_data_t *pgdat) { int i; for (i = 0; i < MAX_NR_ZONES; i++) pgdat->node_zonelists[i].zlcache_ptr = NULL; } #endif /* CONFIG_NUMA */ /* return values int ....just for stop_machine_run() */ static int __build_all_zonelists(void *dummy) { int nid; for_each_online_node(nid) { pg_data_t *pgdat = NODE_DATA(nid); build_zonelists(pgdat); build_zonelist_cache(pgdat); } return 0; } void build_all_zonelists(void) { set_zonelist_order(); if (system_state == SYSTEM_BOOTING) { __build_all_zonelists(NULL); cpuset_init_current_mems_allowed(); } else { /* we have to stop all cpus to guaranntee there is no user of zonelist */ stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); /* cpuset refresh routine should be here */ } vm_total_pages = nr_free_pagecache_pages(); /* * Disable grouping by mobility if the number of pages in the * system is too low to allow the mechanism to work. It would be * more accurate, but expensive to check per-zone. This check is * made on memory-hotadd so a system can start with mobility * disabled and enable it later */ if (vm_total_pages < (MAX_ORDER_NR_PAGES * MIGRATE_TYPES)) page_group_by_mobility_disabled = 1; else page_group_by_mobility_disabled = 0; printk("Built %i zonelists in %s order, mobility grouping %s. " "Total pages: %ld\n", num_online_nodes(), zonelist_order_name[current_zonelist_order], page_group_by_mobility_disabled ? "off" : "on", vm_total_pages); #ifdef CONFIG_NUMA printk("Policy zone: %s\n", zone_names[policy_zone]); #endif } /* * Helper functions to size the waitqueue hash table. * Essentially these want to choose hash table sizes sufficiently * large so that collisions trying to wait on pages are rare. * But in fact, the number of active page waitqueues on typical * systems is ridiculously low, less than 200. So this is even * conservative, even though it seems large. * * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to * waitqueues, i.e. the size of the waitq table given the number of pages. */ #define PAGES_PER_WAITQUEUE 256 #ifndef CONFIG_MEMORY_HOTPLUG static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) { unsigned long size = 1; pages /= PAGES_PER_WAITQUEUE; while (size < pages) size <<= 1; /* * Once we have dozens or even hundreds of threads sleeping * on IO we've got bigger problems than wait queue collision. * Limit the size of the wait table to a reasonable size. */ size = min(size, 4096UL); return max(size, 4UL); } #else /* * A zone's size might be changed by hot-add, so it is not possible to determine * a suitable size for its wait_table. So we use the maximum size now. * * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: * * i386 (preemption config) : 4096 x 16 = 64Kbyte. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. * * The maximum entries are prepared when a zone's memory is (512K + 256) pages * or more by the traditional way. (See above). It equals: * * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. * ia64(16K page size) : = ( 8G + 4M)byte. * powerpc (64K page size) : = (32G +16M)byte. */ static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) { return 4096UL; } #endif /* * This is an integer logarithm so that shifts can be used later * to extract the more random high bits from the multiplicative * hash function before the remainder is taken. */ static inline unsigned long wait_table_bits(unsigned long size) { return ffz(~size); } #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) /* * Initially all pages are reserved - free ones are freed * up by free_all_bootmem() once the early boot process is * done. Non-atomic initialization, single-pass. */ void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, unsigned long start_pfn, enum memmap_context context) { struct page *page; unsigned long end_pfn = start_pfn + size; unsigned long pfn; for (pfn = start_pfn; pfn < end_pfn; pfn++) { /* * There can be holes in boot-time mem_map[]s * handed to this function. They do not * exist on hotplugged memory. */ if (context == MEMMAP_EARLY) { if (!early_pfn_valid(pfn)) continue; if (!early_pfn_in_nid(pfn, nid)) continue; } page = pfn_to_page(pfn); set_page_links(page, zone, nid, pfn); init_page_count(page); reset_page_mapcount(page); SetPageReserved(page); /* * Mark the block movable so that blocks are reserved for * movable at startup. This will force kernel allocations * to reserve their blocks rather than leaking throughout * the address space during boot when many long-lived * kernel allocations are made */ set_pageblock_migratetype(page, MIGRATE_MOVABLE); INIT_LIST_HEAD(&page->lru); #ifdef WANT_PAGE_VIRTUAL /* The shift won't overflow because ZONE_NORMAL is below 4G. */ if (!is_highmem_idx(zone)) set_page_address(page, __va(pfn << PAGE_SHIFT)); #endif } } static void __meminit zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, unsigned long size) { int order, t; for_each_migratetype_order(order, t) { INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); zone->free_area[order].nr_free = 0; } } #ifndef __HAVE_ARCH_MEMMAP_INIT #define memmap_init(size, nid, zone, start_pfn) \ memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) #endif static int __devinit zone_batchsize(struct zone *zone) { int batch; /* * The per-cpu-pages pools are set to around 1000th of the * size of the zone. But no more than 1/2 of a meg. * * OK, so we don't know how big the cache is. So guess. */ batch = zone->present_pages / 1024; if (batch * PAGE_SIZE > 512 * 1024) batch = (512 * 1024) / PAGE_SIZE; batch /= 4; /* We effectively *= 4 below */ if (batch < 1) batch = 1; /* * Clamp the batch to a 2^n - 1 value. Having a power * of 2 value was found to be more likely to have * suboptimal cache aliasing properties in some cases. * * For example if 2 tasks are alternately allocating * batches of pages, one task can end up with a lot * of pages of one half of the possible page colors * and the other with pages of the other colors. */ batch = (1 << (fls(batch + batch/2)-1)) - 1; return batch; } inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) { struct per_cpu_pages *pcp; memset(p, 0, sizeof(*p)); pcp = &p->pcp[0]; /* hot */ pcp->count = 0; pcp->high = 6 * batch; pcp->batch = max(1UL, 1 * batch); INIT_LIST_HEAD(&pcp->list); pcp = &p->pcp[1]; /* cold*/ pcp->count = 0; pcp->high = 2 * batch; pcp->batch = max(1UL, batch/2); INIT_LIST_HEAD(&pcp->list); } /* * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist * to the value high for the pageset p. */ static void setup_pagelist_highmark(struct per_cpu_pageset *p, unsigned long high) { struct per_cpu_pages *pcp; pcp = &p->pcp[0]; /* hot list */ pcp->high = high; pcp->batch = max(1UL, high/4); if ((high/4) > (PAGE_SHIFT * 8)) pcp->batch = PAGE_SHIFT * 8; } #ifdef CONFIG_NUMA /* * Boot