/* * Deadline Scheduling Class (SCHED_DEADLINE) * * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). * * Tasks that periodically executes their instances for less than their * runtime won't miss any of their deadlines. * Tasks that are not periodic or sporadic or that tries to execute more * than their reserved bandwidth will be slowed down (and may potentially * miss some of their deadlines), and won't affect any other task. * * Copyright (C) 2012 Dario Faggioli , * Juri Lelli , * Michael Trimarchi , * Fabio Checconi */ #include "sched.h" #include struct dl_bandwidth def_dl_bandwidth; static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) { return container_of(dl_se, struct task_struct, dl); } static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) { return container_of(dl_rq, struct rq, dl); } static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) { struct task_struct *p = dl_task_of(dl_se); struct rq *rq = task_rq(p); return &rq->dl; } static inline int on_dl_rq(struct sched_dl_entity *dl_se) { return !RB_EMPTY_NODE(&dl_se->rb_node); } static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) { struct sched_dl_entity *dl_se = &p->dl; return dl_rq->rb_leftmost == &dl_se->rb_node; } void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) { raw_spin_lock_init(&dl_b->dl_runtime_lock); dl_b->dl_period = period; dl_b->dl_runtime = runtime; } void init_dl_bw(struct dl_bw *dl_b) { raw_spin_lock_init(&dl_b->lock); raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); if (global_rt_runtime() == RUNTIME_INF) dl_b->bw = -1; else dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); dl_b->total_bw = 0; } void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq) { dl_rq->rb_root = RB_ROOT; #ifdef CONFIG_SMP /* zero means no -deadline tasks */ dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; dl_rq->dl_nr_migratory = 0; dl_rq->overloaded = 0; dl_rq->pushable_dl_tasks_root = RB_ROOT; #else init_dl_bw(&dl_rq->dl_bw); #endif } #ifdef CONFIG_SMP static inline int dl_overloaded(struct rq *rq) { return atomic_read(&rq->rd->dlo_count); } static inline void dl_set_overload(struct rq *rq) { if (!rq->online) return; cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); /* * Must be visible before the overload count is * set (as in sched_rt.c). * * Matched by the barrier in pull_dl_task(). */ smp_wmb(); atomic_inc(&rq->rd->dlo_count); } static inline void dl_clear_overload(struct rq *rq) { if (!rq->online) return; atomic_dec(&rq->rd->dlo_count); cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); } static void update_dl_migration(struct dl_rq *dl_rq) { if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { if (!dl_rq->overloaded) { dl_set_overload(rq_of_dl_rq(dl_rq)); dl_rq->overloaded = 1; } } else if (dl_rq->overloaded) { dl_clear_overload(rq_of_dl_rq(dl_rq)); dl_rq->overloaded = 0; } } static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) { struct task_struct *p = dl_task_of(dl_se); if (p->nr_cpus_allowed > 1) dl_rq->dl_nr_migratory++; update_dl_migration(dl_rq); } static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) { struct task_struct *p = dl_task_of(dl_se); if (p->nr_cpus_allowed > 1) dl_rq->dl_nr_migratory--; update_dl_migration(dl_rq); } /* * The list of pushable -deadline task is not a plist, like in * sched_rt.c, it is an rb-tree with tasks ordered by deadline. */ static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) { struct dl_rq *dl_rq = &rq->dl; struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; struct rb_node *parent = NULL; struct task_struct *entry; int leftmost = 1; BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); while (*link) { parent = *link; entry = rb_entry(parent, struct task_struct, pushable_dl_tasks); if (dl_entity_preempt(&p->dl, &entry->dl)) link = &parent->rb_left; else { link = &parent->rb_right; leftmost = 0; } } if (leftmost) dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; rb_link_node(&p->pushable_dl_tasks, parent, link); rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); } static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) { struct dl_rq *dl_rq = &rq->dl; if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) return; if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { struct rb_node *next_node; next_node = rb_next(&p->pushable_dl_tasks); dl_rq->pushable_dl_tasks_leftmost = next_node; } rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); RB_CLEAR_NODE(&p->pushable_dl_tasks); } static inline int has_pushable_dl_tasks(struct rq *rq) { return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); } static int push_dl_task(struct rq *rq); static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) { return dl_task(prev); } static inline void set_post_schedule(struct rq *rq) { rq->post_schedule = has_pushable_dl_tasks(rq); } #else static inline void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) { } static inline void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) { } static inline void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) { } static inline void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) { } static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) { return