/* * Floating proportions * * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> * * Description: * * The floating proportion is a time derivative with an exponentially decaying * history: * * p_{j} = \Sum_{i=0} (dx_{j}/dt_{-i}) / 2^(1+i) * * Where j is an element from {prop_local}, x_{j} is j's number of events, * and i the time period over which the differential is taken. So d/dt_{-i} is * the differential over the i-th last period. * * The decaying history gives smooth transitions. The time differential carries * the notion of speed. * * The denominator is 2^(1+i) because we want the series to be normalised, ie. * * \Sum_{i=0} 1/2^(1+i) = 1 * * Further more, if we measure time (t) in the same events as x; so that: * * t = \Sum_{j} x_{j} * * we get that: * * \Sum_{j} p_{j} = 1 * * Writing this in an iterative fashion we get (dropping the 'd's): * * if (++x_{j}, ++t > period) * t /= 2; * for_each (j) * x_{j} /= 2; * * so that: * * p_{j} = x_{j} / t; * * We optimize away the '/= 2' for the global time delta by noting that: * * if (++t > period) t /= 2: * * Can be approximated by: * * period/2 + (++t % period/2) * * [ Furthermore, when we choose period to be 2^n it can be written in terms of * binary operations and wraparound artefacts disappear. ] * * Also note that this yields a natural counter of the elapsed periods: * * c = t / (period/2) * * [ Its monotonic increasing property can be applied to mitigate the wrap- * around issue. ] * * This allows us to do away with the loop over all prop_locals on each period * expiration. By remembering the period count under which it was last accessed * as c_{j}, we can obtain the number of 'missed' cycles from: * * c - c_{j} * * We can then lazily catch up to the global period count every time we are * going to use x_{j}, by doing: * * x_{j} /= 2^(c - c_{j}), c_{j} = c */ #include <linux/proportions.h> #include <linux/rcupdate.h> /* * Limit the time part in order to ensure there are some bits left for the * cycle counter. */ #define PROP_MAX_SHIFT (3*BITS_PER_LONG/4) int prop_descriptor_init(struct prop_descriptor *pd, int shift) { int err; if (shift > PROP_MAX_SHIFT) shift = PROP_MAX_SHIFT; pd->index = 0; pd->pg[0].shift = shift; mutex_init(&pd->mutex); err = percpu_counter_init_irq(&pd->pg[0].events, 0); if (err) goto out; err = percpu_counter_init_irq(&pd->pg[1].events, 0); if (err) percpu_counter_destroy(&pd->pg[0].events); out: return err; } /* * We have two copies, and flip between them to make it seem like an atomic * update. The update is not really atomic wrt the events counter, but * it is internally consistent with the bit layout depending on shift. * * We copy the events count, move the bits around and flip the index. */ void prop_change_shift(struct prop_descriptor *pd, int shift) { int index; int offset; u64 events; unsigned long flags; if (shift > PROP_MAX_SHIFT) shift = PROP_MAX_SHIFT; mutex_lock(&pd->mutex); index = pd->index ^ 1; offset = pd->pg[pd->index].shift - shift; if (!offset) goto out; pd->pg[index].shift = shift; local_irq_save(flags); events = percpu_counter_sum(&pd->pg[pd->index].events); if (offset < 0) events <<= -offset; else events >>= offset; percpu_counter_set(&pd->pg[index].events, events); /* * ensure the new pg is fully written before the switch */ smp_wmb(); pd->index = index; local_irq_restore(flags); synchronize_rcu(); out: mutex_unlock(&pd->mutex); } /* * wrap the access to the data in an rcu_read_lock() section; * this is used to track the active references. */ static struct prop_global *prop_get_global(struct prop_descriptor *pd) { int index; rcu_read_lock(); index = pd->index; /* * match the wmb from vcd_flip() */ smp_rmb(); return &pd->pg[index]; } static void prop_put_global(struct prop_descriptor *pd, struct prop_global *pg) { rcu_read_unlock(); } static void prop_adjust_shift(int *pl_shift, unsigned long *pl_period, int new_shift) { int offset = *pl_shift - new_shift; if (!offset) return; if (offset < 0) *pl_period <<= -offset; else *pl_period >>= offset; *pl_shift = new_shift; } /* * PERCPU */ int prop_local_init_percpu(struct prop_local_percpu *pl) { spin_lock_init(&pl->lock); pl->shift = 0; pl->period = 0; return percpu_counter_init_irq(&pl->events, 0); } void prop_local_destroy_percpu(struct