pageset table. One per cpu which is going to be used for all * zones and all nodes. The parameters will be set in such a way * that an item put on a list will immediately be handed over to * the buddy list. This is safe since pageset manipulation is done * with interrupts disabled. * * Some NUMA counter updates may also be caught by the boot pagesets. * * The boot_pagesets must be kept even after bootup is complete for * unused processors and/or zones. They do play a role for bootstrapping * hotplugged processors. * * zoneinfo_show() and maybe other functions do * not check if the processor is online before following the pageset pointer. * Other parts of the kernel may not check if the zone is available. */ static struct per_cpu_pageset boot_pageset[NR_CPUS]; /* * Dynamically allocate memory for the * per cpu pageset array in struct zone. */ static int __cpuinit process_zones(int cpu) { struct zone *zone, *dzone; int node = cpu_to_node(cpu); node_set_state(node, N_CPU); /* this node has a cpu */ for_each_zone(zone) { if (!populated_zone(zone)) continue; zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), GFP_KERNEL, node); if (!zone_pcp(zone, cpu)) goto bad; setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); if (percpu_pagelist_fraction) setup_pagelist_highmark(zone_pcp(zone, cpu), (zone->present_pages / percpu_pagelist_fraction)); } return 0; bad: for_each_zone(dzone) { if (!populated_zone(dzone)) continue; if (dzone == zone) break; kfree(zone_pcp(dzone, cpu)); zone_pcp(dzone, cpu) = NULL; } return -ENOMEM; } static inline void free_zone_pagesets(int cpu) { struct zone *zone; for_each_zone(zone) { struct per_cpu_pageset *pset = zone_pcp(zone, cpu); /* Free per_cpu_pageset if it is slab allocated */ if (pset != &boot_pageset[cpu]) kfree(pset); zone_pcp(zone, cpu) = NULL; } } static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { int cpu = (long)hcpu; int ret = NOTIFY_OK; switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: if (process_zones(cpu)) ret = NOTIFY_BAD; break; case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: case CPU_DEAD: case CPU_DEAD_FROZEN: free_zone_pagesets(cpu); break; default: break; } return ret; } static struct notifier_block __cpuinitdata pageset_notifier = { &pageset_cpuup_callback, NULL, 0 }; void __init setup_per_cpu_pageset(void) { int err; /* Initialize per_cpu_pageset for cpu 0. * A cpuup callback will do this for every cpu * as it comes online */ err = process_zones(smp_processor_id()); BUG_ON(err); register_cpu_notifier(&pageset_notifier); } #endif static noinline __init_refok int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) { int i; struct pglist_data *pgdat = zone->zone_pgdat; size_t alloc_size; /* * The per-page waitqueue mechanism uses hashed waitqueues * per zone. */ zone->wait_table_hash_nr_entries = wait_table_hash_nr_entries(zone_size_pages); zone->wait_table_bits = wait_table_bits(zone->wait_table_hash_nr_entries); alloc_size = zone->wait_table_hash_nr_entries * sizeof(wait_queue_head_t); if (system_state == SYSTEM_BOOTING) { zone->wait_table = (wait_queue_head_t *) alloc_bootmem_node(pgdat, alloc_size); } else { /* * This case means that a zone whose size was 0 gets new memory * via memory hot-add. * But it may be the case that a new node was hot-added. In * this case vmalloc() will not be able to use this new node's * memory - this wait_table must be initialized to use this new * node itself as well. * To use this new node's memory, further consideration will be * necessary. */ zone->wait_table = vmalloc(alloc_size); } if (!zone->wait_table) return -ENOMEM; for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) init_waitqueue_head(zone->wait_table + i); return 0; } static __meminit void zone_pcp_init(struct zone *zone) { int cpu; unsigned long batch = zone_batchsize(zone); for (cpu = 0; cpu < NR_CPUS; cpu++) { #ifdef CONFIG_NUMA /* Early boot. Slab allocator not functional yet */ zone_pcp(zone, cpu) = &boot_pageset[cpu]; setup_pageset(&boot_pageset[cpu],0); #else setup_pageset(zone_pcp(zone,cpu), batch); #endif } if (zone->present_pages) printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", zone->name, zone->present_pages, batch); } __meminit int init_currently_empty_zone(struct zone *zone, unsigned long zone_start_pfn, unsigned long size, enum memmap_context context) { struct pglist_data *pgdat = zone->zone_pgdat; int ret; ret = zone_wait_table_init(zone, size); if (ret) return ret; pgdat->nr_zones = zone_idx(zone) + 1; zone->zone_start_pfn = zone_start_pfn; memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); zone_init_free_lists(pgdat, zone, zone->spanned_pages); return 0; } #ifdef CONFIG_ARCH_POPULATES_NODE_MAP /* * Basic iterator support. Return the first range of PFNs for a node * Note: nid == MAX_NUMNODES returns first region regardless of node */ static int __meminit first_active_region_index_in_nid(int nid) { int i; for (i = 0; i < nr_nodemap_entries; i++) if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) return i; return -1; } /* * Basic iterator support. Return the next active range of PFNs for a node * Note: nid == MAX_NUMNODES returns next region regardles of node */ static int __meminit next_active_region_index_in_nid(int index, int nid) { for (index = index + 1; index < nr_nodemap_entries; index++) if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) return index; return -1; } #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID /* * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. * Architectures may implement their own version but if add_active_range() * was used and there are no special requirements, this is a convenient * alternative */ int __meminit early_pfn_to_nid(unsigned long pfn) { int i; for (i = 0; i < nr_nodemap_entries; i++) { unsigned long start_pfn = early_node_map[i].start_pfn; unsigned long end_pfn = early_node_map[i].end_pfn; if (start_pfn <= pfn && pfn < end_pfn) return early_node_map[i].nid; } return 0; } #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ /* Basic iterator support to walk early_node_map[] */ #define for_each_active_range_index_in_nid(i, nid) \ for (i = first_active_region_index_in_nid(nid); i != -1; \ i = next_active_region_index_in_nid(i, nid)) /** * free_bootmem_with_active_regions - Call free_bootmem_node for each active range * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node * * If an architecture guarantees that all ranges registered with * add_active_ranges() contain no holes and may be freed, this * this function may be used instead of calling free_bootmem() manually. */ void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) { int i; for_each_active_range_index_in_nid(i, nid) { unsigned long size_pages = 