false; } static inline int pull_dl_task(struct rq *rq) { return 0; } static inline void set_post_schedule(struct rq *rq) { } #endif /* CONFIG_SMP */ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); /* * We are being explicitly informed that a new instance is starting, * and this means that: * - the absolute deadline of the entity has to be placed at * current time + relative deadline; * - the runtime of the entity has to be set to the maximum value. * * The capability of specifying such event is useful whenever a -deadline * entity wants to (try to!) synchronize its behaviour with the scheduler's * one, and to (try to!) reconcile itself with its own scheduling * parameters. */ static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, struct sched_dl_entity *pi_se) { struct dl_rq *dl_rq = dl_rq_of_se(dl_se); struct rq *rq = rq_of_dl_rq(dl_rq); WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); /* * We use the regular wall clock time to set deadlines in the * future; in fact, we must consider execution overheads (time * spent on hardirq context, etc.). */ dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; dl_se->runtime = pi_se->dl_runtime; dl_se->dl_new = 0; } /* * Pure Earliest Deadline First (EDF) scheduling does not deal with the * possibility of a entity lasting more than what it declared, and thus * exhausting its runtime. * * Here we are interested in making runtime overrun possible, but we do * not want a entity which is misbehaving to affect the scheduling of all * other entities. * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) * is used, in order to confine each entity within its own bandwidth. * * This function deals exactly with that, and ensures that when the runtime * of a entity is replenished, its deadline is also postponed. That ensures * the overrunning entity can't interfere with other entity in the system and * can't make them miss their deadlines. Reasons why this kind of overruns * could happen are, typically, a entity voluntarily trying to overcome its * runtime, or it just underestimated it during sched_setattr(). */ static void replenish_dl_entity(struct sched_dl_entity *dl_se, struct sched_dl_entity *pi_se) { struct dl_rq *dl_rq = dl_rq_of_se(dl_se); struct rq *rq = rq_of_dl_rq(dl_rq); BUG_ON(pi_se->dl_runtime <= 0); /* * This could be the case for a !-dl task that is boosted. * Just go with full inherited parameters. */ if (dl_se->dl_deadline == 0) { dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; dl_se->runtime = pi_se->dl_runtime; } /* * We keep moving the deadline away until we get some * available runtime for the entity. This ensures correct * handling of situations where the runtime overrun is * arbitrary large. */ while (dl_se->runtime <= 0) { dl_se->deadline += pi_se->dl_period; dl_se->runtime += pi_se->dl_runtime; } /* * At this point, the deadline really should be "in * the future" with respect to rq->clock. If it's * not, we are, for some reason, lagging too much! * Anyway, after having warn userspace abut that, * we still try to keep the things running by * resetting the deadline and the budget of the * entity. */ if (dl_time_before(dl_se->deadline, rq_clock(rq))) { printk_deferred_once("sched: DL replenish lagged to much\n"); dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; dl_se->runtime = pi_se->dl_runtime; } } /* * Here we check if --at time t-- an entity (which is probably being * [re]activated or, in general, enqueued) can use its remaining runtime * and its current deadline _without_ exceeding the bandwidth it is * assigned (function returns true if it can't). We are in fact applying * one of the CBS rules: when a task wakes up, if the residual runtime * over residual deadline fits within the allocated bandwidth, then we * can keep the current (absolute) deadline and residual budget without * disrupting the schedulability of the system. Otherwise, we should * refill the runtime and set the deadline a period in the future, * because keeping the current (absolute) deadline of the task would * result in breaking guarantees promised to other tasks (refer to * Documentation/scheduler/sched-deadline.txt for more informations). * * This function returns true if: * * runtime / (deadline - t) > dl_runtime / dl_period , * * IOW we can't recycle current parameters. * * Notice that the bandwidth check is done against the period. For * task with deadline equal to period this is the same of using * dl_deadline instead of dl_period in the equation above. */ static bool dl_entity_overflow(struct sched_dl_entity *dl_se, struct sched_dl_entity *pi_se, u64 t) { u64 left, right; /* * left and right are the two sides of the equation above, * after a bit of shuffling to use multiplications instead * of divisions. * * Note that none of the time values involved in the two * multiplications are absolute: dl_deadline and dl_runtime * are the relative deadline and the maximum runtime of each * instance, runtime is the runtime left for the last instance * and (deadline - t), since t is rq->clock, is the time left * to the (absolute) deadline. Even if overflowing the u64 type * is very unlikely to