prop_local_percpu *pl) { percpu_counter_destroy(&pl->events); } /* * Catch up with missed period expirations. * * until (c_{j} == c) * x_{j} -= x_{j}/2; * c_{j}++; */ static void prop_norm_percpu(struct prop_global *pg, struct prop_local_percpu *pl) { unsigned long period = 1UL << (pg->shift - 1); unsigned long period_mask = ~(period - 1); unsigned long global_period; unsigned long flags; global_period = percpu_counter_read(&pg->events); global_period &= period_mask; /* * Fast path - check if the local and global period count still match * outside of the lock. */ if (pl->period == global_period) return; spin_lock_irqsave(&pl->lock, flags); prop_adjust_shift(&pl->shift, &pl->period, pg->shift); /* * For each missed period, we half the local counter. * basically: * pl->events >> (global_period - pl->period); * * but since the distributed nature of percpu counters make division * rather hard, use a regular subtraction loop. This is safe, because * the events will only every be incremented, hence the subtraction * can never result in a negative number. */ while (pl->period != global_period) { unsigned long val = percpu_counter_read(&pl->events); unsigned long half = (val + 1) >> 1; /* * Half of zero won't be much less, break out. * This limits the loop to shift iterations, even * if we missed a million. */ if (!val) break; percpu_counter_add(&pl->events, -half); pl->period += period; } pl->period = global_period; spin_unlock_irqrestore(&pl->lock, flags); } /* * ++x_{j}, ++t */ void __prop_inc_percpu(struct prop_descriptor *pd, struct prop_local_percpu *pl) { struct prop_global *pg = prop_get_global(pd); prop_norm_percpu(pg, pl); percpu_counter_add(&pl->events, 1); percpu_counter_add(&pg->events, 1); prop_put_global(pd, pg); } /* * Obtain a fraction of this proportion * * p_{j} = x_{j} / (period/2 + t % period/2) */ void prop_fraction_percpu(struct prop_descriptor *pd, struct prop_local_percpu *pl, long *numerator, long *denominator) { struct prop_global *pg = prop_get_global(pd); unsigned long period_2 = 1UL << (pg->shift - 1); unsigned long counter_mask = period_2 - 1; unsigned long global_count; prop_norm_percpu(pg, pl); *numerator = percpu_counter_read_positive(&pl->events); global_count = percpu_counter_read(&pg->events); *denominator = period_2 + (global_count & counter_mask); prop_put_global(pd, pg); } /* * SINGLE */ int prop_local_init_single(struct prop_local_single *pl) { spin_lock_init(&pl->lock); pl->shift = 0; pl->period = 0; pl->events = 0; return 0; } void prop_local_destroy_single(struct prop_local_single *pl) { } /* * Catch up with missed period expirations. */ static void prop_norm_single(struct prop_global *pg, struct prop_local_single *pl) { unsigned long period = 1UL << (pg->shift - 1); unsigned long period_mask = ~(period - 1); unsigned long global_period; unsigned long flags; global_period = percpu_counter_read(&pg->events); global_period &= period_mask; /* * Fast path - check if the local and global period count still match * outside of the lock. */ if (pl->period == global_period) return; spin_lock_irqsave(&pl->lock, flags); prop_adjust_shift(&pl->shift, &pl->period, pg->shift); /* * For each missed period, we half the local counter. */ period = (global_period - pl->period) >> (pg->shift - 1); if (likely(period < BITS_PER_LONG)) pl->events >>= period; else pl->events = 0; pl->period = global_period; spin_unlock_irqrestore(&pl->lock, flags); } /* * ++x_{j}, ++t */ void __prop_inc_single(struct prop_descriptor *pd, struct prop_local_single *pl) { struct prop_global *pg = prop_get_global(pd); prop_norm_single(pg, pl); pl->events++; percpu_counter_add(&pg->events, 1); prop_put_global(pd, pg); } /* * Obtain a fraction of this proportion * * p_{j} = x_{j} / (period/2 + t % period/2) */ void prop_fraction_single(struct prop_descriptor *pd, struct prop_local_single *pl, long *numerator, long *denominator) { struct prop_global *pg = prop_get_global(pd); unsigned long period_2 = 1UL << (pg->shift - 1); unsigned long counter_mask = period_2 - 1; unsigned long global_count; prop_norm_single(pg, pl); *numerator = pl->events; global_count = percpu_counter_read(&pg->events); *denominator = period_2 + (global_count & counter_mask); prop_put_global(pd, pg); }