/* SPDX-License-Identifier: GPL-2.0+ */ /* * Read-Copy Update mechanism for mutual exclusion (tree-based version) * Internal non-public definitions that provide either classic * or preemptible semantics. * * Copyright Red Hat, 2009 * Copyright IBM Corporation, 2009 * Copyright SUSE, 2021 * * Author: Ingo Molnar * Paul E. McKenney * Frederic Weisbecker */ #ifdef CONFIG_RCU_NOCB_CPU static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) { /* Race on early boot between thread creation and assignment */ if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) return true; if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) if (in_task()) return true; return false; } /* * Offload callback processing from the boot-time-specified set of CPUs * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads * created that pull the callbacks from the corresponding CPU, wait for * a grace period to elapse, and invoke the callbacks. These kthreads * are organized into GP kthreads, which manage incoming callbacks, wait for * grace periods, and awaken CB kthreads, and the CB kthreads, which only * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs * do a wake_up() on their GP kthread when they insert a callback into any * empty list, unless the rcu_nocb_poll boot parameter has been specified, * in which case each kthread actively polls its CPU. (Which isn't so great * for energy efficiency, but which does reduce RCU's overhead on that CPU.) * * This is intended to be used in conjunction with Frederic Weisbecker's * adaptive-idle work, which would seriously reduce OS jitter on CPUs * running CPU-bound user-mode computations. * * Offloading of callbacks can also be used as an energy-efficiency * measure because CPUs with no RCU callbacks queued are more aggressive * about entering dyntick-idle mode. */ /* * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. * If the list is invalid, a warning is emitted and all CPUs are offloaded. */ static int __init rcu_nocb_setup(char *str) { alloc_bootmem_cpumask_var(&rcu_nocb_mask); if (*str == '=') { if (cpulist_parse(++str, rcu_nocb_mask)) { pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); cpumask_setall(rcu_nocb_mask); } } rcu_state.nocb_is_setup = true; return 1; } __setup("rcu_nocbs", rcu_nocb_setup); static int __init parse_rcu_nocb_poll(char *arg) { rcu_nocb_poll = true; return 1; } __setup("rcu_nocb_poll", parse_rcu_nocb_poll); /* * Don't bother bypassing ->cblist if the call_rcu() rate is low. * After all, the main point of bypassing is to avoid lock contention * on ->nocb_lock, which only can happen at high call_rcu() rates. */ static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; module_param(nocb_nobypass_lim_per_jiffy, int, 0); /* * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the * lock isn't immediately available, perform minimal sanity check. */ static void rcu_nocb_bypass_lock(struct rcu_data *rdp) __acquires(&rdp->nocb_bypass_lock) { lockdep_assert_irqs_disabled(); if (raw_spin_trylock(&rdp->nocb_bypass_lock)) return; /* * Contention expected only when local enqueue collide with * remote flush from kthreads. */ WARN_ON_ONCE(smp_processor_id() != rdp->cpu); raw_spin_lock(&rdp->nocb_bypass_lock); } /* * Conditionally acquire the specified rcu_data structure's * ->nocb_bypass_lock. */ static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) { lockdep_assert_irqs_disabled(); return raw_spin_trylock(&rdp->nocb_bypass_lock); } /* * Release the specified rcu_data structure's ->nocb_bypass_lock. */ static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) __releases(&rdp->nocb_bypass_lock) { lockdep_assert_irqs_disabled(); raw_spin_unlock(&rdp->nocb_bypass_lock); } /* * Acquire the specified rcu_data structure's ->nocb_lock, but only * if it corresponds to a no-CBs CPU. */ static void rcu_nocb_lock(struct rcu_data *rdp) { lockdep_assert_irqs_disabled(); if (!rcu_rdp_is_offloaded(rdp)) return; raw_spin_lock(&rdp->nocb_lock); } /* * Release the specified rcu_data structure's ->nocb_lock, but only * if it corresponds to a no-CBs CPU. */ static void rcu_nocb_unlock(struct rcu_data *rdp) { if (rcu_rdp_is_offloaded(rdp)) { lockdep_assert_irqs_disabled(); raw_spin_unlock(&rdp->nocb_lock); } } /* * Release the specified rcu_data structure's ->nocb_lock and restore * interrupts, but only if it corresponds to a no-CBs CPU. */ static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, unsigned long flags) { if (rcu_rdp_is_offloaded(rdp)) { lockdep_assert_irqs_disabled(); raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); } else { local_irq_restore(flags); } } /* Lockdep check that ->cblist may be safely accessed. */ static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) { lockdep_assert_irqs_disabled(); if (rcu_rdp_is_offloaded(rdp)) lockdep_assert_held(&rdp->nocb_lock); } /* * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended * grace period. */ static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) { swake_up_all(sq); } static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) { return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; } static void rcu_init_one_nocb(struct rcu_node *rnp) { init_swait_queue_head(&rnp->nocb_gp_wq[0]); init_swait_queue_head(&rnp->nocb_gp_wq[1]); } static bool __wake_nocb_gp(struct rcu_data *rdp_gp, struct rcu_data *rdp, bool force, unsigned long flags) __releases(rdp_gp->nocb_gp_lock) { bool needwake = false; if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("AlreadyAwake")); return