// SPDX-License-Identifier: GPL-2.0-only /* * Stack depot - a stack trace storage that avoids duplication. * * Internally, stack depot maintains a hash table of unique stacktraces. The * stack traces themselves are stored contiguously one after another in a set * of separate page allocations. * * Author: Alexander Potapenko <glider@google.com> * Copyright (C) 2016 Google, Inc. * * Based on the code by Dmitry Chernenkov. */ #define pr_fmt(fmt) "stackdepot: " fmt #include <linux/debugfs.h> #include <linux/gfp.h> #include <linux/jhash.h> #include <linux/kernel.h> #include <linux/kmsan.h> #include <linux/list.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/poison.h> #include <linux/printk.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/refcount.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/stacktrace.h> #include <linux/stackdepot.h> #include <linux/string.h> #include <linux/types.h> #include <linux/memblock.h> #include <linux/kasan-enabled.h> #define DEPOT_POOLS_CAP 8192 /* The pool_index is offset by 1 so the first record does not have a 0 handle. */ #define DEPOT_MAX_POOLS \ (((1LL << (DEPOT_POOL_INDEX_BITS)) - 1 < DEPOT_POOLS_CAP) ? \ (1LL << (DEPOT_POOL_INDEX_BITS)) - 1 : DEPOT_POOLS_CAP) static bool stack_depot_disabled; static bool __stack_depot_early_init_requested __initdata = IS_ENABLED(CONFIG_STACKDEPOT_ALWAYS_INIT); static bool __stack_depot_early_init_passed __initdata; /* Use one hash table bucket per 16 KB of memory. */ #define STACK_HASH_TABLE_SCALE 14 /* Limit the number of buckets between 4K and 1M. */ #define STACK_BUCKET_NUMBER_ORDER_MIN 12 #define STACK_BUCKET_NUMBER_ORDER_MAX 20 /* Initial seed for jhash2. */ #define STACK_HASH_SEED 0x9747b28c /* Hash table of stored stack records. */ static struct list_head *stack_table; /* Fixed order of the number of table buckets. Used when KASAN is enabled. */ static unsigned int stack_bucket_number_order; /* Hash mask for indexing the table. */ static unsigned int stack_hash_mask; /* Array of memory regions that store stack records. */ static void *stack_pools[DEPOT_MAX_POOLS]; /* Newly allocated pool that is not yet added to stack_pools. */ static void *new_pool; /* Number of pools in stack_pools. */ static int pools_num; /* Offset to the unused space in the currently used pool. */ static size_t pool_offset = DEPOT_POOL_SIZE; /* Freelist of stack records within stack_pools. */ static LIST_HEAD(free_stacks); /* The lock must be held when performing pool or freelist modifications. */ static DEFINE_RAW_SPINLOCK(pool_lock); /* Statistics counters for debugfs. */ enum depot_counter_id { DEPOT_COUNTER_REFD_ALLOCS, DEPOT_COUNTER_REFD_FREES, DEPOT_COUNTER_REFD_INUSE, DEPOT_COUNTER_FREELIST_SIZE, DEPOT_COUNTER_PERSIST_COUNT, DEPOT_COUNTER_PERSIST_BYTES, DEPOT_COUNTER_COUNT, }; static long counters[DEPOT_COUNTER_COUNT]; static const char *const counter_names[] = { [DEPOT_COUNTER_REFD_ALLOCS] = "refcounted_allocations", [DEPOT_COUNTER_REFD_FREES] = "refcounted_frees", [DEPOT_COUNTER_REFD_INUSE] = "refcounted_in_use", [DEPOT_COUNTER_FREELIST_SIZE] = "freelist_size", [DEPOT_COUNTER_PERSIST_COUNT] = "persistent_count", [DEPOT_COUNTER_PERSIST_BYTES] = "persistent_bytes", }; static_assert(ARRAY_SIZE(counter_names) == DEPOT_COUNTER_COUNT); static int __init disable_stack_depot(char *str) { return kstrtobool(str, &stack_depot_disabled); } early_param("stack_depot_disable", disable_stack_depot); void __init stack_depot_request_early_init(void) { /* Too late to request early init now. */ WARN_ON(__stack_depot_early_init_passed); __stack_depot_early_init_requested = true; } /* Initialize