0; unsigned long end_pfn = early_node_map[i].end_pfn; if (early_node_map[i].start_pfn >= max_low_pfn) continue; if (end_pfn > max_low_pfn) end_pfn = max_low_pfn; size_pages = end_pfn - early_node_map[i].start_pfn; free_bootmem_node(NODE_DATA(early_node_map[i].nid), PFN_PHYS(early_node_map[i].start_pfn), size_pages << PAGE_SHIFT); } } /** * sparse_memory_present_with_active_regions - Call memory_present for each active range * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. * * If an architecture guarantees that all ranges registered with * add_active_ranges() contain no holes and may be freed, this * function may be used instead of calling memory_present() manually. */ void __init sparse_memory_present_with_active_regions(int nid) { int i; for_each_active_range_index_in_nid(i, nid) memory_present(early_node_map[i].nid, early_node_map[i].start_pfn, early_node_map[i].end_pfn); } /** * push_node_boundaries - Push node boundaries to at least the requested boundary * @nid: The nid of the node to push the boundary for * @start_pfn: The start pfn of the node * @end_pfn: The end pfn of the node * * In reserve-based hot-add, mem_map is allocated that is unused until hotadd * time. Specifically, on x86_64, SRAT will report ranges that can potentially * be hotplugged even though no physical memory exists. This function allows * an arch to push out the node boundaries so mem_map is allocated that can * be used later. */ #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE void __init push_node_boundaries(unsigned int nid, unsigned long start_pfn, unsigned long end_pfn) { printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", nid, start_pfn, end_pfn); /* Initialise the boundary for this node if necessary */ if (node_boundary_end_pfn[nid] == 0) node_boundary_start_pfn[nid] = -1UL; /* Update the boundaries */ if (node_boundary_start_pfn[nid] > start_pfn) node_boundary_start_pfn[nid] = start_pfn; if (node_boundary_end_pfn[nid] < end_pfn) node_boundary_end_pfn[nid] = end_pfn; } /* If necessary, push the node boundary out for reserve hotadd */ static void __meminit account_node_boundary(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn) { printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", nid, *start_pfn, *end_pfn); /* Return if boundary information has not been provided */ if (node_boundary_end_pfn[nid] == 0) return; /* Check the boundaries and update if necessary */ if (node_boundary_start_pfn[nid] < *start_pfn) *start_pfn = node_boundary_start_pfn[nid]; if (node_boundary_end_pfn[nid] > *end_pfn) *end_pfn = node_boundary_end_pfn[nid]; } #else void __init push_node_boundaries(unsigned int nid, unsigned long start_pfn, unsigned long end_pfn) {} static void __meminit account_node_boundary(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn) {} #endif /** * get_pfn_range_for_nid - Return the start and end page frames for a node * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. * @start_pfn: Passed by reference. On return, it will have the node start_pfn. * @end_pfn: Passed by reference. On return, it will have the node end_pfn. * * It returns the start and end page frame of a node based on information * provided by an arch calling add_active_range(). If called for a node * with no available memory, a warning is printed and the start and end * PFNs will be 0. */ void __meminit get_pfn_range_for_nid(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn) { int i; *start_pfn = -1UL; *end_pfn = 0; for_each_active_range_index_in_nid(i, nid) { *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); } if (*start_pfn == -1UL) *start_pfn = 0; /* Push the node boundaries out if requested */ account_node_boundary(nid, start_pfn, end_pfn); } /* * This finds a zone that can be used for ZONE_MOVABLE pages. The * assumption is made that zones within a node are ordered in monotonic * increasing memory addresses so that the "highest" populated zone is used */ void __init find_usable_zone_for_movable(void) { int zone_index; for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { if (zone_index == ZONE_MOVABLE) continue; if (arch_zone_highest_possible_pfn[zone_index] > arch_zone_lowest_possible_pfn[zone_index]) break; } VM_BUG_ON(zone_index == -1); movable_zone = zone_index; } /* * The zone ranges provided by the architecture do not include ZONE_MOVABLE * because it is sized independant of architecture. Unlike the other zones, * the starting point for ZONE_MOVABLE is not fixed. It may be different * in each node depending on the size of each node and how evenly kernelcore * is distributed. This helper function adjusts the zone ranges * provided by the architecture for a given node by using the end of the * highest usable zone for ZONE_MOVABLE. This preserves the assumption that * zones within a node are in order of monotonic increases memory addresses */ void __meminit adjust_zone_range_for_zone_movable(int nid, unsigned long zone_type, unsigned long node_start_pfn, unsigned long node_end_pfn, unsigned long *zone_start_pfn, unsigned long *zone_end_pfn) { /* Only adjust if ZONE_MOVABLE is on this node */ if (zone_movable_pfn[nid]) { /* Size ZONE_MOVABLE */ if (zone_type == ZONE_MOVABLE) { *zone_start_pfn = zone_movable_pfn[nid]; *zone_end_pfn = min(node_end_pfn, arch_zone_highest_possible_pfn[movable_zone]); /* Adjust for ZONE_MOVABLE starting within this range */ } else if (*zone_start_pfn < zone_movable_pfn[nid] && *zone_end_pfn > zone_movable_pfn[nid]) { *zone_end_pfn = zone_movable_pfn[nid]; /* Check if this whole range is within ZONE_MOVABLE */ } else if (*zone_start_pfn >= zone_movable_pfn[nid]) *zone_start_pfn = *zone_end_pfn; } } /* * Return the number of pages a zone spans in a node, including holes * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() */ static unsigned long __meminit zone_spanned_pages_in_node(int nid, unsigned long zone_type, unsigned long *ignored) { unsigned long node_start_pfn, node_end_pfn; unsigned long zone_start_pfn, zone_end_pfn; /* Get the start and end of the node and zone */ get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; adjust_zone_range_for_zone_movable(nid, zone_type, node_start_pfn, node_end_pfn, &zone_start_pfn, &zone_end_pfn); /* Check that this node has pages within the zone's required range */ if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) return 0; /* Move the zone boundaries inside the node if necessary */ zone_end_pfn = min(zone_end_pfn, node_end_pfn); zone_start_pfn = max(zone_start_pfn, node_start_pfn); /* Return the spanned pages */ return zone_end_pfn - zone_start_pfn; } /* * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, * then all holes in the requested range will be accounted for. */ unsigned long __meminit __absent_pages_in_range(int nid, unsigned long range_start_pfn, unsigned long range_end_pfn) { int i = 0; unsigned long prev_end_pfn = 0, hole_pages = 0; unsigned long start_pfn; /* Find the end_pfn of the first active range of pfns in the node */ i = first_active_region_index_in_nid(nid); if (i == -1) return 0; prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); /* Account for ranges before physical memory on this node */ if (early_node_map[i].start_pfn > range_start_pfn) hole_pages = prev_end_pfn - range_start_pfn; /* Find all holes for the zone within the node */ for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { /* No need to continue if prev_end_pfn is outside the zone */ if (prev_end_pfn >= range_end_pfn) break; /* Make sure the end of the zone is not within the hole */ start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); prev_end_pfn = max(prev_end_pfn, range_start_pfn); /* Update the hole size cound and move on */ if (start_pfn > range_start_pfn) { BUG_ON(prev_end_pfn > start_pfn); hole_pages += start_pfn - prev_end_pfn; } prev_end_pfn = early_node_map[i].end_pfn; } /* Account for ranges past physical memory on this node */ if (range_end_pfn > prev_end_pfn) hole_pages += range_end_pfn - max(range_start_pfn, prev_end_pfn); return hole_pages; } /** * absent_pages_in_range - Return number of page frames in holes within a range * @start_pfn: The start PFN to start searching for holes * @end_pfn: The end PFN to stop searching for holes * * It returns the number of pages frames in memory holes within a range. */ unsigned long __init absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn) { return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); } /* Return the number of page frames in holes in a zone on a node */ static unsigned long __meminit zone_absent_pages_in_node(int nid, unsigned long zone_type, unsigned long *ignored) { unsigned long node_start_pfn, node_end_pfn; unsigned long zone_start_pfn, zone_end_pfn; get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], node_start_pfn); zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], node_end_pfn); adjust_zone_range_for_zone_movable(nid, zone_type, node_start_pfn, node_end_pfn, &zone_start_pfn, &zone_end_pfn); return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); } #else static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, unsigned long zone_type, unsigned long *zones_size) { return zones_size[zone_type]; } static inline unsigned long __meminit zone_absent_pages_in_node(int nid, unsigned long zone_type, unsigned long *zholes_size) { if (!zholes_size) return 0; return zholes_size[zone_type]; } #endif static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, unsigned long *zones_size, unsigned long *zholes_size) { unsigned long realtotalpages, totalpages = 0; enum zone_type i; for (i = 0; i < MAX_NR_ZONES; i++) totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, zones_size); pgdat->node_spanned_pages = totalpages; realtotalpages = totalpages; for (i = 0; i < MAX_NR_ZONES; i++) realtotalpages -= zone_absent_pages_in_node(pgdat->node_id, i, zholes_size); pgdat->node_present_pages = realtotalpages; printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); } #ifndef CONFIG_SPARSEMEM /* * Calculate the size of the zone->blockflags rounded to an unsigned long * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally * round what is now in bits to nearest long in bits, then return it in * bytes. */ static unsigned long __init usemap_size(unsigned long zonesize) { unsigned long usemapsize; usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES); usemapsize = usemapsize >> (MAX_ORDER-1); usemapsize *= NR_PAGEBLOCK_BITS; usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); return usemapsize / 8; } static void __init setup_usemap(struct pglist_data *pgdat, struct zone *zone, unsigned long zonesize) { unsigned long usemapsize = usemap_size(zonesize); zone->pageblock_flags = NULL; if (usemapsize) { zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); memset(zone->pageblock_flags, 0, usemapsize); } } #else static void inline setup_usemap(struct pglist_data *pgdat, struct zone *zone, unsigned long zonesize) {} #endif /* CONFIG_SPARSEMEM */ /* * Set up the zone data structures: * - mark all pages reserved * - mark all memory queues empty * - clear the memory bitmaps */ static void __meminit free_area_init_core(struct pglist_data *pgdat, unsigned long *zones_size, unsigned long *zholes_size) { enum zone_type j; int nid = pgdat->node_id; unsigned long zone_start_pfn = pgdat->node_start_pfn; int ret; pgdat_resize_init(pgdat); pgdat->nr_zones = 0; init_waitqueue_head(&pgdat->kswapd_wait); pgdat->kswapd_max_order = 0; for (j = 0; j < MAX_NR_ZONES; j++) { struct zone *zone = pgdat->node_zones + j; unsigned long size, realsize, memmap_pages; size = zone_spanned_pages_in_node(nid, j, zones_size); realsize = size - zone_absent_pages_in_node(nid, j, zholes_size); /* * Adjust realsize so that it accounts for how much memory * is used by this zone for memmap. This affects the watermark * and per-cpu initialisations */ memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT; if (realsize >= memmap_pages) { realsize -= memmap_pages; printk(KERN_DEBUG " %s zone: %lu pages used for memmap\n", zone_names[j], memmap_pages); } else printk(KERN_WARNING " %s zone: %lu pages exceeds realsize %lu\n", zone_names[j], memmap_pages, realsize); /* Account for reserved pages */ if (j == 0 && realsize > dma_reserve) { realsize -= dma_reserve; printk(KERN_DEBUG " %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); } if (!is_highmem_idx(j)) nr_kernel_pages += realsize; nr_all_pages += realsize; zone->spanned_pages = size; zone->present_pages = realsize; #ifdef CONFIG_NUMA zone->node = nid; zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) / 100; zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; #endif zone->name = zone_names[j]; spin_lock_init(&zone->lock); spin_lock_init(&zone->lru_lock); zone_seqlock_init(zone); zone->zone_pgdat = pgdat; zone->prev_priority = DEF_PRIORITY; zone_pcp_init(zone); INIT_LIST_HEAD(&zone->active_list); INIT_LIST_HEAD(&zone->inactive_list); zone->nr_scan_active = 0; zone->nr_scan_inactive = 0; zap_zone_vm_stats(zone); atomic_set(&zone->reclaim_in_progress, 0); if (!size) continue; setup_usemap(pgdat, zone, size); ret = init_currently_empty_zone(zone, zone_start_pfn, size, MEMMAP_EARLY); BUG_ON(ret); zone_start_pfn += size; } } static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) { /* Skip empty nodes */ if (!pgdat->node_spanned_pages) return; #ifdef CONFIG_FLAT_NODE_MEM_MAP /* ia64 gets its own node_mem_map, before this, without bootmem */ if (!pgdat->node_mem_map) { unsigned