false; } if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); del_timer(&rdp_gp->nocb_timer); } if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); needwake = true; } raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); if (needwake) { trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); wake_up_process(rdp_gp->nocb_gp_kthread); } return needwake; } /* * Kick the GP kthread for this NOCB group. */ static bool wake_nocb_gp(struct rcu_data *rdp, bool force) { unsigned long flags; struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); return __wake_nocb_gp(rdp_gp, rdp, force, flags); } #ifdef CONFIG_RCU_LAZY /* * LAZY_FLUSH_JIFFIES decides the maximum amount of time that * can elapse before lazy callbacks are flushed. Lazy callbacks * could be flushed much earlier for a number of other reasons * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are * left unsubmitted to RCU after those many jiffies. */ #define LAZY_FLUSH_JIFFIES (10 * HZ) static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES; // To be called only from test code. void rcu_set_jiffies_lazy_flush(unsigned long jif) { jiffies_lazy_flush = jif; } EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush); unsigned long rcu_get_jiffies_lazy_flush(void) { return jiffies_lazy_flush; } EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush); #endif /* * Arrange to wake the GP kthread for this NOCB group at some future * time when it is safe to do so. */ static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, const char *reason) { unsigned long flags; struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); /* * Bypass wakeup overrides previous deferments. In case of * callback storms, no need to wake up too early. */ if (waketype == RCU_NOCB_WAKE_LAZY && rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) { mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush()); WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); } else if (waketype == RCU_NOCB_WAKE_BYPASS) { mod_timer(&rdp_gp->nocb_timer, jiffies + 2); WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); } else { if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) mod_timer(&rdp_gp->nocb_timer, jiffies + 1); if (rdp_gp->nocb_defer_wakeup < waketype) WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); } raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); } /* * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. * However, if there is a callback to be enqueued and if ->nocb_bypass * proves to be initially empty, just return false because the no-CB GP * kthread may need to be awakened in this case. * * Return true if there was something to be flushed and it succeeded, otherwise * false. * * Note that this function always returns true if rhp is NULL. */ static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in, unsigned long j, bool lazy) { struct rcu_cblist rcl; struct rcu_head *rhp = rhp_in; WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); rcu_lockdep_assert_cblist_protected(rdp); lockdep_assert_held(&rdp->nocb_bypass_lock); if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { raw_spin_unlock(&rdp->nocb_bypass_lock); return false; } /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ if (rhp) rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ /* * If the new CB requested was a lazy one, queue it onto the main * ->cblist so that we can take advantage of the grace-period that will * happen regardless. But queue it onto the bypass list first so that * the lazy CB is ordered with the existing CBs in the bypass list. */ if (lazy && rhp) { rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); rhp = NULL; } rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); WRITE_ONCE(rdp->lazy_len, 0); rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); WRITE_ONCE(rdp->nocb_bypass_first, j); rcu_nocb_bypass_unlock(rdp); return true; } /* * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. * However, if there is a callback to be enqueued and if ->nocb_bypass * proves to be initially empty, just return false because the no-CB GP * kthread may need to be awakened in this case. * * Note that this function always returns true if rhp is NULL. */ static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, unsigned long j, bool lazy) { if (!rcu_rdp_is_offloaded(rdp)) return true; rcu_lockdep_assert_cblist_protected(rdp); rcu_nocb_bypass_lock(rdp); return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy); } /* * If the ->nocb_bypass_lock is immediately available, flush the * ->nocb_bypass queue into ->cblist. */ static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) { rcu_lockdep_assert_cblist_protected(rdp); if (!rcu_rdp_is_offloaded(rdp) || !rcu_nocb_bypass_trylock(rdp)) return; WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false)); } /* * See whether it is appropriate to use the ->nocb_bypass list in order * to control contention on ->nocb_lock. A limited number of direct * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass * is non-empty, further callbacks must be placed into ->nocb_bypass, * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch * back to direct use of ->cblist. However, ->nocb_bypass should not be * used if ->cblist is empty, because otherwise callbacks can be stranded * on ->nocb_bypass because we cannot count on the current CPU ever again * invoking call_rcu(). The general rule is that if ->nocb_bypass is * non-empty, the corresponding no-CBs grace-period kthread must not be * in an indefinite sleep state. * * Finally, it is not permitted to use the bypass during