list_head's within the hash table. */ static void init_stack_table(unsigned long entries) { unsigned long i; for (i = 0; i < entries; i++) INIT_LIST_HEAD(&stack_table[i]); } /* Allocates a hash table via memblock. Can only be used during early boot. */ int __init stack_depot_early_init(void) { unsigned long entries = 0; /* This function must be called only once, from mm_init(). */ if (WARN_ON(__stack_depot_early_init_passed)) return 0; __stack_depot_early_init_passed = true; /* * Print disabled message even if early init has not been requested: * stack_depot_init() will not print one. */ if (stack_depot_disabled) { pr_info("disabled\n"); return 0; } /* * If KASAN is enabled, use the maximum order: KASAN is frequently used * in fuzzing scenarios, which leads to a large number of different * stack traces being stored in stack depot. */ if (kasan_enabled() && !stack_bucket_number_order) stack_bucket_number_order = STACK_BUCKET_NUMBER_ORDER_MAX; /* * Check if early init has been requested after setting * stack_bucket_number_order: stack_depot_init() uses its value. */ if (!__stack_depot_early_init_requested) return 0; /* * If stack_bucket_number_order is not set, leave entries as 0 to rely * on the automatic calculations performed by alloc_large_system_hash(). */ if (stack_bucket_number_order) entries = 1UL << stack_bucket_number_order; pr_info("allocating hash table via alloc_large_system_hash\n"); stack_table = alloc_large_system_hash("stackdepot", sizeof(struct list_head), entries, STACK_HASH_TABLE_SCALE, HASH_EARLY, NULL, &stack_hash_mask, 1UL << STACK_BUCKET_NUMBER_ORDER_MIN, 1UL << STACK_BUCKET_NUMBER_ORDER_MAX); if (!stack_table) { pr_err("hash table allocation failed, disabling\n"); stack_depot_disabled = true; return -ENOMEM; } if (!entries) { /* * Obtain the number of entries that was calculated by * alloc_large_system_hash(). */ entries = stack_hash_mask + 1; } init_stack_table(entries); return 0; } /* Allocates a hash table via kvcalloc. Can be used after boot. */ int stack_depot_init(void) { static DEFINE_MUTEX(stack_depot_init_mutex); unsigned long entries; int ret = 0; mutex_lock(&stack_depot_init_mutex); if (stack_depot_disabled || stack_table) goto out_unlock; /* * Similarly to stack_depot_early_init, use stack_bucket_number_order * if assigned, and rely on automatic scaling otherwise. */ if (stack_bucket_number_order) { entries = 1UL << stack_bucket_number_order; } else { int scale = STACK_HASH_TABLE_SCALE; entries = nr_free_buffer_pages(); entries = roundup_pow_of_two(entries); if (scale > PAGE_SHIFT) entries >>= (scale - PAGE_SHIFT); else entries <<= (PAGE_SHIFT - scale); } if (entries < 1UL << STACK_BUCKET_NUMBER_ORDER_MIN) entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MIN; if (entries > 1UL << STACK_BUCKET_NUMBER_ORDER_MAX) entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MAX; pr_info("allocating hash table of %lu entries via kvcalloc\n", entries); stack_table = kvcalloc(entries, sizeof(struct list_head), GFP_KERNEL); if (!stack_table) { pr_err("hash table allocation failed, disabling\n"); stack_depot_disabled = true; ret = -ENOMEM; goto out_unlock; } stack_hash_mask = entries - 1; init_stack_table(entries); out_unlock: mutex_unlock(&stack_depot_init_mutex); return ret; } EXPORT_SYMBOL_GPL(stack_depot_init); /* * Initializes new stack pool, and updates the list of pools. */ static bool depot_init_pool(void **prealloc) { lockdep_assert_held(&pool_lock); if (unlikely(pools_num >= DEPOT_MAX_POOLS)) { /* Bail out if we reached the pool limit. */ WARN_ON_ONCE(pools_num > DEPOT_MAX_POOLS); /* should never happen */ WARN_ON_ONCE(!new_pool); /* to avoid unnecessary pre-allocation */ WARN_ONCE(1, "Stack depot reached limit capacity"); return false; } if (!new_pool && *prealloc) { /* We have preallocated memory, use it. */ WRITE_ONCE(new_pool, *prealloc); *prealloc = NULL; } if (!new_pool) return false; /* new_pool and *prealloc are NULL */ /* Save reference to the pool to be used by depot_fetch_stack(). */ stack_pools[pools_num] = new_pool; /* * Stack depot tries to keep an extra pool allocated even before it runs * out of space in the currently used pool. * * To indicate that a new preallocation is needed new_pool is reset to * NULL; do not reset to NULL if we have reached the maximum number of * pools. */ if (pools_num < DEPOT_MAX_POOLS) WRITE_ONCE(new_pool, NULL); else WRITE_ONCE(new_pool, STACK_DEPOT_POISON); /* Pairs with concurrent READ_ONCE() in depot_fetch_stack(). */ WRITE_ONCE(pools_num, pools_num + 1); ASSERT_EXCLUSIVE_WRITER(pools_num); pool_offset = 0; return true; } /* Keeps the preallocated memory to be used for a new stack depot pool. */ static void depot_keep_new_pool(void **prealloc) { lockdep_assert_held(&pool_lock); /* * If a new pool is already saved or the maximum number of * pools is reached, do not use the preallocated memory. */ if (new_pool) return; WRITE_ONCE(new_pool, *prealloc); *prealloc = NULL; } /* * Try to initialize a new stack record from the current pool, a cached pool, or * the current pre-allocation. */ static struct stack_record *depot_pop_free_pool(void **prealloc, size_t size) { struct stack_record *stack; void *current_pool; u32 pool_index; lockdep_assert_held(&pool_lock); if (pool_offset + size > DEPOT_POOL_SIZE) { if (!depot_init_pool(prealloc)) return NULL; } if (WARN_ON_ONCE(pools_num < 1)) return NULL; pool_index = pools_num - 1; current_pool = stack_pools[pool_index]; if (WARN_ON_ONCE(!current_pool)) return NULL; stack = current_pool + pool_offset; /* Pre-initialize handle once. */ stack->handle.pool_index_plus_1 = pool_index + 1; stack->handle.offset = pool_offset >> DEPOT_STACK_ALIGN; stack->handle.extra = 0; INIT_LIST_HEAD(&stack->hash_list); pool_offset += size; return stack; } /* Try to find next free usable entry from the freelist. */ static struct stack_record *depot_pop_free(void) { struct stack_record *stack; lockdep_assert_held(&pool_lock); if (list_empty(&free_stacks)) return NULL; /* * We maintain the invariant that the elements in front are least * recently used, and are therefore more likely to be associated with an * RCU grace period in the past. Consequently it is sufficient to only * check the first entry. */ stack = list_first_entry(&free_stacks, struct stack_record, free_list); if (!poll_state_synchronize_rcu(stack->rcu_state)) return NULL; list_del(&stack->free_list); counters[DEPOT_COUNTER_FREELIST_SIZE]--; return stack; } static inline size_t depot_stack_record_size(struct stack_record *s, unsigned int nr_entries) { const size_t used = flex_array_size(s, entries, nr_entries); const size_t unused = sizeof(s->entries) - used; WARN_ON_ONCE(sizeof(s->entries) < used); return ALIGN(sizeof(struct stack_record) - unused, 1 << DEPOT_STACK_ALIGN); } /* Allocates a new stack in a stack depot pool. */ static struct stack_record * depot_alloc_stack(unsigned long *entries, unsigned int nr_entries, u32 hash, depot_flags_t flags, void **prealloc) { struct stack_record *stack = NULL; size_t record_size; lockdep_assert_held(&pool_lock); /* This should already be checked by public API entry points. */ if (WARN_ON_ONCE(!nr_entries)) return NULL; /* Limit number of saved frames to CONFIG_STACKDEPOT_MAX_FRAMES. */ if (nr_entries > CONFIG_STACKDEPOT_MAX_FRAMES) nr_entries = CONFIG_STACKDEPOT_MAX_FRAMES; if (flags & STACK_DEPOT_FLAG_GET) { /* * Evictable entries have to allocate the max. size so they may * safely be re-used by differently sized allocations. */ record_size = depot_stack_record_size(stack, CONFIG_STACKDEPOT_MAX_FRAMES); stack = depot_pop_free(); } else { record_size = depot_stack_record_size(stack, nr_entries); } if (!stack) { stack = depot_pop_free_pool(prealloc, record_size); if (!stack) return NULL; } /* Save the stack trace. */ stack->hash = hash; stack->size = nr_entries; /* stack->handle is already filled in by depot_pop_free_pool(). */ memcpy(stack->entries, entries, flex_array_size(stack, entries, nr_entries)); if (flags & STACK_DEPOT_FLAG_GET) { refcount_set(&stack->count, 1); counters[DEPOT_COUNTER_REFD_ALLOCS]++; counters[DEPOT_COUNTER_REFD_INUSE]++; } else { /* Warn on attempts to switch to refcounting this entry. */ refcount_set(&stack->count, REFCOUNT_SATURATED); counters[DEPOT_COUNTER_PERSIST_COUNT]++; counters[DEPOT_COUNTER_PERSIST_BYTES] += record_size; } /* * Let KMSAN know the stored stack record is initialized. This shall * prevent false positive reports if instrumented code accesses it. */ kmsan_unpoison_memory(stack, record_size); return stack; } static struct stack_record *depot_fetch_stack(depot_stack_handle_t handle) { const int pools_num_cached = READ_ONCE(pools_num); union handle_parts parts = { .handle = handle }; void *pool; u32 pool_index = parts.pool_index_plus_1 - 1; size_t offset = parts.offset << DEPOT_STACK_ALIGN; struct stack_record *stack; lockdep_assert_not_held(&pool_lock); if (pool_index >= pools_num_cached) { WARN(1, "pool index %d out of bounds (%d) for stack id %08x\n", pool_index, pools_num_cached, handle); return NULL; } pool = stack_pools[pool_index]; if (WARN_ON(!pool)) return NULL; stack = pool + offset; if (WARN_ON(!refcount_read(&stack->count))) return NULL; return stack; } /* Links stack into the freelist. */ static void depot_free_stack(struct stack_record *stack) { unsigned long flags; lockdep_assert_not_held(&pool_lock); raw_spin_lock_irqsave(&pool_lock, flags); printk_deferred_enter(); /* * Remove the entry from the hash list. Concurrent list traversal may * still observe the entry, but since the refcount is zero, this entry * will no longer be considered as valid. */ list_del_rcu(&stack->hash_list); /* * Due to being used from constrained contexts such as the allocators, * NMI, or even RCU itself, stack depot cannot rely on primitives that * would sleep (such as synchronize_rcu()) or recursively call into * stack depot again (such as call_rcu()). * * Instead, get an RCU cookie, so that we can ensure this entry isn't * moved onto another list until the next grace period, and concurrent * RCU list traversal remains safe. */ stack->rcu_state = get_state_synchronize_rcu(); /* * Add the entry to the freelist tail, so that older entries are * considered first - their RCU cookie is more likely to no longer be * associated with the current grace period. */ list_add_tail(&stack->free_list, &free_stacks); counters[DEPOT_COUNTER_FREELIST_SIZE]++; counters[DEPOT_COUNTER_REFD_FREES]++; counters[DEPOT_COUNTER_REFD_INUSE]--; printk_deferred_exit(); raw_spin_unlock_irqrestore(&pool_lock, flags); } /* Calculates the hash for a stack. */ static inline u32 hash_stack(unsigned long *entries, unsigned int size) { return jhash2((u32 *)entries, array_size(size, sizeof(*entries)) / sizeof(u32), STACK_HASH_SEED); } /* * Non-instrumented version of memcmp(). * Does not check the lexicographical order, only