/* * linux/kernel/resource.c * * Copyright (C) 1999 Linus Torvalds * Copyright (C) 1999 Martin Mares <mj@ucw.cz> * * Arbitrary resource management. */ #include <linux/module.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/fs.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/device.h> #include <linux/pfn.h> #include <asm/io.h> struct resource ioport_resource = { .name = "PCI IO", .start = 0, .end = IO_SPACE_LIMIT, .flags = IORESOURCE_IO, }; EXPORT_SYMBOL(ioport_resource); struct resource iomem_resource = { .name = "PCI mem", .start = 0, .end = -1, .flags = IORESOURCE_MEM, }; EXPORT_SYMBOL(iomem_resource); static DEFINE_RWLOCK(resource_lock); static void *r_next(struct seq_file *m, void *v, loff_t *pos) { struct resource *p = v; (*pos)++; if (p->child) return p->child; while (!p->sibling && p->parent) p = p->parent; return p->sibling; } #ifdef CONFIG_PROC_FS enum { MAX_IORES_LEVEL = 5 }; static void *r_start(struct seq_file *m, loff_t *pos) __acquires(resource_lock) { struct resource *p = m->private; loff_t l = 0; read_lock(&resource_lock); for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) ; return p; } static void r_stop(struct seq_file *m, void *v) __releases(resource_lock) { read_unlock(&resource_lock); } static int r_show(struct seq_file *m, void *v) { struct resource *root = m->private; struct resource *r = v, *p; int width = root->end < 0x10000 ? 4 : 8; int depth; for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) if (p->parent == root) break; seq_printf(m, "%*s%0*llx-%0*llx : %s\n", depth * 2, "", width, (unsigned long long) r->start, width, (unsigned long long) r->end, r->name ? r->name : "<BAD>"); return 0; } static const struct seq_operations resource_op = { .start = r_start, .next = r_next, .stop = r_stop, .show = r_show, }; static int ioports_open(struct inode *inode, struct file *file) { int res = seq_open(file, &resource_op); if (!res) { struct seq_file *m = file->private_data; m->private = &ioport_resource; } return res; } static int iomem_open(struct inode *inode, struct file *file) { int res = seq_open(file, &resource_op); if (!res) { struct seq_file *m = file->private_data; m->private = &iomem_resource; } return res; } static const struct file_operations proc_ioports_operations = { .open = ioports_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static const struct file_operations proc_iomem_operations = { .open = iomem_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static int __init ioresources_init(void) { proc_create("ioports", 0, NULL, &proc_ioports_operations); proc_create("iomem", 0, NULL, &proc_iomem_operations); return 0; } __initcall(ioresources_init); #endif /* CONFIG_PROC_FS */ /* Return the conflict entry if you can't request it */ static struct resource * __request_resource(struct resource *root, struct resource *new) { resource_size_t start = new->start; resource_size_t end = new->end; struct resource *tmp, **p; if (end < start) return root; if (start < root->start) return root; if (end > root->end) return root; p = &root->child; for (;;) { tmp = *p; if (!tmp || tmp->start > end) { new->sibling = tmp; *p = new; new->parent = root; return NULL; } p = &tmp->sibling; if (tmp->end < start) continue; return tmp; } } static int __release_resource(struct resource *old) { struct resource *tmp, **p; p = &old->parent->child; for (;;) { tmp = *p; if (!tmp) break; if (tmp == old) { *p = tmp->sibling; old->parent = NULL; return 0; } p = &tmp->sibling; } return -EINVAL; } /** * request_resource - request and reserve an I/O or memory resource * @root: root resource descriptor * @new: resource descriptor desired by caller * * Returns 0 for success, negative error code on error. */ int request_resource(struct resource *root, struct resource *new) { struct resource *conflict; write_lock(&resource_lock); conflict = __request_resource(root, new); write_unlock(&resource_lock); return conflict ? -EBUSY : 0; } EXPORT_SYMBOL(request_resource); /** * release_resource - release a previously reserved resource * @old: resource pointer */ int release_resource(struct resource *old) { int retval; write_lock(&resource_lock); retval = __release_resource(old); write_unlock(&resource_lock); return retval; } EXPORT_SYMBOL(release_resource); #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) /* * Finds the lowest memory reosurce exists within [res->start.res->end) * the caller must specify res->start, res->end, res->flags and "name". * If found, returns 0, res is overwritten, if not found, returns -1. */ static int find_next_system_ram(struct resource *res, char *name) { resource_size_t start, end; struct resource *p; BUG_ON(!res); start = res->start; end = res->end; BUG_ON(start >= end); read_lock(&resource_lock); for (p = iomem_resource.child; p ; p = p->sibling) { /* system ram is just marked as IORESOURCE_MEM */ if (p->flags != res->flags) continue; if (name && strcmp(p->name, name)) continue; if (p->start > end) { p = NULL; break; } if ((p->end >= start) && (p->start < end)) break; } read_unlock(&resource_lock); if (!p) return -1; /* copy data */ if (res->start < p->start) res->start = p->start; if (res->end > p->end) res->end = p->end; return 0; } /* * This function calls callback against all memory range of "System RAM" * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. * Now, this function is only for "System RAM". */ int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, void *arg, int (*func)(unsigned long, unsigned long, void *)) { struct resource res; unsigned long pfn, len; u64 orig_end; int ret = -1; res.start = (u64) start_pfn << PAGE_SHIFT; res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; orig_end = res.end; while ((res.start < res.end) && (find_next_system_ram(&res, "System RAM") >= 0)) { pfn = (unsigned long)(res.start >> PAGE_SHIFT); len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); ret = (*func)(pfn, len, arg); if (ret) break; res.start = res.end + 1; res.end = orig_end; } return ret; } #endif /* * Find empty slot in the resource tree given range and alignment. */ static int find_resource(struct resource *root, struct resource *new, resource_size_t size, resource_size_t min, resource_size_t max, resource_size_t align, void (*alignf)(void *, struct resource *, resource_size_t, resource_size_t), void *alignf_data) { struct resource *this = root->child; resource_size_t start, end; start = root->start; /* * Skip past an allocated resource that starts at 0, since the assignment * of this->start - 1 to new->end below would cause an underflow. */ if (this && this->start == 0) { start = this->end + 1; this = this->sibling; } for(;;) { if (this) end = this->start - 1; else end = root->end; if (start < min) start = min; if (end > max) end = max; start = ALIGN(start, align); if (alignf) alignf(alignf_data, new, size, align); if (start < end && end - start >= size - 1) { new->start = start; new->end = start + size - 1; return 0; } if (!this) break; start = this->end + 1; this = this->sibling; } return -EBUSY; } /** * allocate_resource - allocate empty slot in the resource tree given range & alignment * @root: root resource descriptor * @new: resource descriptor desired by caller * @size: requested resource region size * @min: minimum size to allocate * @max: maximum size to allocate * @align: alignment requested, in bytes * @alignf: alignment function, optional, called if not NULL * @alignf_data: arbitrary data to pass to the @alignf function */ int allocate_resource(struct resource *root, struct resource *new, resource_size_t size, resource_size_t min, resource_size_t max, resource_size_t align, void (*alignf)(void *, struct resource *, resource_size_t, resource_size_t), void *alignf_data) { int err; write_lock(&resource_lock); err = find_resource(root, new, size, min, max, align, alignf, alignf_data); if (err >= 0 && __request_resource(root, new)) err = -EBUSY; write_unlock(&resource_lock); return err; } EXPORT_SYMBOL(allocate_resource); /* * Insert a resource into the resource tree. If successful, return NULL, * otherwise return the conflicting resource (compare to __request_resource()) */ static struct resource * __insert_resource(struct resource *parent, struct resource *new) { struct resource *first, *next; for (;; parent = first) { first = __request_resource(parent, new); if (!first) return first; if (first == parent) return first; if ((first->start > new->start) || (first->end < new->end)) break; if ((first->start == new->start) && (first->end == new->end)) break; } for (next = first; ; next = next->sibling) { /* Partial overlap? Bad, and unfixable */ if (next->start < new->start || next->end > new->end) return next; if (!next->sibling) break; if (next->sibling->start > new->end) break; } new->parent = parent; new->sibling = next->sibling; new->child = first; next->sibling = NULL; for (next = first; next; next = next->sibling) next->parent = new; if (parent->child == first) { parent->child = new; } else { next = parent->child; while (next->sibling != first) next = next->sibling; next->sibling = new; } return NULL; } /** * insert_resource - Inserts a resource in the resource tree * @parent: parent of the new resource * @new: new resource to insert * * Returns 0 on success, -EBUSY if the resource can't be inserted. * * This function is equivalent to request_resource when no conflict * happens. If a conflict happens, and the conflicting resources * entirely fit within the range of the new resource, then the new * resource is inserted and the conflicting resources become children of * the new resource. */ int insert_resource(struct resource *parent, struct resource *new) { struct resource *conflict; write_lock(&resource_lock); conflict = __insert_resource(parent, new); write_unlock(&resource_lock); return conflict ? -EBUSY : 0; } /** * insert_resource_expand_to_fit - Insert a resource into the resource tree * @root: root resource descriptor * @new: new resource to insert * * Insert a resource into the resource