early boot, * as doing so would confuse the auto-initialization code. Besides * which, there is no point in worrying about lock contention while * there is only one CPU in operation. */ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, bool *was_alldone, unsigned long flags, bool lazy) { unsigned long c; unsigned long cur_gp_seq; unsigned long j = jiffies; long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len)); lockdep_assert_irqs_disabled(); // Pure softirq/rcuc based processing: no bypassing, no // locking. if (!rcu_rdp_is_offloaded(rdp)) { *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); return false; } // Don't use ->nocb_bypass during early boot. if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { rcu_nocb_lock(rdp); WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); return false; } // If we have advanced to a new jiffy, reset counts to allow // moving back from ->nocb_bypass to ->cblist. if (j == rdp->nocb_nobypass_last) { c = rdp->nocb_nobypass_count + 1; } else { WRITE_ONCE(rdp->nocb_nobypass_last, j); c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; if (ULONG_CMP_LT(rdp->nocb_nobypass_count, nocb_nobypass_lim_per_jiffy)) c = 0; else if (c > nocb_nobypass_lim_per_jiffy) c = nocb_nobypass_lim_per_jiffy; } WRITE_ONCE(rdp->nocb_nobypass_count, c); // If there hasn't yet been all that many ->cblist enqueues // this jiffy, tell the caller to enqueue onto ->cblist. But flush // ->nocb_bypass first. // Lazy CBs throttle this back and do immediate bypass queuing. if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) { rcu_nocb_lock(rdp); *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); if (*was_alldone) trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstQ")); WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false)); WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); return false; // Caller must enqueue the callback. } // If ->nocb_bypass has been used too long or is too full, // flush ->nocb_bypass to ->cblist. if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) || (ncbs && bypass_is_lazy && (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) || ncbs >= qhimark) { rcu_nocb_lock(rdp); *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) { if (*was_alldone) trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstQ")); WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); return false; // Caller must enqueue the callback. } if (j != rdp->nocb_gp_adv_time && rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { rcu_advance_cbs_nowake(rdp->mynode, rdp); rdp->nocb_gp_adv_time = j; } // The flush succeeded and we moved CBs into the regular list. // Don't wait for the wake up timer as it may be too far ahead. // Wake up the GP thread now instead, if the cblist was empty. __call_rcu_nocb_wake(rdp, *was_alldone, flags); return true; // Callback already enqueued. } // We need to use the bypass. rcu_nocb_bypass_lock(rdp); ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); if (lazy) WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1); if (!ncbs) { WRITE_ONCE(rdp->nocb_bypass_first, j); trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); } rcu_nocb_bypass_unlock(rdp); smp_mb(); /* Order enqueue before wake. */ // A wake up of the grace period kthread or timer adjustment // needs to be done only if: // 1. Bypass list was fully empty before (this is the first // bypass list entry), or: // 2. Both of these conditions are met: // a. The bypass list previously had only lazy CBs, and: // b. The new CB is non-lazy. if (!ncbs || (bypass_is_lazy && !lazy)) { // No-CBs GP kthread might be indefinitely asleep, if so, wake. rcu_nocb_lock(rdp); // Rare during call_rcu() flood. if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQwake")); __call_rcu_nocb_wake(rdp, true, flags); } else { trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQnoWake")); rcu_nocb_unlock(rdp); } } return true; // Callback already enqueued. } /* * Awaken the no-CBs grace-period kthread if needed, either due to it * legitimately being asleep or due to overload conditions. * * If warranted, also wake up the kthread servicing this CPUs queues. */ static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, unsigned long flags) __releases(rdp->nocb_lock) { long bypass_len; unsigned long cur_gp_seq; unsigned long j; long lazy_len; long len; struct task_struct *t; struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; // If we are being polled or there is no kthread, just leave. t = READ_ONCE(rdp->nocb_gp_kthread); if (rcu_nocb_poll || !t) { rcu_nocb_unlock(rdp); trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNotPoll")); return; } // Need to actually to a wakeup. len = rcu_segcblist_n_cbs(&rdp->cblist); bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass); lazy_len = READ_ONCE(rdp->lazy_len); if (was_alldone) { rdp->qlen_last_fqs_check = len; // Only lazy CBs in bypass list if (lazy_len && bypass_len == lazy_len) { rcu_nocb_unlock(rdp); wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY, TPS("WakeLazy")); } else if (!irqs_disabled_flags(flags)) { /* ... if queue was empty ... */ rcu_nocb_unlock(rdp); wake_nocb_gp(rdp, false); trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeEmpty")); } else { rcu_nocb_unlock(rdp); wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, TPS("WakeEmptyIsDeferred")); } } else if (len > rdp->qlen_last_fqs_check + qhimark) { /* ... or if many callbacks queued. */ rdp->qlen_last_fqs_check = len; j = jiffies; if (j != rdp->nocb_gp_adv_time && rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { rcu_advance_cbs_nowake(rdp->mynode, rdp); rdp->nocb_gp_adv_time = j; } smp_mb(); /* Enqueue before timer_pending(). */ if ((rdp->nocb_cb_sleep || !rcu_segcblist_ready_cbs(&rdp->cblist)) && !timer_pending(&rdp_gp->nocb_timer)) { rcu_nocb_unlock(rdp); wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, TPS("WakeOvfIsDeferred")); } else { rcu_nocb_unlock(rdp); trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); } } else { rcu_nocb_unlock(rdp); trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); } } static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func, unsigned long flags, bool lazy) { bool was_alldone; if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) { /* Not enqueued on bypass but locked, do regular enqueue */ rcutree_enqueue(rdp, head, func); __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ } } static int nocb_gp_toggle_rdp(struct rcu_data *rdp) { struct rcu_segcblist *cblist = &rdp->cblist; unsigned long flags; int ret; rcu_nocb_lock_irqsave(rdp, flags); if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { /* * Offloading. Set our flag and notify the offload worker. * We will handle this rdp until it ever gets de-offloaded. */ rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); ret = 1; } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { /* * De-offloading. Clear our flag and notify the de-offload worker. * We will ignore this rdp until it ever gets re-offloaded. */ rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); ret = 0; } else { WARN_ON_ONCE(1); ret = -1; } rcu_nocb_unlock_irqrestore(rdp, flags); return ret; } static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu) { trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, !READ_ONCE(my_rdp->nocb_gp_sleep)); trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); } /* * No-CBs GP kthreads come here to wait for additional callbacks to show up * or for grace periods to end. */ static void nocb_gp_wait(struct rcu_data *my_rdp) { bool bypass = false; int __maybe_unused cpu = my_rdp->cpu; unsigned long cur_gp_seq; unsigned long flags; bool gotcbs = false; unsigned long j = jiffies; bool lazy = false; bool needwait_gp = false; // This prevents actual uninitialized use. bool needwake; bool needwake_gp; struct rcu_data *rdp, *rdp_toggling = NULL; struct rcu_node *rnp; unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. bool wasempty = false; /* * Each pass through the following loop checks for CBs and for the * nearest grace period (if any) to wait for next. The CB kthreads * and the global grace-period kthread are awakened if needed. */ WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); /* * An rcu_data structure is removed from the list after its * CPU is de-offloaded and added to the list before that CPU is * (re-)offloaded. If the following loop happens to be referencing * that rcu_data structure during the time that the corresponding * CPU is de-offloaded and then immediately re-offloaded, this * loop's rdp pointer will be carried to the end of the list by * the resulting pair of list operations. This can cause the loop * to skip over some of the rcu_data structures that were supposed * to have been scanned. Fortunately a new iteration through the * entire loop is forced after a given CPU's rcu_data structure * is added to the list, so the skipped-over rcu_data structures * won't be ignored for long. */ list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) { long bypass_ncbs; bool flush_bypass = false; long lazy_ncbs; trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); rcu_nocb_lock_irqsave(rdp, flags); lockdep_assert_held(&rdp->nocb_lock); bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); lazy_ncbs = READ_ONCE(rdp->lazy_len); if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) && (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) || bypass_ncbs > 2 * qhimark)) { flush_bypass = true; } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) && (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || bypass_ncbs > 2 * qhimark)) { flush_bypass = true; } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { rcu_nocb_unlock_irqrestore(rdp, flags); continue; /* No callbacks here, try next. */ } if (flush_bypass) { // Bypass full or old, so flush it. (void)rcu_nocb_try_flush_bypass(rdp, j); bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); lazy_ncbs = READ_ONCE(rdp->lazy_len); } if (bypass_ncbs) { trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass")); if (bypass_ncbs == lazy_ncbs) lazy = true; else bypass = true; } rnp = rdp->mynode; // Advance callbacks if helpful and low contention. needwake_gp = false; if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL) || (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ needwake_gp = rcu_advance_cbs(rnp, rdp); wasempty = rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL); raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ } // Need to wait on some grace period? WARN_ON_ONCE(wasempty && !