the equality. */ static inline int stackdepot_memcmp(const unsigned long *u1, const unsigned long *u2, unsigned int n) { for ( ; n-- ; u1++, u2++) { if (*u1 != *u2) return 1; } return 0; } /* Finds a stack in a bucket of the hash table. */ static inline struct stack_record *find_stack(struct list_head *bucket, unsigned long *entries, int size, u32 hash, depot_flags_t flags) { struct stack_record *stack, *ret = NULL; /* * Stack depot may be used from instrumentation that instruments RCU or * tracing itself; use variant that does not call into RCU and cannot be * traced. * * Note: Such use cases must take care when using refcounting to evict * unused entries, because the stack record free-then-reuse code paths * do call into RCU. */ rcu_read_lock_sched_notrace(); list_for_each_entry_rcu(stack, bucket, hash_list) { if (stack->hash != hash || stack->size != size) continue; /* * This may race with depot_free_stack() accessing the freelist * management state unioned with @entries. The refcount is zero * in that case and the below refcount_inc_not_zero() will fail. */ if (data_race(stackdepot_memcmp(entries, stack->entries, size))) continue; /* * Try to increment refcount. If this succeeds, the stack record * is valid and has not yet been freed. * * If STACK_DEPOT_FLAG_GET is not used, it is undefined behavior * to then call stack_depot_put() later, and we can assume that * a stack record is never placed back on the freelist. */ if ((flags & STACK_DEPOT_FLAG_GET) && !refcount_inc_not_zero(&stack->count)) continue; ret = stack; break; } rcu_read_unlock_sched_notrace(); return ret; } depot_stack_handle_t stack_depot_save_flags(unsigned long *entries, unsigned int nr_entries, gfp_t alloc_flags, depot_flags_t depot_flags) { struct list_head *bucket; struct stack_record *found = NULL; depot_stack_handle_t handle = 0; struct page *page = NULL; void *prealloc = NULL; bool can_alloc = depot_flags & STACK_DEPOT_FLAG_CAN_ALLOC; unsigned long flags; u32 hash; if (WARN_ON(depot_flags & ~STACK_DEPOT_FLAGS_MASK)) return 0; /* * If this stack trace is from an interrupt, including anything before * interrupt entry usually leads to unbounded stack depot growth. * * Since use of filter_irq_stacks() is a requirement to ensure stack * depot can efficiently deduplicate interrupt stacks, always * filter_irq_stacks() to simplify all callers' use of stack depot. */ nr_entries = filter_irq_stacks(entries, nr_entries); if (unlikely(nr_entries == 0) || stack_depot_disabled) return 0; hash = hash_stack(entries, nr_entries); bucket = &stack_table[hash & stack_hash_mask]; /* Fast path: look the stack trace up without locking. */ found = find_stack(bucket, entries, nr_entries, hash, depot_flags); if (found) goto exit; /* * Allocate memory for a new pool if required now: * we won't be able to do that under the lock. */ if (unlikely(can_alloc && !READ_ONCE(new_pool))) { page = alloc_pages(gfp_nested_mask(alloc_flags), DEPOT_POOL_ORDER); if (page) prealloc = page_address(page); } raw_spin_lock_irqsave(&pool_lock, flags); printk_deferred_enter(); /* Try to find again, to avoid concurrently inserting duplicates. */ found = find_stack(bucket, entries, nr_entries, hash, depot_flags); if (!found) { struct stack_record *new = depot_alloc_stack(entries, nr_entries, hash, depot_flags, &prealloc); if (new) { /* * This releases the stack record into the bucket and * makes it visible to readers in find_stack(). */ list_add_rcu(&new->hash_list, bucket); found = new; } } if (prealloc) { /* * Either stack depot already contains this stack trace, or * depot_alloc_stack() did not consume the