occur in both cases, here we scale down * as we want to avoid that risk at all. Scaling down by 10 * means that we reduce granularity to 1us. We are fine with it, * since this is only a true/false check and, anyway, thinking * of anything below microseconds resolution is actually fiction * (but still we want to give the user that illusion >;). */ left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); right = ((dl_se->deadline - t) >> DL_SCALE) * (pi_se->dl_runtime >> DL_SCALE); return dl_time_before(right, left); } /* * When a -deadline entity is queued back on the runqueue, its runtime and * deadline might need updating. * * The policy here is that we update the deadline of the entity only if: * - the current deadline is in the past, * - using the remaining runtime with the current deadline would make * the entity exceed its bandwidth. */ static void update_dl_entity(struct sched_dl_entity *dl_se, struct sched_dl_entity *pi_se) { struct dl_rq *dl_rq = dl_rq_of_se(dl_se); struct rq *rq = rq_of_dl_rq(dl_rq); /* * The arrival of a new instance needs special treatment, i.e., * the actual scheduling parameters have to be "renewed". */ if (dl_se->dl_new) { setup_new_dl_entity(dl_se, pi_se); return; } if (dl_time_before(dl_se->deadline, rq_clock(rq)) || dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; dl_se->runtime = pi_se->dl_runtime; } } /* * If the entity depleted all its runtime, and if we want it to sleep * while waiting for some new execution time to become available, we * set the bandwidth enforcement timer to the replenishment instant * and try to activate it. * * Notice that it is important for the caller to know if the timer * actually started or not (i.e., the replenishment instant is in * the future or in the past). */ static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted) { struct dl_rq *dl_rq = dl_rq_of_se(dl_se); struct rq *rq = rq_of_dl_rq(dl_rq); ktime_t now, act; ktime_t soft, hard; unsigned long range; s64 delta; if (boosted) return 0; /* * We want the timer to fire at the deadline, but considering * that it is actually coming from rq->clock and not from * hrtimer's time base reading. */ act = ns_to_ktime(dl_se->deadline); now = hrtimer_cb_get_time(&dl_se->dl_timer); delta = ktime_to_ns(now) - rq_clock(rq); act = ktime_add_ns(act, delta); /* * If the expiry time already passed, e.g., because the value * chosen as the deadline is too small, don't even try to * start the timer in the past! */ if (ktime_us_delta(act, now) < 0) return 0; hrtimer_set_expires(&dl_se->dl_timer, act); soft = hrtimer_get_softexpires(&dl_se->dl_timer); hard = hrtimer_get_expires(&dl_se->dl_timer); range = ktime_to_ns(ktime_sub(hard, soft)); __hrtimer_start_range_ns(&dl_se->dl_timer, soft, range, HRTIMER_MODE_ABS, 0); return hrtimer_active(&dl_se->dl_timer); } /* * This is the bandwidth enforcement timer callback. If here, we know * a task is not on its dl_rq, since the fact that the timer was running * means the task is throttled and needs a runtime replenishment. * * However, what we actually do depends on the fact the task is active, * (it is on its rq) or has been removed from there by a call to * dequeue_task_dl(). In the former case we must issue the runtime * replenishment and add the task back to the dl_rq; in the latter, we just * do nothing but clearing dl_throttled, so that runtime and deadline * updating (and the queueing back to dl_rq) will be done by the * next call to enqueue_task_dl(). */ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) { struct sched_dl_entity *dl_se = container_of(timer, struct sched_dl_entity, dl_timer); struct task_struct *p = dl_task_of(dl_se); struct rq *rq; again: rq = task_rq(p); raw_spin_lock(&rq->lock); if (rq != task_rq(p)) { /* Task was moved, retrying. */ raw_spin_unlock(&rq->lock); goto again; } /* * We need to take care of several possible races here: * * - the task might have changed its scheduling policy * to something different than SCHED_DEADLINE * - the task might have changed its reservation parameters * (through sched_setattr()) * - the task might have been boosted by someone else and * might be in the boosting/deboosting path * * In all this cases we bail out, as the task is already * in the runqueue or is going to be enqueued back anyway. */ if (!dl_task(p) || dl_se->dl_new || dl_se->dl_boosted || !dl_se->dl_throttled) goto unlock; sched_clock_tick(); update_rq_clock(rq); dl_se->dl_throttled = 0; dl_se->dl_yielded = 0; if (task_on_rq_queued(p)) { enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); if (dl_task(rq->curr)) check_preempt_curr_dl(rq, p, 0); else resched_curr(rq); #ifdef CONFIG_SMP /* * Queueing this task back might have overloaded rq, * check if we need to kick someone away. */ if (has_pushable_dl_tasks(rq)) push_dl_task(rq); #endif } unlock: raw_spin_unlock(&rq->lock); return HRTIMER_NORESTART; } void init_dl_task_timer(struct sched_dl_entity *dl_se) { struct hrtimer *timer = &dl_se->dl_timer; if (hrtimer_active(timer)) { hrtimer_try_to_cancel(timer); return; } hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); timer->function = dl_task_timer; } static