tree, possibly expanding it in order * to make it encompass any conflicting resources. */ void insert_resource_expand_to_fit(struct resource *root, struct resource *new) { if (new->parent) return; write_lock(&resource_lock); for (;;) { struct resource *conflict; conflict = __insert_resource(root, new); if (!conflict) break; if (conflict == root) break; /* Ok, expand resource to cover the conflict, then try again .. */ if (conflict->start < new->start) new->start = conflict->start; if (conflict->end > new->end) new->end = conflict->end; printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); } write_unlock(&resource_lock); } /** * adjust_resource - modify a resource's start and size * @res: resource to modify * @start: new start value * @size: new size * * Given an existing resource, change its start and size to match the * arguments. Returns 0 on success, -EBUSY if it can't fit. * Existing children of the resource are assumed to be immutable. */ int adjust_resource(struct resource *res, resource_size_t start, resource_size_t size) { struct resource *tmp, *parent = res->parent; resource_size_t end = start + size - 1; int result = -EBUSY; write_lock(&resource_lock); if ((start < parent->start) || (end > parent->end)) goto out; for (tmp = res->child; tmp; tmp = tmp->sibling) { if ((tmp->start < start) || (tmp->end > end)) goto out; } if (res->sibling && (res->sibling->start <= end)) goto out; tmp = parent->child; if (tmp != res) { while (tmp->sibling != res) tmp = tmp->sibling; if (start <= tmp->end) goto out; } res->start = start; res->end = end; result = 0; out: write_unlock(&resource_lock); return result; } static void __init __reserve_region_with_split(struct resource *root, resource_size_t start, resource_size_t end, const char *name) { struct resource *parent = root; struct resource *conflict; struct resource *res = kzalloc(sizeof(*res), GFP_ATOMIC); if (!res) return; res->name = name; res->start = start; res->end = end; res->flags = IORESOURCE_BUSY; conflict = __request_resource(parent, res); if (!conflict) return; /* failed, split and try again */ kfree(res); /* conflict covered whole area */ if (conflict->start <= start && conflict->end >= end) return; if (conflict->start > start) __reserve_region_with_split(root, start, conflict->start-1, name); if (conflict->end < end) __reserve_region_with_split(root, conflict->end+1, end, name); } void __init reserve_region_with_split(struct resource *root, resource_size_t start, resource_size_t end, const char *name) { write_lock(&resource_lock); __reserve_region_with_split(root, start, end, name); write_unlock(&resource_lock); } EXPORT_SYMBOL(adjust_resource); /** * resource_alignment - calculate resource's alignment * @res: resource pointer * * Returns alignment on success, 0 (invalid alignment) on failure. */ resource_size_t resource_alignment(struct resource *res) { switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { case IORESOURCE_SIZEALIGN: return resource_size(res); case IORESOURCE_STARTALIGN: return res->start; default: return 0; } } /* * This is compatibility stuff for IO resources. * * Note how this, unlike the above, knows about * the IO flag meanings (busy etc). * * request_region creates a new busy region. * * check_region returns non-zero if the area is already busy. * * release_region releases a matching busy region. */ /** * __request_region - create a new busy resource region * @parent: parent resource descriptor * @start: resource start address * @n: resource region size * @name: reserving caller's ID string * @flags: IO resource flags */ struct resource * __request_region(struct resource *parent, resource_size_t start, resource_size_t n, const char *name, int flags) { struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL); if (!res) return NULL; res->name = name; res->start = start; res->end = start + n - 1; res->flags = IORESOURCE_BUSY; res->flags |= flags; write_lock(&resource_lock); for (;;) { struct resource *conflict; conflict = __request_resource(parent, res); if (!conflict) break; if (conflict != parent) { parent = conflict; if (!(conflict->flags & IORESOURCE_BUSY)) continue; } /* Uhhuh, that didn't work out.. */ kfree(res); res = NULL; break; } write_unlock(&resource_lock); return res; } EXPORT_SYMBOL(__request_region); /** * __check_region - check if a resource region is busy or free * @parent: parent resource descriptor * @start: resource start address * @n: resource region size * * Returns 0 if the region is free at the moment it is checked, * returns %-EBUSY if the region is busy. * * NOTE: * This function is deprecated because its use is racy. * Even if it returns 0, a subsequent call to request_region() * may fail because another driver etc. just allocated the region. * Do NOT use it. It will be removed from the kernel. */ int __check_region(struct resource *parent, resource_size_t start, resource_size_t n) { struct resource * res; res = __request_region(parent, start, n, "check-region", 0); if (!res) return -EBUSY; release_resource(res); kfree(res); return 0; } EXPORT_SYMBOL(__check_region); /** * __release_region - release a previously reserved resource region * @parent: parent resource descriptor * @start: resource start address * @n: resource region size * * The described resource region must match a currently busy region. */ void __release_region(struct resource *parent, resource_size_t start, resource_size_t n) { struct resource **p; resource_size_t end; p = &parent->child; end = start + n - 1; write_lock(&resource_lock); for (;;) { struct resource *res = *p; if (!res) break; if (res->start <= start && res->end >= end) { if (!