long size, start, end; struct page *map; /* * The zone's endpoints aren't required to be MAX_ORDER * aligned but the node_mem_map endpoints must be in order * for the buddy allocator to function correctly. */ start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); end = pgdat->node_start_pfn + pgdat->node_spanned_pages; end = ALIGN(end, MAX_ORDER_NR_PAGES); size = (end - start) * sizeof(struct page); map = alloc_remap(pgdat->node_id, size); if (!map) map = alloc_bootmem_node(pgdat, size); pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); } #ifndef CONFIG_NEED_MULTIPLE_NODES /* * With no DISCONTIG, the global mem_map is just set as node 0's */ if (pgdat == NODE_DATA(0)) { mem_map = NODE_DATA(0)->node_mem_map; #ifdef CONFIG_ARCH_POPULATES_NODE_MAP if (page_to_pfn(mem_map) != pgdat->node_start_pfn) mem_map -= pgdat->node_start_pfn; #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ } #endif #endif /* CONFIG_FLAT_NODE_MEM_MAP */ } void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, unsigned long *zones_size, unsigned long node_start_pfn, unsigned long *zholes_size) { pgdat->node_id = nid; pgdat->node_start_pfn = node_start_pfn; calculate_node_totalpages(pgdat, zones_size, zholes_size); alloc_node_mem_map(pgdat); free_area_init_core(pgdat, zones_size, zholes_size); } #ifdef CONFIG_ARCH_POPULATES_NODE_MAP #if MAX_NUMNODES > 1 /* * Figure out the number of possible node ids. */ static void __init setup_nr_node_ids(void) { unsigned int node; unsigned int highest = 0; for_each_node_mask(node, node_possible_map) highest = node; nr_node_ids = highest + 1; } #else static inline void setup_nr_node_ids(void) { } #endif /** * add_active_range - Register a range of PFNs backed by physical memory * @nid: The node ID the range resides on * @start_pfn: The start PFN of the available physical memory * @end_pfn: The end PFN of the available physical memory * * These ranges are stored in an early_node_map[] and later used by * free_area_init_nodes() to calculate zone sizes and holes. If the * range spans a memory hole, it is up to the architecture to ensure * the memory is not freed by the bootmem allocator. If possible * the range being registered will be merged with existing ranges. */ void __init add_active_range(unsigned int nid, unsigned long start_pfn, unsigned long end_pfn) { int i; printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) " "%d entries of %d used\n", nid, start_pfn, end_pfn, nr_nodemap_entries, MAX_ACTIVE_REGIONS); /* Merge with existing active regions if possible */ for (i = 0; i < nr_nodemap_entries; i++) { if (early_node_map[i].nid != nid) continue; /* Skip if an existing region covers this new one */ if (start_pfn >= early_node_map[i].start_pfn && end_pfn <= early_node_map[i].end_pfn) return; /* Merge forward if suitable */ if (start_pfn <= early_node_map[i].end_pfn && end_pfn > early_node_map[i].end_pfn) { early_node_map[i].end_pfn = end_pfn; return; } /* Merge backward if suitable */ if (start_pfn < early_node_map[i].end_pfn && end_pfn >= early_node_map[i].start_pfn) { early_node_map[i].start_pfn = start_pfn; return; } } /* Check that early_node_map is large enough */ if (i >= MAX_ACTIVE_REGIONS) { printk(KERN_CRIT "More than %d memory regions, truncating\n", MAX_ACTIVE_REGIONS); return; } early_node_map[i].nid = nid; early_node_map[i].start_pfn = start_pfn; early_node_map[i].end_pfn = end_pfn; nr_nodemap_entries = i + 1; } /** * shrink_active_range - Shrink an existing registered range of PFNs * @nid: The node id the range is on that should be shrunk * @old_end_pfn: The old end PFN of the range * @new_end_pfn: The new PFN of the range * * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. * The map is kept at the end physical page range that has already been * registered with add_active_range(). This function allows an arch to shrink * an existing registered range. */ void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn, unsigned long new_end_pfn) { int i; /* Find the old active region end and shrink */ for_each_active_range_index_in_nid(i, nid) if (early_node_map[i].end_pfn == old_end_pfn) { early_node_map[i].end_pfn = new_end_pfn; break; } } /** * remove_all_active_ranges - Remove all currently registered regions * * During discovery, it may be found that a table like SRAT is invalid * and an alternative discovery method must be used. This function removes * all currently registered regions. */ void __init remove_all_active_ranges(void) { memset(early_node_map, 0, sizeof(early_node_map)); nr_nodemap_entries = 0; #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ } /* Compare two active node_active_regions */ static int __init cmp_node_active_region(const void *a, const void *b) { struct node_active_region *arange = (struct node_active_region *)a; struct node_active_region *brange = (struct node_active_region *)b; /* Done this way to avoid overflows */ if (arange->start_pfn > brange->start_pfn) return 1; if (arange->start_pfn < brange->start_pfn) return -1; return 0; } /* sort the node_map by start_pfn */ static void __init sort_node_map(void) { sort(early_node_map, (size_t)nr_nodemap_entries, sizeof(struct node_active_region), cmp_node_active_region, NULL); } /* Find the lowest pfn for a node */ unsigned long __init find_min_pfn_for_node(unsigned long nid) { int i; unsigned long min_pfn = ULONG_MAX; /* Assuming a sorted map, the first range found has the starting pfn */ for_each_active_range_index_in_nid(i, nid) min_pfn = min(min_pfn, early_node_map[i].start_pfn); if (min_pfn == ULONG_MAX) { printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid); return 0; } return min_pfn; } /** * find_min_pfn_with_active_regions - Find the minimum PFN registered * * It returns the minimum PFN based on information provided via * add_active_range(). */ unsigned long __init find_min_pfn_with_active_regions(void) { return find_min_pfn_for_node(MAX_NUMNODES); } /** * find_max_pfn_with_active_regions - Find the maximum PFN registered * * It returns the maximum PFN based on information provided via * add_active_range(). */ unsigned long __init find_max_pfn_with_active_regions(void) { int i; unsigned long max_pfn = 0; for (i = 0; i < nr_nodemap_entries; i++) max_pfn = max(max_pfn, early_node_map[i].end_pfn); return max_pfn; } /* * early_calculate_totalpages() * Sum pages in active regions for movable zone. * Populate N_HIGH_MEMORY for calculating usable_nodes. */ unsigned long __init early_calculate_totalpages(void) { int i; unsigned long totalpages = 0; for (i = 0; i < nr_nodemap_entries; i++) { unsigned long pages = early_node_map[i].end_pfn - early_node_map[i].start_pfn; totalpages += pages; if (pages) node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); } return