int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se) { int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq)); int rorun = dl_se->runtime <= 0; if (!rorun && !dmiss) return 0; /* * If we are beyond our current deadline and we are still * executing, then we have already used some of the runtime of * the next instance. Thus, if we do not account that, we are * stealing bandwidth from the system at each deadline miss! */ if (dmiss) { dl_se->runtime = rorun ? dl_se->runtime : 0; dl_se->runtime -= rq_clock(rq) - dl_se->deadline; } return 1; } extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); /* * Update the current task's runtime statistics (provided it is still * a -deadline task and has not been removed from the dl_rq). */ static void update_curr_dl(struct rq *rq) { struct task_struct *curr = rq->curr; struct sched_dl_entity *dl_se = &curr->dl; u64 delta_exec; if (!dl_task(curr) || !on_dl_rq(dl_se)) return; /* * Consumed budget is computed considering the time as * observed by schedulable tasks (excluding time spent * in hardirq context, etc.). Deadlines are instead * computed using hard walltime. This seems to be the more * natural solution, but the full ramifications of this * approach need further study. */ delta_exec = rq_clock_task(rq) - curr->se.exec_start; if (unlikely((s64)delta_exec <= 0)) return; schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); curr->se.sum_exec_runtime += delta_exec; account_group_exec_runtime(curr, delta_exec); curr->se.exec_start = rq_clock_task(rq); cpuacct_charge(curr, delta_exec); sched_rt_avg_update(rq, delta_exec); dl_se->runtime -= delta_exec; if (dl_runtime_exceeded(rq, dl_se)) { __dequeue_task_dl(rq, curr, 0); if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted))) dl_se->dl_throttled = 1; else enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); if (!is_leftmost(curr, &rq->dl)) resched_curr(rq); } /* * Because -- for now -- we share the rt bandwidth, we need to * account our runtime there too, otherwise actual rt tasks * would be able to exceed the shared quota. * * Account to the root rt group for now. * * The solution we're working towards is having the RT groups scheduled * using deadline servers -- however there's a few nasties to figure * out before that can happen. */ if (rt_bandwidth_enabled()) { struct rt_rq *rt_rq = &rq->rt; raw_spin_lock(&rt_rq->rt_runtime_lock); /* * We'll let actual RT tasks worry about the overflow here, we * have our own CBS to keep us inline; only account when RT * bandwidth is relevant. */ if (sched_rt_bandwidth_account(rt_rq)) rt_rq->rt_time += delta_exec; raw_spin_unlock(&rt_rq->rt_runtime_lock); } } #ifdef CONFIG_SMP static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); static inline u64 next_deadline(struct rq *rq) { struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); if (next && dl_prio(next->prio)) return next->dl.deadline; else return 0; } static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) { struct rq *rq = rq_of_dl_rq(dl_rq); if (dl_rq->earliest_dl.curr == 0 || dl_time_before(deadline, dl_rq->earliest_dl.curr)) { /* * If the dl_rq had no -deadline tasks, or if the new task * has shorter deadline than the current one on dl_rq, we * know that the previous earliest becomes our next earliest, * as the new task becomes the earliest itself. */ dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; dl_rq->earliest_dl.curr = deadline; cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); } else if (dl_rq->earliest_dl.next == 0 || dl_time_before(deadline, dl_rq->earliest_dl.next)) { /* * On the other hand, if the new -deadline task has a * a later deadline than the earliest one on dl_rq, but * it is earlier than the next (if any), we must * recompute the next-earliest. */ dl_rq->earliest_dl.next = next_deadline(rq); } } static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) { struct rq *rq = rq_of_dl_rq(dl_rq); /* * Since we may have removed our earliest (and/or next earliest) * task we must recompute them. */ if (!dl_rq->dl_nr_running) { dl_rq->earliest_dl.curr = 0; dl_rq->earliest_dl.next = 0; cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); } else { struct rb_node *leftmost = dl_rq->rb_leftmost; struct sched_dl_entity *entry; entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); dl_rq->earliest_dl.curr = entry->deadline; dl_rq->earliest_dl.next = next_deadline(rq); cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); } } #else static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} #endif /* CONFIG_SMP */ static inline void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) { int prio = dl_task_of(dl_se)->prio; u64 deadline = dl_se->deadline; WARN_ON(!dl_prio(prio)); dl_rq->dl_nr_running++; add_nr_running(rq_of_dl_rq(dl_rq), 1); inc_dl_deadline(dl_rq, deadline); inc_dl_migration(dl_se, dl_rq); } static inline void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) { int prio = dl_task_of(dl_se)->prio; WARN_ON(!dl_prio(prio)); WARN_ON(!dl_rq->dl_nr_running); dl_rq->dl_nr_running--; sub_nr_running(rq_of_dl_rq(dl_rq), 1); dec_dl_deadline(dl_rq, dl_se->deadline); dec_dl_migration(dl_se, dl_rq); } static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) { struct dl_rq *dl_rq = dl_rq_of_se(dl_se); struct rb_node **link = &dl_rq->rb_root.rb_node; struct rb_node *parent = NULL; struct sched_dl_entity *entry; int leftmost = 1; BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); while (*link) { parent = *link; entry = rb_entry(parent, struct sched_dl_entity, rb_node); if (dl_time_before(dl_se->deadline, entry->deadline)) link = &parent->rb_left; else { link = &parent->rb_right; leftmost = 0; } } if (leftmost) dl_rq->rb_leftmost = &dl_se->rb_node; rb_link_node(&dl_se->rb_node, parent, link); rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); inc_dl_tasks(dl_se, dl_rq); } static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) { struct dl_rq *dl_rq = dl_rq_of_se(dl_se); if (RB_EMPTY_NODE(&dl_se->rb_node)) return; if (dl_rq->rb_leftmost == &dl_se->rb_node) { struct rb_node *next_node; next_node = rb_next(&dl_se->rb_node); dl_rq->rb_leftmost = next_node; } rb_erase(&dl_se->rb_node, &dl_rq->rb_root); RB_CLEAR_NODE(&dl_se->rb_node); dec_dl_tasks(dl_se, dl_rq); } static void enqueue_dl_entity(struct sched_dl_entity *dl_se, struct sched_dl_entity *pi_se, int flags) { BUG_ON(on_dl_rq(dl_se)); /* * If this is a wakeup or a new instance, the scheduling * parameters of the task might need updating. Otherwise, * we want a replenishment of its runtime. */ if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH) replenish_dl_entity(dl_se, pi_se); else update_dl_entity(dl_se, pi_se); __enqueue_dl_entity(dl_se); } static void dequeue_dl_entity(struct sched_dl_entity *dl_se) { __dequeue_dl_entity(dl_se); } static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) { struct task_struct *pi_task = rt_mutex_get_top_task(p); struct sched_dl_entity *pi_se = &p->dl; /* * Use the scheduling parameters of the top pi-waiter * task if we have one and its (relative) deadline is * smaller than our one... OTW we keep our runtime and * deadline. */ if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) { pi_se = &pi_task->dl; } else if (!dl_prio(p->normal_prio)) { /* * Special case in which we have a !SCHED_DEADLINE task * that is going to be deboosted, but exceedes its * runtime while doing so. No point in replenishing * it, as it's going to return back to its original * scheduling class after this. */ BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); return; } /* * If p is throttled, we do nothing. In fact, if it exhausted * its budget it needs a replenishment and, since it now is on * its rq, the bandwidth timer callback (which clearly has not * run yet) will take care of this. */ if (p->dl.dl_throttled) return; enqueue_dl_entity(&p->dl, pi_se, flags); if (!task_current(rq, p) && p->nr_cpus_allowed > 1) enqueue_pushable_dl_task(rq, p); } static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) { dequeue_dl_entity(&p->dl); dequeue_pushable_dl_task(rq, p); } static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) { update_curr_dl(rq); __dequeue_task_dl(rq, p, flags); } /* * Yield task semantic for -deadline tasks is: * * get off from the CPU until our next instance, with * a new runtime. This is of little use now, since we * don't have a bandwidth reclaiming mechanism. Anyway, * bandwidth reclaiming is planned for the future, and * yield_task_dl will indicate that some spare budget * is available for other task instances to use it. */ static void yield_task_dl(struct rq *rq) { struct task_struct *p = rq->curr; /* * We make the task go to sleep until its current deadline by * forcing its runtime to zero. This way, update_curr_dl() stops * it and the bandwidth timer will wake it up and will give it * new scheduling parameters (thanks to dl_yielded=1). */ if (p->dl.runtime > 0) { rq->curr->dl.dl_yielded = 1; p->dl.runtime = 0; } update_curr_dl(rq); } #ifdef CONFIG_SMP static int find_later_rq(struct task_struct *task); static int select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) { struct task_struct *curr; struct rq *rq; if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) goto out; rq = cpu_rq(cpu); rcu_read_lock(); curr = ACCESS_ONCE(rq->curr); /* unlocked access */ /* * If we are dealing with a -deadline task, we must * decide where to wake it up. * If it has a later deadline and the current task * on this rq can't move (provided the waking task * can!) we prefer to send it somewhere else. On the * other hand, if it has a shorter deadline, we * try to make it stay here, it might be important. */ if (unlikely(dl_task(curr)) && (curr->nr_cpus_allowed < 2 || !dl_entity_preempt(&p->dl, &curr->dl)) && (p->nr_cpus_allowed > 1)) { int target = find_later_rq(p); if (target != -1) cpu = target; } rcu_read_unlock(); out: return cpu; } static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) { /* * Current can't be migrated, useless to reschedule, * let's hope p can move out. */ if (rq->curr->nr_cpus_allowed == 1 || cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) return; /* * p is migratable, so let's not schedule it and * see if it is pushed or pulled somewhere else. */ if (p->nr_cpus_allowed != 1 && cpudl_find(&rq->rd->cpudl, p, NULL) != -1) return; resched_curr(rq); } static int pull_dl_task(struct rq *this_rq); #endif /* CONFIG_SMP */ /* * Only