(res->flags & IORESOURCE_BUSY)) { p = &res->child; continue; } if (res->start != start || res->end != end) break; *p = res->sibling; write_unlock(&resource_lock); kfree(res); return; } p = &res->sibling; } write_unlock(&resource_lock); printk(KERN_WARNING "Trying to free nonexistent resource " "<%016llx-%016llx>\n", (unsigned long long)start, (unsigned long long)end); } EXPORT_SYMBOL(__release_region); /* * Managed region resource */ struct region_devres { struct resource *parent; resource_size_t start; resource_size_t n; }; static void devm_region_release(struct device *dev, void *res) { struct region_devres *this = res; __release_region(this->parent, this->start, this->n); } static int devm_region_match(struct device *dev, void *res, void *match_data) { struct region_devres *this = res, *match = match_data; return this->parent == match->parent && this->start == match->start && this->n == match->n; } struct resource * __devm_request_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n, const char *name) { struct region_devres *dr = NULL; struct resource *res; dr = devres_alloc(devm_region_release, sizeof(struct region_devres), GFP_KERNEL); if (!dr) return NULL; dr->parent = parent; dr->start = start; dr->n = n; res = __request_region(parent, start, n, name, 0); if (res) devres_add(dev, dr); else devres_free(dr); return res; } EXPORT_SYMBOL(__devm_request_region); void __devm_release_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n) { struct region_devres match_data = { parent, start, n }; __release_region(parent, start, n); WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, &match_data)); } EXPORT_SYMBOL(__devm_release_region); /* * Called from init/main.c to reserve IO ports. */ #define MAXRESERVE 4 static int __init reserve_setup(char *str) { static int reserved; static struct resource reserve[MAXRESERVE]; for (;;) { unsigned int io_start, io_num; int x = reserved; if (get_option (&str, &io_start) != 2) break; if (get_option (&str, &io_num) == 0) break; if (x < MAXRESERVE) { struct resource *res = reserve + x; res->name = "reserved"; res->start = io_start; res->end = io_start + io_num - 1; res->flags = IORESOURCE_BUSY; res->child = NULL; if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0) reserved = x+1; } } return 1; } __setup("reserve=", reserve_setup); /* * Check if the requested addr and size spans more than any slot in the * iomem resource tree. */ int iomem_map_sanity_check(resource_size_t addr, unsigned long size) { struct resource *p = &iomem_resource; int err = 0; loff_t l; read_lock(&resource_lock); for (p = p->child; p ; p = r_next(NULL, p, &l)) { /* * We can probably skip the resources without * IORESOURCE_IO attribute? */ if (p->start >= addr + size) continue; if (p->end < addr) continue; if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) continue; /* * if a resource is "BUSY", it's not a hardware resource * but a driver mapping of such a resource; we don't want * to warn for those; some drivers legitimately map only * partial hardware resources. (example: vesafb) */ if (p->flags & IORESOURCE_BUSY) continue; printk(KERN_WARNING "resource map sanity check conflict: " "0x%llx 0x%llx 0x%llx 0x%llx %s\n", (unsigned long long)addr, (unsigned long long)(addr + size - 1), (unsigned long long)p->start, (unsigned long long)p->end, p->name); err = -1; break; } read_unlock(&resource_lock); return err; } #ifdef CONFIG_STRICT_DEVMEM static int strict_iomem_checks = 1; #else static int strict_iomem_checks; #endif /* * check if an address is reserved in the iomem resource tree * returns 1 if reserved, 0 if not reserved. */ int iomem_is_exclusive(u64 addr) { struct resource *p = &iomem_resource; int err = 0; loff_t l; int size = PAGE_SIZE; if (!strict_iomem_checks) return 0; addr = addr & PAGE_MASK; read_lock(&resource_lock); for (p = p->child; p ; p = r_next(NULL, p, &l)) { /* * We can probably skip the resources without * IORESOURCE_IO attribute? */ if (p->start >= addr + size) break; if (p->end < addr) continue; if (p->flags & IORESOURCE_BUSY && p->flags & IORESOURCE_EXCLUSIVE) { err = 1; break; } } read_unlock(&resource_lock); return err; } static int __init strict_iomem(char *str) { if (strstr(str, "relaxed")) strict_iomem_checks = 0; if (strstr(str, "strict")) strict_iomem_checks = 1; return 1; } __setup("iomem=", strict_iomem);