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)); if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { if (!needwait_gp || ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) wait_gp_seq = cur_gp_seq; needwait_gp = true; trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("NeedWaitGP")); } if (rcu_segcblist_ready_cbs(&rdp->cblist)) { needwake = rdp->nocb_cb_sleep; WRITE_ONCE(rdp->nocb_cb_sleep, false); } else { needwake = false; } rcu_nocb_unlock_irqrestore(rdp, flags); if (needwake) { swake_up_one(&rdp->nocb_cb_wq); gotcbs = true; } if (needwake_gp) rcu_gp_kthread_wake(); } my_rdp->nocb_gp_bypass = bypass; my_rdp->nocb_gp_gp = needwait_gp; my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; // At least one child with non-empty ->nocb_bypass, so set // timer in order to avoid stranding its callbacks. if (!rcu_nocb_poll) { // If bypass list only has lazy CBs. Add a deferred lazy wake up. if (lazy && !bypass) { wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY, TPS("WakeLazyIsDeferred")); // Otherwise add a deferred bypass wake up. } else if (bypass) { wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, TPS("WakeBypassIsDeferred")); } } if (rcu_nocb_poll) { /* Polling, so trace if first poll in the series. */ if (gotcbs) trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); if (list_empty(&my_rdp->nocb_head_rdp)) { raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); if (!my_rdp->nocb_toggling_rdp) WRITE_ONCE(my_rdp->nocb_gp_sleep, true); raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); /* Wait for any offloading rdp */ nocb_gp_sleep(my_rdp, cpu); } else { schedule_timeout_idle(1); } } else if (!needwait_gp) { /* Wait for callbacks to appear. */ nocb_gp_sleep(my_rdp, cpu); } else { rnp = my_rdp->mynode; trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); swait_event_interruptible_exclusive( rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || !READ_ONCE(my_rdp->nocb_gp_sleep)); trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); } if (!rcu_nocb_poll) { raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); // (De-)queue an rdp to/from the group if its nocb state is changing rdp_toggling = my_rdp->nocb_toggling_rdp; if (rdp_toggling) my_rdp->nocb_toggling_rdp = NULL; if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); del_timer(&my_rdp->nocb_timer); } WRITE_ONCE(my_rdp->nocb_gp_sleep, true); raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); } else { rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp); if (rdp_toggling) { /* * Paranoid locking to make sure nocb_toggling_rdp is well * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could * race with another round of nocb toggling for this rdp. * Nocb locking should prevent from that already but we stick * to paranoia, especially in rare path. */ raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); my_rdp->nocb_toggling_rdp = NULL; raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); } } if (rdp_toggling) { int ret; ret = nocb_gp_toggle_rdp(rdp_toggling); if (ret == 1) list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp); else if (ret == 0) list_del(&rdp_toggling->nocb_entry_rdp); swake_up_one(&rdp_toggling->nocb_state_wq); } my_rdp->nocb_gp_seq = -1; WARN_ON(signal_pending(current)); } /* * No-CBs grace-period-wait kthread. There is one of these per group * of CPUs, but only once at least one CPU in that group has come online * at least once since boot. This kthread checks for newly posted * callbacks from any of the CPUs it is responsible for, waits for a * grace period, then awakens all of the rcu_nocb_cb_kthread() instances * that then have callback-invocation work to do. */ static int rcu_nocb_gp_kthread(void *arg) { struct rcu_data *rdp = arg; for (;;) { WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); nocb_gp_wait(rdp); cond_resched_tasks_rcu_qs(); } return 0; } static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) { return !READ_ONCE(rdp->nocb_cb_sleep) || kthread_should_park(); } /* * Invoke any ready callbacks from the corresponding no-CBs CPU, * then, if there are no more, wait for more to appear. */ static void nocb_cb_wait(struct rcu_data *rdp) { struct rcu_segcblist *cblist = &rdp->cblist; unsigned long cur_gp_seq; unsigned long flags; bool needwake_gp = false; struct rcu_node *rnp = rdp->mynode; swait_event_interruptible_exclusive(rdp->nocb_cb_wq, nocb_cb_wait_cond(rdp)); if (kthread_should_park()) { kthread_parkme(); } else if (READ_ONCE(rdp->nocb_cb_sleep)) { WARN_ON(signal_pending(current)); trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); } WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); local_irq_save(flags); rcu_momentary_dyntick_idle(); local_irq_restore(flags); /* * Disable BH to provide the expected environment. Also, when * transitioning to/from NOCB mode, a self-requeuing callback might * be invoked from softirq. A short grace period could cause both * instances of this callback would execute concurrently. */ local_bh_disable(); rcu_do_batch(rdp); local_bh_enable(); lockdep_assert_irqs_enabled(); rcu_nocb_lock_irqsave(rdp, flags); if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ } if (!rcu_segcblist_ready_cbs(cblist)) { WRITE_ONCE(rdp->nocb_cb_sleep, true); trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); } else { WRITE_ONCE(rdp->nocb_cb_sleep, false); } rcu_nocb_unlock_irqrestore(rdp, flags); if (needwake_gp) rcu_gp_kthread_wake(); } /* * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke * nocb_cb_wait() to do the dirty work. */ static int rcu_nocb_cb_kthread(void *arg) { struct rcu_data *rdp = arg; // Each pass through this loop does one callback batch, and, // if there are no more ready callbacks, waits for them. for (;;) { nocb_cb_wait(rdp); cond_resched_tasks_rcu_qs(); } return 0; } /* Is a deferred wakeup of rcu_nocb_kthread() required? */ static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) { return READ_ONCE(rdp->nocb_defer_wakeup) >= level; } /* Do a deferred wakeup of rcu_nocb_kthread(). */ static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp, struct