called when both the current and waking task are -deadline * tasks. */ static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags) { if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { resched_curr(rq); return; } #ifdef CONFIG_SMP /* * In the unlikely case current and p have the same deadline * let us try to decide what's the best thing to do... */ if ((p->dl.deadline == rq->curr->dl.deadline) && !test_tsk_need_resched(rq->curr)) check_preempt_equal_dl(rq, p); #endif /* CONFIG_SMP */ } #ifdef CONFIG_SCHED_HRTICK static void start_hrtick_dl(struct rq *rq, struct task_struct *p) { hrtick_start(rq, p->dl.runtime); } #endif static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, struct dl_rq *dl_rq) { struct rb_node *left = dl_rq->rb_leftmost; if (!left) return NULL; return rb_entry(left, struct sched_dl_entity, rb_node); } struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev) { struct sched_dl_entity *dl_se; struct task_struct *p; struct dl_rq *dl_rq; dl_rq = &rq->dl; if (need_pull_dl_task(rq, prev)) { pull_dl_task(rq); /* * pull_rt_task() can drop (and re-acquire) rq->lock; this * means a stop task can slip in, in which case we need to * re-start task selection. */ if (rq->stop && task_on_rq_queued(rq->stop)) return RETRY_TASK; } /* * When prev is DL, we may throttle it in put_prev_task(). * So, we update time before we check for dl_nr_running. */ if (prev->sched_class == &dl_sched_class) update_curr_dl(rq); if (unlikely(!dl_rq->dl_nr_running)) return NULL; put_prev_task(rq, prev); dl_se = pick_next_dl_entity(rq, dl_rq); BUG_ON(!dl_se); p = dl_task_of(dl_se); p->se.exec_start = rq_clock_task(rq); /* Running task will never be pushed. */ dequeue_pushable_dl_task(rq, p); #ifdef CONFIG_SCHED_HRTICK if (hrtick_enabled(rq)) start_hrtick_dl(rq, p); #endif set_post_schedule(rq); return p; } static void put_prev_task_dl(struct rq *rq, struct task_struct *p) { update_curr_dl(rq); if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) enqueue_pushable_dl_task(rq, p); } static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) { update_curr_dl(rq); #ifdef CONFIG_SCHED_HRTICK if (hrtick_enabled(rq) && queued && p->dl.runtime > 0) start_hrtick_dl(rq, p); #endif } static void task_fork_dl(struct task_struct *p) { /* * SCHED_DEADLINE tasks cannot fork and this is achieved through * sched_fork() */ } static void task_dead_dl(struct task_struct *p) { struct hrtimer *timer = &p->dl.dl_timer; struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); /* * Since we are TASK_DEAD we won't slip out of the domain! */ raw_spin_lock_irq(&dl_b->lock); dl_b->total_bw -= p->dl.dl_bw; raw_spin_unlock_irq(&dl_b->lock); hrtimer_cancel(timer); } static void set_curr_task_dl(struct rq *rq) { struct task_struct *p = rq->curr; p->se.exec_start = rq_clock_task(rq); /* You can't push away the running task */ dequeue_pushable_dl_task(rq, p); } #ifdef CONFIG_SMP /* Only try algorithms three times */ #define DL_MAX_TRIES 3 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) { if (!task_running(rq, p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) return 1; return 0; } /* Returns the second earliest -deadline task, NULL otherwise */ static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) { struct rb_node *next_node = rq->dl.rb_leftmost; struct sched_dl_entity *dl_se; struct task_struct *p = NULL; next_node: next_node = rb_next(next_node); if (next_node) { dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); p = dl_task_of(dl_se); if (pick_dl_task(rq, p, cpu)) return p; goto next_node; } return NULL; } static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); static int find_later_rq(struct task_struct *task) { struct sched_domain *sd; struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); int this_cpu = smp_processor_id(); int best_cpu, cpu = task_cpu(task); /* Make sure the mask is initialized first */ if (unlikely(!later_mask)) return -1; if (task->nr_cpus_allowed == 1) return -1; /* * We have to consider system topology and task affinity * first, then we can look for a suitable cpu. */ cpumask_copy(later_mask, task_rq(task)->rd->span); cpumask_and(later_mask, later_mask, cpu_active_mask); cpumask_and(later_mask, later_mask, &task->cpus_allowed); best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask); if (best_cpu == -1) return -1; /* * If we are here, some target has been found, * the most suitable of which is cached in best_cpu. * This is, among the runqueues where the current tasks * have later deadlines than the task's one, the rq * with the latest possible one. * * Now we check how well this matches with task's * affinity and system topology. * * The last cpu where the task run is our first * guess, since it is most likely cache-hot there. */ if (cpumask_test_cpu(cpu, later_mask)) return cpu; /* * Check if this_cpu is to be skipped (i.e., it is * not in the mask) or not. */ if (!cpumask_test_cpu(this_cpu, later_mask)) this_cpu = -1; rcu_read_lock(); for_each_domain(cpu, sd) { if (sd->flags & SD_WAKE_AFFINE) { /* * If possible, preempting this_cpu is * cheaper than migrating. */ if (this_cpu != -1 && cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { rcu_read_unlock(); return