// SPDX-License-Identifier: GPL-2.0 /* * Test module to generate lockups */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/sched/signal.h> #include <linux/sched/clock.h> #include <linux/cpu.h> #include <linux/nmi.h> #include <linux/mm.h> #include <linux/uaccess.h> #include <linux/file.h> static unsigned int time_secs; module_param(time_secs, uint, 0600); MODULE_PARM_DESC(time_secs, "lockup time in seconds, default 0"); static unsigned int time_nsecs; module_param(time_nsecs, uint, 0600); MODULE_PARM_DESC(time_nsecs, "nanoseconds part of lockup time, default 0"); static unsigned int cooldown_secs; module_param(cooldown_secs, uint, 0600); MODULE_PARM_DESC(cooldown_secs, "cooldown time between iterations in seconds, default 0"); static unsigned int cooldown_nsecs; module_param(cooldown_nsecs, uint, 0600); MODULE_PARM_DESC(cooldown_nsecs, "nanoseconds part of cooldown, default 0"); static unsigned int iterations = 1; module_param(iterations, uint, 0600); MODULE_PARM_DESC(iterations, "lockup iterations, default 1"); static bool all_cpus; module_param(all_cpus, bool, 0400); MODULE_PARM_DESC(all_cpus, "trigger lockup at all cpus at once"); static int wait_state; static char *state = "R"; module_param(state, charp, 0400); MODULE_PARM_DESC(state, "wait in 'R' running (default), 'D' uninterruptible, 'K' killable, 'S' interruptible state"); static bool use_hrtimer; module_param(use_hrtimer, bool, 0400); MODULE_PARM_DESC(use_hrtimer, "use high-resolution timer for sleeping"); static bool iowait; module_param(iowait, bool, 0400); MODULE_PARM_DESC(iowait, "account sleep time as iowait"); static bool lock_read; module_param(lock_read, bool, 0400); MODULE_PARM_DESC(lock_read, "lock read-write locks for read"); static bool lock_single; module_param(lock_single, bool, 0400); MODULE_PARM_DESC(lock_single, "acquire locks only at one cpu"); static bool reacquire_locks; module_param(reacquire_locks, bool, 0400); MODULE_PARM_DESC(reacquire_locks, "release and reacquire locks/irq/preempt between iterations"); static bool touch_softlockup; module_param(touch_softlockup, bool, 0600); MODULE_PARM_DESC(touch_softlockup, "touch soft-lockup watchdog between iterations"); static bool touch_hardlockup; module_param(touch_hardlockup, bool, 0600); MODULE_PARM_DESC(touch_hardlockup, "touch hard-lockup watchdog between iterations"); static bool call_cond_resched; module_param(call_cond_resched, bool, 0600); MODULE_PARM_DESC(call_cond_resched, "call cond_resched() between iterations"); static bool measure_lock_wait; module_param(measure_lock_wait, bool, 0400); MODULE_PARM_DESC(measure_lock_wait, "measure lock wait time"); static unsigned long lock_wait_threshold = ULONG_MAX; module_param(lock_wait_threshold, ulong, 0400); MODULE_PARM_DESC(lock_wait_threshold, "print lock wait time longer than this in nanoseconds, default off"); static bool test_disable_irq; module_param_named(disable_irq, test_disable_irq, bool, 0400); MODULE_PARM_DESC(disable_irq, "disable interrupts: generate hard-lockups"); static bool disable_softirq; module_param(disable_softirq, bool, 0400); MODULE_PARM_DESC(disable_softirq, "disable