preallocated memory. * Try to keep the preallocated memory for future. */ depot_keep_new_pool(&prealloc); } printk_deferred_exit(); raw_spin_unlock_irqrestore(&pool_lock, flags); exit: if (prealloc) { /* Stack depot didn't use this memory, free it. */ free_pages((unsigned long)prealloc, DEPOT_POOL_ORDER); } if (found) handle = found->handle.handle; return handle; } EXPORT_SYMBOL_GPL(stack_depot_save_flags); depot_stack_handle_t stack_depot_save(unsigned long *entries, unsigned int nr_entries, gfp_t alloc_flags) { return stack_depot_save_flags(entries, nr_entries, alloc_flags, STACK_DEPOT_FLAG_CAN_ALLOC); } EXPORT_SYMBOL_GPL(stack_depot_save); struct stack_record *__stack_depot_get_stack_record(depot_stack_handle_t handle) { if (!handle) return NULL; return depot_fetch_stack(handle); } unsigned int stack_depot_fetch(depot_stack_handle_t handle, unsigned long **entries) { struct stack_record *stack; *entries = NULL; /* * Let KMSAN know *entries is initialized. This shall prevent false * positive reports if instrumented code accesses it. */ kmsan_unpoison_memory(entries, sizeof(*entries)); if (!handle || stack_depot_disabled) return 0; stack = depot_fetch_stack(handle); /* * Should never be NULL, otherwise this is a use-after-put (or just a * corrupt handle). */ if (WARN(!stack, "corrupt handle or use after stack_depot_put()")) return 0; *entries = stack->entries; return stack->size; } EXPORT_SYMBOL_GPL(stack_depot_fetch); void stack_depot_put(depot_stack_handle_t handle) { struct stack_record *stack; if (!handle || stack_depot_disabled) return; stack = depot_fetch_stack(handle); /* * Should always be able to find the stack record, otherwise this is an * unbalanced put attempt (or corrupt handle). */ if (WARN(!stack, "corrupt handle or unbalanced stack_depot_put()")) return; if (refcount_dec_and_test(&stack->count)) depot_free_stack(stack); } EXPORT_SYMBOL_GPL(stack_depot_put); void stack_depot_print(depot_stack_handle_t stack) { unsigned long *entries; unsigned int nr_entries; nr_entries = stack_depot_fetch(stack, &entries); if (nr_entries > 0) stack_trace_print(entries, nr_entries, 0); } EXPORT_SYMBOL_GPL(stack_depot_print); int stack_depot_snprint(depot_stack_handle_t handle, char *buf, size_t size, int spaces) { unsigned long *entries; unsigned int nr_entries; nr_entries = stack_depot_fetch(handle, &entries); return nr_entries ? stack_trace_snprint(buf, size, entries, nr_entries, spaces) : 0; } EXPORT_SYMBOL_GPL(stack_depot_snprint); depot_stack_handle_t __must_check stack_depot_set_extra_bits( depot_stack_handle_t handle, unsigned int extra_bits) { union handle_parts parts = { .handle = handle }; /* Don't set extra bits on empty handles. */ if (!handle) return 0; parts.extra = extra_bits; return parts.handle; } EXPORT_SYMBOL(stack_depot_set_extra_bits); unsigned int stack_depot_get_extra_bits(depot_stack_handle_t handle) { union handle_parts parts = { .handle = handle }; return parts.extra; } EXPORT_SYMBOL(stack_depot_get_extra_bits); static int stats_show(struct seq_file *seq, void *v) { /* * data race ok: These are just statistics counters, and approximate * statistics are ok for debugging. */ seq_printf(seq, "pools: %d\n", data_race(pools_num)); for (int i = 0; i < DEPOT_COUNTER_COUNT; i++) seq_printf(seq, "%s: %ld\n", counter_names[i], data_race(counters[i])); return 0; } DEFINE_SHOW_ATTRIBUTE(stats); static int depot_debugfs_init(void) { struct dentry *dir; if (stack_depot_disabled) return 0; dir = debugfs_create_dir("stackdepot", NULL); debugfs_create_file("stats", 0444, dir, NULL, &stats_fops); return 0; } late_initcall(depot_debugfs_init);