this_cpu; } /* * Last chance: if best_cpu is valid and is * in the mask, that becomes our choice. */ if (best_cpu < nr_cpu_ids && cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { rcu_read_unlock(); return best_cpu; } } } rcu_read_unlock(); /* * At this point, all our guesses failed, we just return * 'something', and let the caller sort the things out. */ if (this_cpu != -1) return this_cpu; cpu = cpumask_any(later_mask); if (cpu < nr_cpu_ids) return cpu; return -1; } /* Locks the rq it finds */ static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) { struct rq *later_rq = NULL; int tries; int cpu; for (tries = 0; tries < DL_MAX_TRIES; tries++) { cpu = find_later_rq(task); if ((cpu == -1) || (cpu == rq->cpu)) break; later_rq = cpu_rq(cpu); /* Retry if something changed. */ if (double_lock_balance(rq, later_rq)) { if (unlikely(task_rq(task) != rq || !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) || task_running(rq, task) || !task_on_rq_queued(task))) { double_unlock_balance(rq, later_rq); later_rq = NULL; break; } } /* * If the rq we found has no -deadline task, or * its earliest one has a later deadline than our * task, the rq is a good one. */ if (!later_rq->dl.dl_nr_running || dl_time_before(task->dl.deadline, later_rq->dl.earliest_dl.curr)) break; /* Otherwise we try again. */ double_unlock_balance(rq, later_rq); later_rq = NULL; } return later_rq; } static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) { struct task_struct *p; if (!has_pushable_dl_tasks(rq)) return NULL; p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, struct task_struct, pushable_dl_tasks); BUG_ON(rq->cpu != task_cpu(p)); BUG_ON(task_current(rq, p)); BUG_ON(p->nr_cpus_allowed <= 1); BUG_ON(!task_on_rq_queued(p)); BUG_ON(!dl_task(p)); return p; } /* * See if the non running -deadline tasks on this rq * can be sent to some other CPU where they can preempt * and start executing. */ static int push_dl_task(struct rq *rq) { struct task_struct *next_task; struct rq *later_rq; if (!rq->dl.overloaded) return 0; next_task = pick_next_pushable_dl_task(rq); if (!next_task) return 0; retry: if (unlikely(next_task == rq->curr)) { WARN_ON(1); return 0; } /* * If next_task preempts rq->curr, and rq->curr * can move away, it makes sense to just reschedule * without going further in pushing next_task. */ if (dl_task(rq->curr) && dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && rq->curr->nr_cpus_allowed > 1) { resched_curr(rq); return 0; } /* We might release rq lock */ get_task_struct(next_task); /* Will lock the rq it'll find */ later_rq = find_lock_later_rq(next_task, rq); if (!later_rq) { struct task_struct *task; /* * We must check all this again, since * find_lock_later_rq releases rq->lock and it is * then possible that next_task has migrated. */ task = pick_next_pushable_dl_task(rq); if (task_cpu(next_task) == rq->cpu && task == next_task) { /* * The task is still there. We don't try * again, some other cpu will pull it when ready. */ dequeue_pushable_dl_task(rq, next_task); goto out; } if (!task) /* No more tasks */ goto out; put_task_struct(next_task); next_task = task; goto retry; } deactivate_task(rq, next_task, 0); set_task_cpu(next_task, later_rq->cpu); activate_task(later_rq, next_task, 0); resched_curr(later_rq); double_unlock_balance(rq, later_rq); out: put_task_struct(next_task); return 1; } static void push_dl_tasks(struct rq *rq) { /* Terminates as it moves a -deadline task */ while (push_dl_task(rq)) ; } static int pull_dl_task(struct rq *this_rq) { int this_cpu = this_rq->cpu, ret = 0, cpu; struct task_struct *p; struct rq *src_rq; u64 dmin = LONG_MAX; if (likely(!dl_overloaded(this_rq))) return 0; /* * Match the barrier from dl_set_overloaded; this guarantees that if we * see overloaded we must also see the dlo_mask bit. */ smp_rmb(); for_each_cpu(cpu, this_rq->rd->dlo_mask) { if (this_cpu == cpu) continue; src_rq = cpu_rq(cpu); /* * It looks racy, abd it is! However, as in sched_rt.c, * we are fine with this. */ if (this_rq->dl.dl_nr_running && dl_time_before(this_rq->dl.earliest_dl.curr, src_rq->dl.earliest_dl.next)) continue; /* Might drop this_rq->lock */ double_lock_balance(this_rq, src_rq); /* * If there are no more pullable tasks on the * rq, we're done with it. */ if (src_rq->dl.dl_nr_running <= 1) goto skip; p = pick_next_earliest_dl_task(src_rq, this_cpu); /* * We found a task to be pulled if: * - it preempts our current (if there's one), * - it will preempt the last one we pulled (if any). */ if (p && dl_time_before(p->dl.deadline, dmin) && (!this_rq->dl.dl_nr_running || dl_time_before(p->dl.deadline, this_rq->dl.earliest_dl.curr))) { WARN_ON(p == src_rq->curr); WARN_ON(!task_on_rq_queued(p)); /* * Then we pull iff p has actually an earlier * deadline than the current task of its runqueue. */ if (dl_time_before(p->dl.deadline, src_rq->curr->dl.deadline)) goto skip; ret = 1; deactivate_task(src_rq, p, 0); set_task_cpu(p, this_cpu); activate_task(this_rq, p, 0); dmin = p->dl.deadline; /* Is there any other task even earlier? */ } skip: double_unlock_balance(this_rq, src_rq); } return ret; } static void post_schedule_dl(struct rq *rq) { push_dl_tasks(rq); } /* * Since