rcu_data *rdp, int level, unsigned long flags) __releases(rdp_gp->nocb_gp_lock) { int ndw; int ret; if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) { raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); return false; } ndw = rdp_gp->nocb_defer_wakeup; ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); return ret; } /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ static void do_nocb_deferred_wakeup_timer(struct timer_list *t) { unsigned long flags; struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp); trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags); smp_mb__after_spinlock(); /* Timer expire before wakeup. */ do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags); } /* * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. * This means we do an inexact common-case check. Note that if * we miss, ->nocb_timer will eventually clean things up. */ static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) { unsigned long flags; struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE)) return false; raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags); } void rcu_nocb_flush_deferred_wakeup(void) { do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); } EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); static int rdp_offload_toggle(struct rcu_data *rdp, bool offload, unsigned long flags) __releases(rdp->nocb_lock) { struct rcu_segcblist *cblist = &rdp->cblist; struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; bool wake_gp = false; rcu_segcblist_offload(cblist, offload); rcu_nocb_unlock_irqrestore(rdp, flags); raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); // Queue this rdp for add/del to/from the list to iterate on rcuog WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp); if (rdp_gp->nocb_gp_sleep) { rdp_gp->nocb_gp_sleep = false; wake_gp = true; } raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); return wake_gp; } static int rcu_nocb_rdp_deoffload(struct rcu_data *rdp) { struct rcu_segcblist *cblist = &rdp->cblist; unsigned long flags; int wake_gp; struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; /* CPU must be offline, unless it's early boot */ WARN_ON_ONCE(cpu_online(rdp->cpu) && rdp->cpu != raw_smp_processor_id()); pr_info("De-offloading %d\n", rdp->cpu); /* Flush all callbacks from segcblist and bypass */ rcu_barrier(); rcu_nocb_lock_irqsave(rdp, flags); WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist)); wake_gp = rdp_offload_toggle(rdp, false, flags); mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); if (rdp_gp->nocb_gp_kthread) { if (wake_gp) wake_up_process(rdp_gp->nocb_gp_kthread); swait_event_exclusive(rdp->nocb_state_wq, !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); if (rdp->nocb_cb_kthread) kthread_park(rdp->nocb_cb_kthread); } else { /* * No kthread to clear the flags for us or remove the rdp from the nocb list * to iterate. Do it here instead. Locking doesn't look stricly necessary * but we stick to paranoia in this rare path. */ rcu_nocb_lock_irqsave(rdp, flags); rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP); rcu_nocb_unlock_irqrestore(rdp, flags); list_del(&rdp->nocb_entry_rdp); } mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); /* * Lock one last time to acquire latest callback updates from kthreads * so we can later handle callbacks locally without locking. */ rcu_nocb_lock_irqsave(rdp, flags); /* * Theoretically we could clear SEGCBLIST_LOCKING after the nocb * lock is released but how about being paranoid for once? */ rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING); /* * Without SEGCBLIST_LOCKING, we can't use * rcu_nocb_unlock_irqrestore() anymore. */ raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); return 0; } int rcu_nocb_cpu_deoffload(int cpu) { struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); int ret = 0; cpus_read_lock(); mutex_lock(&rcu_state.nocb_mutex); if (rcu_rdp_is_offloaded(rdp)) { if (!cpu_online(cpu)) { ret = rcu_nocb_rdp_deoffload(rdp); if (!ret) cpumask_clear_cpu(cpu, rcu_nocb_mask); } else { pr_info("NOCB: Cannot CB-deoffload online CPU %d\n", rdp->cpu); ret = -EINVAL; } } mutex_unlock(&rcu_state.nocb_mutex); cpus_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); static int rcu_nocb_rdp_offload(struct rcu_data *rdp) { struct rcu_segcblist *cblist = &rdp->cblist; unsigned long flags; int wake_gp; struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; WARN_ON_ONCE(cpu_online(rdp->cpu)); /* * For now we only support re-offload, ie: the rdp must have been * offloaded on boot first. */ if (!rdp->nocb_gp_rdp) return -EINVAL; if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread)) return -EINVAL; pr_info("Offloading %d\n", rdp->cpu); WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist)); /* * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING * is set. */ raw_spin_lock_irqsave(&rdp->nocb_lock, flags); wake_gp = rdp_offload_toggle(rdp, true, flags); if (wake_gp) wake_up_process(rdp_gp->nocb_gp_kthread); kthread_unpark(rdp->nocb_cb_kthread); swait_event_exclusive(rdp->nocb_state_wq, rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); return 0; } int rcu_nocb_cpu_offload(int cpu) { struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); int ret = 0; cpus_read_lock(); mutex_lock(&rcu_state.nocb_mutex); if (!rcu_rdp_is_offloaded(rdp)) { if (!cpu_online(cpu)) { ret = rcu_nocb_rdp_offload(rdp); if (!ret) cpumask_set_cpu(cpu, rcu_nocb_mask); } else { pr_info("NOCB: Cannot CB-offload online