bottom-half irq handlers"); static bool disable_preempt; module_param(disable_preempt, bool, 0400); MODULE_PARM_DESC(disable_preempt, "disable preemption: generate soft-lockups"); static bool lock_rcu; module_param(lock_rcu, bool, 0400); MODULE_PARM_DESC(lock_rcu, "grab rcu_read_lock: generate rcu stalls"); static bool lock_mmap_sem; module_param(lock_mmap_sem, bool, 0400); MODULE_PARM_DESC(lock_mmap_sem, "lock mm->mmap_lock: block procfs interfaces"); static unsigned long lock_rwsem_ptr; module_param_unsafe(lock_rwsem_ptr, ulong, 0400); MODULE_PARM_DESC(lock_rwsem_ptr, "lock rw_semaphore at address"); static unsigned long lock_mutex_ptr; module_param_unsafe(lock_mutex_ptr, ulong, 0400); MODULE_PARM_DESC(lock_mutex_ptr, "lock mutex at address"); static unsigned long lock_spinlock_ptr; module_param_unsafe(lock_spinlock_ptr, ulong, 0400); MODULE_PARM_DESC(lock_spinlock_ptr, "lock spinlock at address"); static unsigned long lock_rwlock_ptr; module_param_unsafe(lock_rwlock_ptr, ulong, 0400); MODULE_PARM_DESC(lock_rwlock_ptr, "lock rwlock at address"); static unsigned int alloc_pages_nr; module_param_unsafe(alloc_pages_nr, uint, 0600); MODULE_PARM_DESC(alloc_pages_nr, "allocate and free pages under locks"); static unsigned int alloc_pages_order; module_param(alloc_pages_order, uint, 0400); MODULE_PARM_DESC(alloc_pages_order, "page order to allocate"); static gfp_t alloc_pages_gfp = GFP_KERNEL; module_param_unsafe(alloc_pages_gfp, uint, 0400); MODULE_PARM_DESC(alloc_pages_gfp, "allocate pages with this gfp_mask, default GFP_KERNEL"); static bool alloc_pages_atomic; module_param(alloc_pages_atomic, bool, 0400); MODULE_PARM_DESC(alloc_pages_atomic, "allocate pages with GFP_ATOMIC"); static bool reallocate_pages; module_param(reallocate_pages, bool, 0400); MODULE_PARM_DESC(reallocate_pages, "free and allocate pages between iterations"); struct file *test_file; static struct inode *test_inode; static char test_file_path[256]; module_param_string(file_path, test_file_path, sizeof(test_file_path), 0400); MODULE_PARM_DESC(file_path, "file path to test"); static bool test_lock_inode; module_param_named(lock_inode, test_lock_inode, bool, 0400); MODULE_PARM_DESC(lock_inode, "lock file -> inode -> i_rwsem"); static bool test_lock_mapping; module_param_named(lock_mapping, test_lock_mapping, bool, 0400); MODULE_PARM_DESC(lock_mapping, "lock file -> mapping -> i_mmap_rwsem"); static bool test_lock_sb_umount; module_param_named(lock_sb_umount, test_lock_sb_umount, bool, 0400); MODULE_PARM_DESC(lock_sb_umount, "lock file -> sb -> s_umount"); static atomic_t alloc_pages_failed = ATOMIC_INIT(0); static atomic64_t max_lock_wait = ATOMIC64_INIT(0); static struct task_struct *main_task; static int master_cpu; static void test_lock(bool master, bool verbose) { u64 wait_start; if (measure_lock_wait) wait_start = local_clock(); if (lock_mutex_ptr && master) { if (verbose) pr_notice("lock mutex %ps\n", (void *)lock_mutex_ptr); mutex_lock((struct mutex *)lock_mutex_ptr); } if (lock_rwsem_ptr && master) { if (verbose) pr_notice("lock rw_semaphore %ps\n", (void *)lock_rwsem_ptr); if (lock_read) down_read((struct rw_semaphore *)lock_rwsem_ptr); else down_write((struct rw_semaphore *)lock_rwsem_ptr); } if (lock_mmap_sem && master) { if (verbose) pr_notice("lock mmap_lock pid=%d\n", main_task->pid); if (lock_read) mmap_read_lock(main_task->mm); else mmap_write_lock(main_task->mm); } if (test_disable_irq) local_irq_disable(); if (disable_softirq) local_bh_disable(); if (disable_preempt) preempt_disable(); if (lock_rcu) rcu_read_lock(); if (lock_spinlock_ptr && master) { if (verbose) pr_notice("lock spinlock %ps\n", (void *)lock_spinlock_ptr); spin_lock((spinlock_t *)lock_spinlock_ptr); } if (lock_rwlock_ptr && master) { if (verbose) pr_notice("lock rwlock %ps\n", (void *)lock_rwlock_ptr); if (lock_read) read_lock((rwlock_t *)lock_rwlock_ptr); else write_lock((rwlock_t *)lock_rwlock_ptr); } if (measure_lock_wait) { s64 cur_wait = local_clock() - wait_start; s64 max_wait = atomic64_read(&max_lock_wait); do { if (cur_wait < max_wait) break; max_wait = atomic64_cmpxchg(&max_lock_wait, max_wait, cur_wait); } while (max_wait != cur_wait); if (cur_wait > lock_wait_threshold) pr_notice_ratelimited("lock wait %lld ns\n", cur_wait); } } static void test_unlock(bool master, bool verbose) { if (lock_rwlock_ptr && master) { if (lock_read) read_unlock((rwlock_t *)lock_rwlock_ptr); else write_unlock((rwlock_t *)lock_rwlock_ptr); if (verbose) pr_notice("unlock rwlock %ps\n", (void *)lock_rwlock_ptr); } if (lock_spinlock_ptr && master) { spin_unlock((spinlock_t *)lock_spinlock_ptr); if (verbose) pr_notice("unlock spinlock %ps\n", (void *)lock_spinlock_ptr); } if (lock_rcu) rcu_read_unlock(); if (disable_preempt) preempt_enable(); if (disable_softirq) local_bh_enable(); if (test_disable_irq) local_irq_enable(); if (lock_mmap_sem && master) { if (lock_read) mmap_read_unlock(main_task->mm); else mmap_write_unlock(main_task->mm); if (verbose) pr_notice("unlock mmap_lock pid=%d\n", main_task->pid); } if (lock_rwsem_ptr && master) { if (lock_read) up_read((struct rw_semaphore *)lock_rwsem_ptr); else up_write((struct rw_semaphore *)lock_rwsem_ptr); if (verbose) pr_notice("unlock rw_semaphore %ps\n", (void *)lock_rwsem_ptr); } if (lock_mutex_ptr && master) { mutex_unlock((struct mutex *)lock_mutex_ptr); if (verbose) pr_notice("unlock mutex %ps\n", (void *)lock_mutex_ptr); } } static void test_alloc_pages(struct list_head *pages) { struct page *page; unsigned int i; for (i = 0; i < alloc_pages_nr; i++) { page = alloc_pages(alloc_pages_gfp, alloc_pages_order); if (!page) { atomic_inc(&alloc_pages_failed); break; } list_add(&page->lru, pages); } } static void test_free_pages(struct list_head *pages) { struct page *page, *next; list_for_each_entry_safe(page, next, pages, lru) __free_pages(page, alloc_pages_order); INIT_LIST_HEAD(pages); } static void test_wait(unsigned int secs, unsigned int nsecs) { if (wait_state == TASK_RUNNING) { if (secs) mdelay(secs * MSEC_PER_SEC); if (nsecs) ndelay(nsecs); return; } __set_current_state(wait_state); if (use_hrtimer) { ktime_t time; time = ns_to_ktime((u64)secs * NSEC_PER_SEC + nsecs); schedule_hrtimeout(&time, HRTIMER_MODE_REL); } else { schedule_timeout(secs * HZ + nsecs_to_jiffies(nsecs)); } } static void test_lockup(bool master) { u64 lockup_start = local_clock(); unsigned int iter = 0; LIST_HEAD(pages); pr_notice("Start on CPU%d\n", raw_smp_processor_id()); test_lock(master, true); test_alloc_pages(&pages); while (iter++ < iterations && !signal_pending(main_task)) { if (iowait) current->in_iowait = 1; test_wait(time_secs, time_nsecs); if (iowait) current->in_iowait = 0; if (reallocate_pages) test_free_pages(&pages); if (reacquire_locks) test_unlock(master, false); if (touch_softlockup) touch_softlockup_watchdog(); if (touch_hardlockup) touch_nmi_watchdog(); if (call_cond_resched) cond_resched(); test_wait(cooldown_secs, cooldown_nsecs); if (reacquire_locks) test_lock(master, false); if (reallocate_pages) test_alloc_pages(&pages); } pr_notice("Finish on CPU%d in %lld ns\n", raw_smp_processor_id(), local_clock() - lockup_start); test_free_pages(&pages); test_unlock(master, true); } static DEFINE_PER_CPU(struct work_struct, test_works); static void test_work_fn(struct work_struct *work) { test_lockup(!lock_single || work == per_cpu_ptr(&test_works, master_cpu)); } static bool test_kernel_ptr(unsigned long addr, int size) { void *ptr = (void *)addr; char buf; if (!addr) return false; /* should be at least readable kernel address */ if (access_ok(ptr, 1) || access_ok(ptr + size - 1, 1) || get_kernel_nofault(buf, ptr) || get_kernel_nofault(buf, ptr + size - 1)) { pr_err("invalid kernel ptr: %#lx\n", addr); return true; } return false; } static bool __maybe_unused test_magic(unsigned long addr, int offset, unsigned int expected) { void *ptr = (void *)addr + offset; unsigned int magic = 0; if (!addr) return false; if (get_kernel_nofault(magic, ptr) || magic != expected) { pr_err("invalid magic at %#lx + %#x = %#x, expected %#x\n", addr, offset, magic, expected); return true; } return false; } static int __init test_lockup_init(void) { u64 test_start = local_clock(); main_task = current; switch (state[0]) { case 'S': wait_state = TASK_INTERRUPTIBLE; break; case 'D': wait_state = TASK_UNINTERRUPTIBLE; break; case 'K': wait_state = TASK_KILLABLE; break; case 'R': wait_state = TASK_RUNNING; break; default: pr_err("unknown state=%s\n", state); return -EINVAL; } if (alloc_pages_atomic) alloc_pages_gfp = GFP_ATOMIC; if (test_kernel_ptr(lock_spinlock_ptr, sizeof(spinlock_t)) || test_kernel_ptr(lock_rwlock_ptr, sizeof(rwlock_t)) || test_kernel_ptr(lock_mutex_ptr, sizeof(struct mutex)) || test_kernel_ptr(lock_rwsem_ptr, sizeof(struct rw_semaphore))) return -EINVAL; #ifdef CONFIG_DEBUG_SPINLOCK #ifdef CONFIG_PREEMPT_RT if (test_magic(lock_spinlock_ptr, offsetof(spinlock_t, lock.wait_lock.magic), SPINLOCK_MAGIC) || test_magic(lock_rwlock_ptr, offsetof(rwlock_t, rtmutex.wait_lock.magic), SPINLOCK_MAGIC) || test_magic(lock_mutex_ptr, offsetof(struct mutex, lock.wait_lock.magic), SPINLOCK_MAGIC) || test_magic(lock_rwsem_ptr, offsetof(struct rw_semaphore, rtmutex.wait_lock.magic), SPINLOCK_MAGIC)) return -EINVAL; #else if (test_magic(lock_spinlock_ptr, offsetof(spinlock_t, rlock.magic), SPINLOCK_MAGIC) || test_magic(lock_rwlock_ptr, offsetof(rwlock_t, magic), RWLOCK_MAGIC) || test_magic(lock_mutex_ptr, offsetof(struct mutex, wait_lock.rlock.magic), SPINLOCK_MAGIC) || test_magic(lock_rwsem_ptr, offsetof(struct rw_semaphore, wait_lock.magic), SPINLOCK_MAGIC)) return -EINVAL; #endif #endif if ((wait_state != TASK_RUNNING || (call_cond_resched && !reacquire_locks) || (alloc_pages_nr && gfpflags_allow_blocking(alloc_pages_gfp))) && (test_disable_irq || disable_softirq || disable_preempt || lock_rcu || lock_spinlock_ptr || lock_rwlock_ptr)) { pr_err("refuse to sleep in atomic context\n"); return -EINVAL; } if (lock_mmap_sem && !main_task->mm) { pr_err("no mm to lock mmap_lock\n"); return -EINVAL; } if (test_file_path[0]) { test_file = filp_open(test_file_path, O_RDONLY, 0); if (IS_ERR(test_file)) { pr_err("failed to open %s: %ld\n", test_file_path, PTR_ERR(test_file)); return PTR_ERR(test_file); } test_inode = file_inode(test_file); } else if (test_lock_inode || test_lock_mapping || test_lock_sb_umount) { pr_err("no file to lock\n"); return -EINVAL; } if (test_lock_inode && test_inode) lock_rwsem_ptr = (unsigned long)&test_inode->i_rwsem; if (test_lock_mapping && test_file && test_file->f_mapping) lock_rwsem_ptr = (unsigned long)&test_file->f_mapping->i_mmap_rwsem; if (test_lock_sb_umount && test_inode) lock_rwsem_ptr = (unsigned long)&test_inode->i_sb->s_umount; pr_notice("START pid=%d time=%u +%u ns cooldown=%u +%u ns iterations=%u state=%s %s%s%s%s%s%s%s%s%s%s%s\n", main_task->pid, time_secs, time_nsecs, cooldown_secs, cooldown_nsecs, iterations, state, all_cpus ? "all_cpus " : "", iowait ? "iowait " : "", test_disable_irq ? "disable_irq " : "", disable_softirq ? "disable_softirq " : "", disable_preempt ? "disable_preempt " : "", lock_rcu ? "lock_rcu " : "", lock_read ? "lock_read " : "", touch_softlockup ? "touch_softlockup " : "", touch_hardlockup ? "touch_hardlockup " : "", call_cond_resched ? "call_cond_resched " : "", reacquire_locks ? "reacquire_locks " : ""); if (alloc_pages_nr) pr_notice("ALLOCATE PAGES nr=%u order=%u gfp=%pGg %s\n", alloc_pages_nr, alloc_pages_order, &alloc_pages_gfp, reallocate_pages ? "reallocate_pages " : ""); if (all_cpus) { unsigned int cpu; cpus_read_lock(); preempt_disable(); master_cpu = smp_processor_id(); for_each_online_cpu(cpu) { INIT_WORK(per_cpu_ptr(&test_works, cpu), test_work_fn); queue_work_on(cpu, system_highpri_wq, per_cpu_ptr(&test_works, cpu)); } preempt_enable(); for_each_online_cpu(cpu) flush_work(per_cpu_ptr(&test_works, cpu)); cpus_read_unlock(); } else { test_lockup(true); } if (measure_lock_wait) pr_notice("Maximum lock wait: %lld ns\n", atomic64_read(&max_lock_wait)); if (alloc_pages_nr) pr_notice("Page allocation failed %u times\n", atomic_read(&alloc_pages_failed)); pr_notice("FINISH in %llu ns\n", local_clock() - test_start); if (test_file) fput(test_file); if (signal_pending(main_task)) return -EINTR; return -EAGAIN; } module_init(test_lockup_init); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Konstantin Khlebnikov <khlebnikov@yandex-team.ru>"); MODULE_DESCRIPTION("Test module to generate lockups");