the task is not running and a reschedule is not going to happen * anytime soon on its runqueue, we try pushing it away now. */ static void task_woken_dl(struct rq *rq, struct task_struct *p) { if (!task_running(rq, p) && !test_tsk_need_resched(rq->curr) && has_pushable_dl_tasks(rq) && p->nr_cpus_allowed > 1 && dl_task(rq->curr) && (rq->curr->nr_cpus_allowed < 2 || dl_entity_preempt(&rq->curr->dl, &p->dl))) { push_dl_tasks(rq); } } static void set_cpus_allowed_dl(struct task_struct *p, const struct cpumask *new_mask) { struct rq *rq; struct root_domain *src_rd; int weight; BUG_ON(!dl_task(p)); rq = task_rq(p); src_rd = rq->rd; /* * Migrating a SCHED_DEADLINE task between exclusive * cpusets (different root_domains) entails a bandwidth * update. We already made space for us in the destination * domain (see cpuset_can_attach()). */ if (!cpumask_intersects(src_rd->span, new_mask)) { struct dl_bw *src_dl_b; src_dl_b = dl_bw_of(cpu_of(rq)); /* * We now free resources of the root_domain we are migrating * off. In the worst case, sched_setattr() may temporary fail * until we complete the update. */ raw_spin_lock(&src_dl_b->lock); __dl_clear(src_dl_b, p->dl.dl_bw); raw_spin_unlock(&src_dl_b->lock); } /* * Update only if the task is actually running (i.e., * it is on the rq AND it is not throttled). */ if (!on_dl_rq(&p->dl)) return; weight = cpumask_weight(new_mask); /* * Only update if the process changes its state from whether it * can migrate or not. */ if ((p->nr_cpus_allowed > 1) == (weight > 1)) return; /* * The process used to be able to migrate OR it can now migrate */ if (weight <= 1) { if (!task_current(rq, p)) dequeue_pushable_dl_task(rq, p); BUG_ON(!rq->dl.dl_nr_migratory); rq->dl.dl_nr_migratory--; } else { if (!task_current(rq, p)) enqueue_pushable_dl_task(rq, p); rq->dl.dl_nr_migratory++; } update_dl_migration(&rq->dl); } /* Assumes rq->lock is held */ static void rq_online_dl(struct rq *rq) { if (rq->dl.overloaded) dl_set_overload(rq); if (rq->dl.dl_nr_running > 0) cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); } /* Assumes rq->lock is held */ static void rq_offline_dl(struct rq *rq) { if (rq->dl.overloaded) dl_clear_overload(rq); cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); } void init_sched_dl_class(void) { unsigned int i; for_each_possible_cpu(i) zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), GFP_KERNEL, cpu_to_node(i)); } #endif /* CONFIG_SMP */ static void switched_from_dl(struct rq *rq, struct task_struct *p) { if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy)) hrtimer_try_to_cancel(&p->dl.dl_timer); __dl_clear_params(p); #ifdef CONFIG_SMP /* * Since this might be the only -deadline task on the rq, * this is the right place to try to pull some other one * from an overloaded cpu, if any. */ if (!rq->dl.dl_nr_running) pull_dl_task(rq); #endif } /* * When switching to -deadline, we may overload the rq, then * we try to push someone off, if possible. */ static void switched_to_dl(struct rq *rq, struct task_struct *p) { int check_resched = 1; /* * If p is throttled, don't consider the possibility * of preempting rq->curr, the check will be done right * after its runtime will get replenished. */ if (unlikely(p->dl.dl_throttled)) return; if (task_on_rq_queued(p) && rq->curr != p) { #ifdef CONFIG_SMP if (p->nr_cpus_allowed > 1 && rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p)) /* Only reschedule if pushing failed */ check_resched = 0; #endif /* CONFIG_SMP */ if (check_resched) { if (dl_task(rq->curr)) check_preempt_curr_dl(rq, p, 0); else resched_curr(rq); } } } /* * If the scheduling parameters of a -deadline task changed, * a push or pull operation might be needed. */ static void prio_changed_dl(struct rq *rq, struct task_struct *p, int oldprio) { if (task_on_rq_queued(p) || rq->curr == p) { #ifdef CONFIG_SMP /* * This might be too much, but unfortunately * we don't have the old deadline value, and * we can't argue if the task is increasing * or lowering its prio, so... */ if (!rq->dl.overloaded) pull_dl_task(rq); /* * If we now have a earlier deadline task than p, * then reschedule, provided p is still on this * runqueue. */ if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) && rq->curr == p) resched_curr(rq); #else /* * Again, we don't know if p has a earlier * or later deadline, so let's blindly set a * (maybe not needed) rescheduling point. */ resched_curr(rq); #endif /* CONFIG_SMP */ } else switched_to_dl(rq, p); } const struct sched_class dl_sched_class = { .next = &rt_sched_class, .enqueue_task = enqueue_task_dl, .dequeue_task = dequeue_task_dl, .yield_task = yield_task_dl, .check_preempt_curr = check_preempt_curr_dl, .pick_next_task = pick_next_task_dl, .put_prev_task = put_prev_task_dl, #ifdef CONFIG_SMP .select_task_rq = select_task_rq_dl, .set_cpus_allowed = set_cpus_allowed_dl, .rq_online = rq_online_dl, .rq_offline = rq_offline_dl, .post_schedule = post_schedule_dl, .task_woken = task_woken_dl, #endif .set_curr_task = set_curr_task_dl, .task_tick = task_tick_dl, .task_fork = task_fork_dl, .task_dead = task_dead_dl, .prio_changed = prio_changed_dl, .switched_from = switched_from_dl, .switched_to = switched_to_dl, };