totalpages; } /* * Find the PFN the Movable zone begins in each node. Kernel memory * is spread evenly between nodes as long as the nodes have enough * memory. When they don't, some nodes will have more kernelcore than * others */ void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) { int i, nid; unsigned long usable_startpfn; unsigned long kernelcore_node, kernelcore_remaining; unsigned long totalpages = early_calculate_totalpages(); int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); /* * If movablecore was specified, calculate what size of * kernelcore that corresponds so that memory usable for * any allocation type is evenly spread. If both kernelcore * and movablecore are specified, then the value of kernelcore * will be used for required_kernelcore if it's greater than * what movablecore would have allowed. */ if (required_movablecore) { unsigned long corepages; /* * Round-up so that ZONE_MOVABLE is at least as large as what * was requested by the user */ required_movablecore = roundup(required_movablecore, MAX_ORDER_NR_PAGES); corepages = totalpages - required_movablecore; required_kernelcore = max(required_kernelcore, corepages); } /* If kernelcore was not specified, there is no ZONE_MOVABLE */ if (!required_kernelcore) return; /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ find_usable_zone_for_movable(); usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; restart: /* Spread kernelcore memory as evenly as possible throughout nodes */ kernelcore_node = required_kernelcore / usable_nodes; for_each_node_state(nid, N_HIGH_MEMORY) { /* * Recalculate kernelcore_node if the division per node * now exceeds what is necessary to satisfy the requested * amount of memory for the kernel */ if (required_kernelcore < kernelcore_node) kernelcore_node = required_kernelcore / usable_nodes; /* * As the map is walked, we track how much memory is usable * by the kernel using kernelcore_remaining. When it is * 0, the rest of the node is usable by ZONE_MOVABLE */ kernelcore_remaining = kernelcore_node; /* Go through each range of PFNs within this node */ for_each_active_range_index_in_nid(i, nid) { unsigned long start_pfn, end_pfn; unsigned long size_pages; start_pfn = max(early_node_map[i].start_pfn, zone_movable_pfn[nid]); end_pfn = early_node_map[i].end_pfn; if (start_pfn >= end_pfn) continue; /* Account for what is only usable for kernelcore */ if (start_pfn < usable_startpfn) { unsigned long kernel_pages; kernel_pages = min(end_pfn, usable_startpfn) - start_pfn; kernelcore_remaining -= min(kernel_pages, kernelcore_remaining); required_kernelcore -= min(kernel_pages, required_kernelcore); /* Continue if range is now fully accounted */ if (end_pfn <= usable_startpfn) { /* * Push zone_movable_pfn to the end so * that if we have to rebalance * kernelcore across nodes, we will * not double account here */ zone_movable_pfn[nid] = end_pfn; continue; } start_pfn = usable_startpfn; } /* * The usable PFN range for ZONE_MOVABLE is from * start_pfn->end_pfn. Calculate size_pages as the * number of pages used as kernelcore */ size_pages = end_pfn - start_pfn; if (size_pages > kernelcore_remaining) size_pages = kernelcore_remaining; zone_movable_pfn[nid] = start_pfn + size_pages; /* * Some kernelcore has been met, update counts and * break if the kernelcore for this node has been * satisified */ required_kernelcore -= min(required_kernelcore, size_pages); kernelcore_remaining -= size_pages; if (!kernelcore_remaining) break; } } /* * If there is still required_kernelcore, we do another pass with one * less node in the count. This will push zone_movable_pfn[nid] further * along on the nodes that still have memory until kernelcore is * satisified */ usable_nodes--; if (usable_nodes && required_kernelcore > usable_nodes) goto restart; /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ for (nid = 0; nid < MAX_NUMNODES; nid++) zone_movable_pfn[nid] = roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); } /* Any regular memory on that node ? */ static void check_for_regular_memory(pg_data_t *pgdat) { #ifdef CONFIG_HIGHMEM enum zone_type zone_type; for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { struct zone *zone = &pgdat->node_zones[zone_type]; if (zone->present_pages) node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); } #endif } /** * free_area_init_nodes - Initialise all pg_data_t and zone data * @max_zone_pfn: an array of max PFNs for each zone * * This will call free_area_init_node() for each active node in the system. * Using the page ranges provided by add_active_range(), the size of each * zone in each node and their holes is calculated. If the maximum PFN * between two adjacent zones match, it is assumed that the zone is empty. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed * that arch_max_dma32_pfn has no pages. It is also assumed that a zone * starts where the previous one ended. For example, ZONE_DMA32 starts * at arch_max_dma_pfn. */ void __init free_area_init_nodes(unsigned long *max_zone_pfn) { unsigned long nid; enum zone_type i; /* Sort early_node_map as initialisation assumes it is sorted */ sort_node_map(); /* Record where the zone boundaries are */ memset(arch_zone_lowest_possible_pfn, 0, sizeof(arch_zone_lowest_possible_pfn)); memset(arch_zone_highest_possible_pfn, 0, sizeof(arch_zone_highest_possible_pfn)); arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; for (i = 1; i < MAX_NR_ZONES; i++) { if (i == ZONE_MOVABLE) continue; arch_zone_lowest_possible_pfn[i] = arch_zone_highest_possible_pfn[i-1]; arch_zone_highest_possible_pfn[i] = max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); } arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; /* Find the PFNs that ZONE_MOVABLE begins at in each node */ memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); find_zone_movable_pfns_for_nodes(zone_movable_pfn); /* Print out the zone ranges */ printk("Zone PFN ranges:\n"); for (i = 0; i < MAX_NR_ZONES; i++) { if (i == ZONE_MOVABLE) continue; printk(" %-8s %8lu -> %8lu\n", zone_names[i], arch_zone_lowest_possible_pfn[i], arch_zone_highest_possible_pfn[i]); } /* Print out the PFNs ZONE_MOVABLE begins at in each node */ printk("Movable zone start PFN for each node\n"); for (i = 0; i < MAX_NUMNODES; i++) { if (zone_movable_pfn[i]) printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); } /* Print out the early_node_map[] */ printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); for (i = 0; i < nr_nodemap_entries; i++) printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid, early_node_map[i].start_pfn, early_node_map[i].end_pfn); /* Initialise every node */ setup_nr_node_ids(); for_each_online_node(nid) { pg_data_t *pgdat = NODE_DATA(nid); free_area_init_node(nid, pgdat, NULL, find_min_pfn_for_node(nid), NULL); /* Any memory on that node */ if (pgdat->node_present_pages) node_set_state(nid, N_HIGH_MEMORY); check_for_regular_memory(pgdat); } } static int __init cmdline_parse_core(char *p, unsigned long *core) { unsigned long long coremem; if (!p) return -EINVAL; coremem = memparse(p, &p); *core = coremem >> PAGE_SHIFT; /* Paranoid check that UL is enough for the coremem value */ WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); return 0; } /* * kernelcore=size sets the amount of memory for use for allocations that * cannot be reclaimed or migrated. */ static int __init cmdline_parse_kernelcore(char *p) { return cmdline_parse_core(p, &required_kernelcore); } /* * movablecore=size sets the amount of memory for use for allocations that * can be reclaimed or migrated. */ static int __init cmdline_parse_movablecore(char *p) { return cmdline_parse_core(p, &required_movablecore); } early_param("kernelcore", cmdline_parse_kernelcore); early_param("movablecore", cmdline_parse_movablecore); #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ /** * set_dma_reserve - set the specified number of pages reserved in the first zone * @new_dma_reserve: The number of pages to mark reserved * * The per-cpu batchsize and zone watermarks are determined by present_pages. * In the DMA zone, a significant percentage may be consumed by kernel image * and other unfreeable allocations which can skew the watermarks badly. This * function may optionally be used to account for unfreeable pages in the * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and * smaller per-cpu batchsize. */ void __init set_dma_reserve(unsigned long new_dma_reserve) { dma_reserve = new_dma_reserve; } #ifndef CONFIG_NEED_MULTIPLE_NODES static bootmem_data_t contig_bootmem_data; struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; EXPORT_SYMBOL(contig_page_data); #endif void __init free_area_init(unsigned long *zones_size) { free_area_init_node(0, NODE_DATA(0), zones_size, __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); } static int page_alloc_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { int cpu = (unsigned long)hcpu; if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { local_irq_disable(); __drain_pages(cpu); vm_events_fold_cpu(cpu); local_irq_enable(); refresh_cpu_vm_stats(cpu); } return NOTIFY_OK; } void __init page_alloc_init(void) { hotcpu_notifier(page_alloc_cpu_notify, 0); } /* * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio * or min_free_kbytes changes. */ static void calculate_totalreserve_pages(void) { struct pglist_data *pgdat; unsigned long reserve_pages = 0; enum zone_type i, j; for_each_online_pgdat(pgdat) { for (i = 0; i < MAX_NR_ZONES; i++) { struct zone *zone = pgdat->node_zones + i; unsigned long max = 0; /* Find valid and maximum lowmem_reserve in the zone */ for (j = i; j < MAX_NR_ZONES; j++) { if (zone->lowmem_reserve[j] > max) max = zone->lowmem_reserve[j]; } /* we treat pages_high as reserved pages. */ max += zone->pages_high; if (max > zone->present_pages) max = zone->present_pages; reserve_pages += max; } } totalreserve_pages = reserve_pages; } /* * setup_per_zone_lowmem_reserve - called whenever * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone * has a correct pages reserved value, so an adequate number of * pages are left in the zone after a successful __alloc_pages(). */ static void setup_per_zone_lowmem_reserve(void) { struct pglist_data *pgdat; enum zone_type j, idx; for_each_online_pgdat(pgdat) { for (j = 0; j < MAX_NR_ZONES; j++) { struct zone *zone = pgdat->node_zones + j; unsigned long present_pages = zone->present_pages; zone->lowmem_reserve[j] = 0; idx = j; while (idx) { struct zone *lower_zone; idx--; if (sysctl_lowmem_reserve_ratio[idx] < 1) sysctl_lowmem_reserve_ratio[idx] = 1; lower_zone = pgdat->node_zones + idx; lower_zone->lowmem_reserve[j] = present_pages / sysctl_lowmem_reserve_ratio[idx]; present_pages += lower_zone->present_pages; } } } /* update totalreserve_pages */ calculate_totalreserve_pages(); } /** * setup_per_zone_pages_min - called when min_free_kbytes changes. * * Ensures that the pages_{min,low,high} values for each zone are set correctly * with respect to min_free_kbytes. */ void setup_per_zone_pages_min(void) { unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); unsigned long lowmem_pages = 0; struct zone *zone; unsigned long flags; /* Calculate total number of !ZONE_HIGHMEM pages */ for_each_zone(zone) { if (!is_highmem(zone)) lowmem_pages += zone->present_pages; } for_each_zone(zone) { u64 tmp; spin_lock_irqsave(&zone->lru_lock, flags); tmp = (u64)pages_min * zone->present_pages; do_div(tmp, lowmem_pages); if (is_highmem(zone)) { /* * __GFP_HIGH and PF_MEMALLOC allocations usually don't * need highmem pages, so cap pages_min to a small * value here. * * The (pages_high-pages_low) and (pages_low-pages_min) * deltas controls asynch page reclaim, and so should * not be capped for highmem. */ int min_pages; min_pages = zone->present_pages / 1024; if (min_pages < SWAP_CLUSTER_MAX) min_pages = SWAP_CLUSTER_MAX; if (min_pages > 128) min_pages = 128; zone->pages_min = min_pages; } else { /* * If it's a lowmem zone, reserve a number of pages * proportionate to the zone's size. */ zone->pages_min = tmp; } zone->pages_low = zone->pages_min + (tmp >> 2); zone->pages_high = zone->pages_min + (tmp >> 1); spin_unlock_irqrestore(&zone->lru_lock, flags); } /* update totalreserve_pages */ calculate_totalreserve_pages(); } /* * Initialise min_free_kbytes. * * For small machines we want it small (128k min). For large machines * we want it large (64MB max). But it is not linear, because network * bandwidth does not increase linearly with machine size. We use * * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: * min_free_kbytes = sqrt(lowmem_kbytes * 16) * * which yields * * 16MB: 512k * 32MB: 724k * 64MB: 1024k * 128MB: 1448k * 256MB: 2048k * 512MB: 2896k * 1024MB: 4096k * 2048MB: 5792k * 4096MB: 8192k * 8192MB: 11584k * 16384MB: 16384k */ static int __init init_per_zone_pages_min(void) { unsigned long lowmem_kbytes; lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); min_free_kbytes = int_sqrt(lowmem_kbytes * 16); if (min_free_kbytes < 128) min_free_kbytes = 128; if (min_free_kbytes > 65536) min_free_kbytes = 65536; setup_per_zone_pages_min(); setup_per_zone_lowmem_reserve(); return 0; } module_init(init_per_zone_pages_min) /* * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so * that we can call two helper functions whenever min_free_kbytes * changes. */ int min_free_kbytes_sysctl_handler(ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { proc_dointvec(table, write, file, buffer, length, ppos); if (write) setup_per_zone_pages_min(); return 0; } #ifdef CONFIG_NUMA int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { struct zone *zone; int rc; rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); if (rc) return rc; for_each_zone(zone) zone->min_unmapped_pages = (zone->present_pages * sysctl_min_unmapped_ratio) / 100; return 0; } int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { struct zone *zone; int rc; rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); if (rc) return rc; for_each_zone(zone) zone->min_slab_pages = (zone->present_pages * sysctl_min_slab_ratio) / 100; return 0; } #endif /* * lowmem_reserve_ratio_sysctl_handler - just a wrapper around * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() * whenever sysctl_lowmem_reserve_ratio changes. * * The reserve ratio obviously has absolutely no relation with the * pages_min watermarks. The lowmem reserve ratio can only make sense * if in function of the boot time zone sizes. */ int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { proc_dointvec_minmax(table, write, file, buffer, length, ppos); setup_per_zone_lowmem_reserve(); return 0; } /* * percpu_pagelist_fraction - changes the pcp->high for each zone on each * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist * can have before it gets flushed back to buddy allocator. */ int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { struct zone *zone; unsigned int cpu; int ret; ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); if (!write || (ret == -EINVAL)) return ret; for_each_zone(zone) { for_each_online_cpu(cpu) { unsigned long high; high = zone->present_pages / percpu_pagelist_fraction; setup_pagelist_highmark(zone_pcp(zone, cpu), high); } } return 0; } int hashdist = HASHDIST_DEFAULT; #ifdef CONFIG_NUMA static int __init set_hashdist(char *str) { if (!str) return 0; hashdist = simple_strtoul(str, &str, 0); return 1; } __setup("hashdist=", set_hashdist); #endif /* * allocate a large system hash table from bootmem * - it is assumed that the hash table must contain an exact power-of-2 * quantity of entries * - limit is the number of hash buckets, not the total allocation size */ void *__init alloc_large_system_hash(const char *tablename, unsigned long bucketsize, unsigned long numentries, int scale, int flags, unsigned int *_hash_shift, unsigned int *_hash_mask, unsigned long limit) { unsigned long long max = limit; unsigned long log2qty, size; void *table = NULL; /* allow the kernel cmdline to have a say */ if (!numentries) { /* round applicable memory size up to nearest megabyte */ numentries = nr_kernel_pages; numentries += (1UL << (20 - PAGE_SHIFT)) - 1; numentries >>= 20 - PAGE_SHIFT; numentries <<= 20 - PAGE_SHIFT; /* limit to 1 bucket per 2^scale bytes of low memory */ if (scale > PAGE_SHIFT) numentries >>= (scale - PAGE_SHIFT); else numentries <<= (PAGE_SHIFT - scale); /* Make sure we've got at least a 0-order allocation.. */ if (unlikely((numentries * bucketsize) < PAGE_SIZE)) numentries = PAGE_SIZE / bucketsize; } numentries = roundup_pow_of_two(numentries); /* limit allocation size to 1/16 total memory by default */ if (max == 0) { max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; do_div(max, bucketsize); } if (numentries > max) numentries = max; log2qty = ilog2(numentries); do { size = bucketsize << log2qty; if (flags & HASH_EARLY) table = alloc_bootmem(size); else if (hashdist) table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); else { unsigned long order; for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) ; table = (void*) __get_free_pages(GFP_ATOMIC, order); /* * If bucketsize is not a power-of-two, we may free * some pages at the end of hash table. */ if (table) { unsigned long alloc_end = (unsigned long)table + (PAGE_SIZE << order); unsigned long used = (unsigned long)table + PAGE_ALIGN(size); split_page(virt_to_page(table), order); while (used < alloc_end) { free_page(used); used += PAGE_SIZE; } } } } while (!table && size > PAGE_SIZE && --log2qty); if (!table) panic("Failed to allocate %s hash table\n", tablename); printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", tablename, (1U << log2qty), ilog2(size) - PAGE_SHIFT, size); if (_hash_shift) *_hash_shift = log2qty; if (_hash_mask) *_hash_mask = (1 << log2qty) - 1; return table; } #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE struct page *pfn_to_page(unsigned long pfn) { return __pfn_to_page(pfn); } unsigned long page_to_pfn(struct page *page) { return __page_to_pfn(page); } EXPORT_SYMBOL(pfn_to_page); EXPORT_SYMBOL(page_to_pfn); #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ /* Return a pointer to the bitmap storing bits affecting a block of pages */ static inline unsigned long *get_pageblock_bitmap(struct zone *zone, unsigned long pfn) { #ifdef CONFIG_SPARSEMEM return __pfn_to_section(pfn)->pageblock_flags; #else return zone->pageblock_flags; #endif /* CONFIG_SPARSEMEM */ } static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) { #ifdef CONFIG_SPARSEMEM pfn &= (PAGES_PER_SECTION-1); return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS; #else pfn = pfn - zone->zone_start_pfn; return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS; #endif /* CONFIG_SPARSEMEM */ } /** * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages * @page: The page within the block of interest * @start_bitidx: The first bit of interest to retrieve * @end_bitidx: The last bit of interest * returns pageblock_bits flags */ unsigned long get_pageblock_flags_group(struct page *page, int start_bitidx, int end_bitidx) { struct zone *zone; unsigned long *bitmap; unsigned long pfn, bitidx; unsigned long flags = 0; unsigned long value = 1; zone = page_zone(page); pfn = page_to_pfn(page); bitmap = get_pageblock_bitmap(zone, pfn); bitidx = pfn_to_bitidx(zone, pfn); for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) if (test_bit(bitidx + start_bitidx, bitmap)) flags |= value; return flags; } /** * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages * @page: The page within the block of interest * @start_bitidx: The first bit of interest * @end_bitidx: The last bit of interest * @flags: The flags to set */ void set_pageblock_flags_group(struct page *page, unsigned long flags, int start_bitidx, int end_bitidx) { struct zone *zone; unsigned long *bitmap; unsigned long pfn, bitidx; unsigned long value = 1; zone = page_zone(page); pfn = page_to_pfn(page); bitmap = get_pageblock_bitmap(zone, pfn); bitidx = pfn_to_bitidx(zone, pfn); for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) if (flags & value) __set_bit(bitidx + start_bitidx, bitmap); else __clear_bit(bitidx + start_bitidx, bitmap); }