CPU %d\n", rdp->cpu); ret = -EINVAL; } } mutex_unlock(&rcu_state.nocb_mutex); cpus_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); #ifdef CONFIG_RCU_LAZY static unsigned long lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) { int cpu; unsigned long count = 0; if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) return 0; /* Protect rcu_nocb_mask against concurrent (de-)offloading. */ if (!mutex_trylock(&rcu_state.nocb_mutex)) return 0; /* Snapshot count of all CPUs */ for_each_cpu(cpu, rcu_nocb_mask) { struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); count += READ_ONCE(rdp->lazy_len); } mutex_unlock(&rcu_state.nocb_mutex); return count ? count : SHRINK_EMPTY; } static unsigned long lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) { int cpu; unsigned long flags; unsigned long count = 0; if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) return 0; /* * Protect against concurrent (de-)offloading. Otherwise nocb locking * may be ignored or imbalanced. */ if (!mutex_trylock(&rcu_state.nocb_mutex)) { /* * But really don't insist if nocb_mutex is contended since we * can't guarantee that it will never engage in a dependency * chain involving memory allocation. The lock is seldom contended * anyway. */ return 0; } /* Snapshot count of all CPUs */ for_each_cpu(cpu, rcu_nocb_mask) { struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); int _count; if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp))) continue; if (!READ_ONCE(rdp->lazy_len)) continue; rcu_nocb_lock_irqsave(rdp, flags); /* * Recheck under the nocb lock. Since we are not holding the bypass * lock we may still race with increments from the enqueuer but still * we know for sure if there is at least one lazy callback. */ _count = READ_ONCE(rdp->lazy_len); if (!_count) { rcu_nocb_unlock_irqrestore(rdp, flags); continue; } rcu_nocb_try_flush_bypass(rdp, jiffies); rcu_nocb_unlock_irqrestore(rdp, flags); wake_nocb_gp(rdp, false); sc->nr_to_scan -= _count; count += _count; if (sc->nr_to_scan <= 0) break; } mutex_unlock(&rcu_state.nocb_mutex); return count ? count : SHRINK_STOP; } #endif // #ifdef CONFIG_RCU_LAZY void __init rcu_init_nohz(void) { int cpu; struct rcu_data *rdp; const struct cpumask *cpumask = NULL; struct shrinker * __maybe_unused lazy_rcu_shrinker; #if defined(CONFIG_NO_HZ_FULL) if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) cpumask = tick_nohz_full_mask; #endif if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) && !rcu_state.nocb_is_setup && !cpumask) cpumask = cpu_possible_mask; if (cpumask) { if (!cpumask_available(rcu_nocb_mask)) { if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); return; } } cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask); rcu_state.nocb_is_setup = true; } if (!rcu_state.nocb_is_setup) return; #ifdef CONFIG_RCU_LAZY lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy"); if (!lazy_rcu_shrinker) { pr_err("Failed to allocate lazy_rcu shrinker!\n"); } else { lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count; lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan; shrinker_register(lazy_rcu_shrinker); } #endif // #ifdef CONFIG_RCU_LAZY if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); cpumask_and(rcu_nocb_mask, cpu_possible_mask, rcu_nocb_mask); } if (cpumask_empty(rcu_nocb_mask)) pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); else pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", cpumask_pr_args(rcu_nocb_mask)); if (rcu_nocb_poll) pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); for_each_cpu(cpu, rcu_nocb_mask) { rdp = per_cpu_ptr(&rcu_data, cpu); if (rcu_segcblist_empty(&rdp->cblist)) rcu_segcblist_init(&rdp->cblist); rcu_segcblist_offload(&rdp->cblist, true); rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP); } rcu_organize_nocb_kthreads(); } /* Initialize per-rcu_data variables for no-CBs CPUs. */ static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) { init_swait_queue_head(&rdp->nocb_cb_wq); init_swait_queue_head(&rdp->nocb_gp_wq); init_swait_queue_head(&rdp->nocb_state_wq); raw_spin_lock_init(&rdp->nocb_lock); raw_spin_lock_init(&rdp->nocb_bypass_lock); raw_spin_lock_init(&rdp->nocb_gp_lock); timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); rcu_cblist_init(&rdp->nocb_bypass); WRITE_ONCE(rdp->lazy_len, 0); mutex_init(&rdp->nocb_gp_kthread_mutex); } /* * If the specified CPU is a no-CBs CPU that does not already have its * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread * for this CPU's group has not yet been created, spawn it as well. */ static void rcu_spawn_cpu_nocb_kthread(int cpu) { struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); struct rcu_data *rdp_gp; struct task_struct *t; struct sched_param sp; if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup) return; /* If there already is an rcuo kthread, then nothing to do. */ if (rdp->nocb_cb_kthread) return; /* If we didn't spawn the GP kthread first, reorganize! */ sp.sched_priority = kthread_prio; rdp_gp = rdp->nocb_gp_rdp; mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); if (!rdp_gp->nocb_gp_kthread) { t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, "rcuog/%d", rdp_gp->cpu); if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) { mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); goto err; } WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); if (kthread_prio) sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); } mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); /* Spawn the kthread for this CPU. */ t = kthread_create(rcu_nocb_cb_kthread, rdp, "rcuo%c/%d", rcu_state.abbr, cpu); if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) goto err; if (rcu_rdp_is_offloaded(rdp)) wake_up_process(t); else kthread_park(t); if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio) sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); WRITE_ONCE(rdp->nocb_cb_kthread, t); WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); return; err: /* * No need to protect against concurrent rcu_barrier() * because the number of callbacks should be 0 for a non-boot CPU, * therefore rcu_barrier() shouldn't even try to grab the nocb_lock. * But hold nocb_mutex to avoid nocb_lock imbalance from shrinker. */ WARN_ON_ONCE(system_state > SYSTEM_BOOTING && rcu_segcblist_n_cbs(&rdp->cblist)); mutex_lock(&rcu_state.nocb_mutex); if (rcu_rdp_is_offloaded(rdp)) { rcu_nocb_rdp_deoffload(rdp); cpumask_clear_cpu(cpu, rcu_nocb_mask); } mutex_unlock(&rcu_state.nocb_mutex); } /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ static int rcu_nocb_gp_stride = -1; module_param(rcu_nocb_gp_stride, int, 0444); /* * Initialize GP-CB relationships for all no-CBs CPU. */ static void __init rcu_organize_nocb_kthreads(void) { int cpu; bool firsttime = true; bool gotnocbs = false; bool gotnocbscbs = true; int ls = rcu_nocb_gp_stride; int nl = 0; /* Next GP kthread. */ struct rcu_data *rdp; struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ if (!cpumask_available(rcu_nocb_mask)) return; if (ls == -1) { ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); rcu_nocb_gp_stride = ls; } /* * Each pass through this loop sets up one rcu_data structure. * Should the corresponding CPU come online in the future, then * we will spawn the needed set of rcu_nocb_kthread() kthreads. */ for_each_possible_cpu(cpu) { rdp = per_cpu_ptr(&rcu_data, cpu); if (rdp->cpu >= nl) { /* New GP kthread, set up for CBs & next GP. */ gotnocbs = true; nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; rdp_gp = rdp; INIT_LIST_HEAD(&rdp->nocb_head_rdp); if (dump_tree) { if (!firsttime) pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); gotnocbscbs = false; firsttime = false; pr_alert("%s: No-CB GP kthread CPU %d:", __func__, cpu); } } else { /* Another CB kthread, link to previous GP kthread. */ gotnocbscbs = true; if (dump_tree) pr_cont(" %d", cpu); } rdp->nocb_gp_rdp = rdp_gp; if (cpumask_test_cpu(cpu, rcu_nocb_mask)) list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); } if (gotnocbs && dump_tree) pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); } /* * Bind the current task to the offloaded CPUs. If there are no offloaded * CPUs, leave the task unbound. Splat if the bind attempt fails. */ void rcu_bind_current_to_nocb(void) { if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask)) WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); } EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); // The ->on_cpu field is available only in CONFIG_SMP=y, so... #ifdef CONFIG_SMP static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) { return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : ""; } #else // #ifdef CONFIG_SMP static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) { return ""; } #endif // #else #ifdef CONFIG_SMP /* * Dump out nocb grace-period kthread state for the specified rcu_data * structure. */ static void show_rcu_nocb_gp_state(struct rcu_data *rdp) { struct rcu_node *rnp = rdp->mynode; pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", rdp->cpu, "kK"[!!rdp->nocb_gp_kthread], "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], "dD"[!!rdp->nocb_defer_wakeup], "tT"[timer_pending(&rdp->nocb_timer)], "sS"[!!rdp->nocb_gp_sleep], ".W"[swait_active(&rdp->nocb_gp_wq)], ".W"[swait_active(&rnp->nocb_gp_wq[0])], ".W"[swait_active(&rnp->nocb_gp_wq[1])], ".B"[!!rdp->nocb_gp_bypass], ".G"[!!rdp->nocb_gp_gp], (long)rdp->nocb_gp_seq, rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread)); } /* Dump out nocb kthread state for the specified rcu_data structure. */ static void show_rcu_nocb_state(struct rcu_data *rdp) { char bufw[20]; char bufr[20]; struct rcu_data *nocb_next_rdp; struct rcu_segcblist *rsclp = &rdp->cblist; bool waslocked; bool wassleep; if (rdp->nocb_gp_rdp == rdp) show_rcu_nocb_gp_state(rdp); nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp, &rdp->nocb_entry_rdp, typeof(*rdp), nocb_entry_rdp); sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); pr_info(" CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", rdp->cpu, rdp->nocb_gp_rdp->cpu, nocb_next_rdp ? nocb_next_rdp->cpu : -1, "kK"[!!rdp->nocb_cb_kthread], "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], "lL"[raw_spin_is_locked(&rdp->nocb_lock)], "sS"[!!rdp->nocb_cb_sleep], ".W"[swait_active(&rdp->nocb_cb_wq)], jiffies - rdp->nocb_bypass_first, jiffies - rdp->nocb_nobypass_last, rdp->nocb_nobypass_count, ".D"[rcu_segcblist_ready_cbs(rsclp)], ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], rcu_segcblist_n_cbs(&rdp->cblist), rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1, show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); /* It is OK for GP kthreads to have GP state. */ if (rdp->nocb_gp_rdp == rdp) return; waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); wassleep = swait_active(&rdp->nocb_gp_wq); if (!rdp->nocb_gp_sleep && !waslocked && !wassleep) return; /* Nothing untoward. */ pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n", "lL"[waslocked], "dD"[!!rdp->nocb_defer_wakeup], "sS"[!!rdp->nocb_gp_sleep], ".W"[wassleep]); } #else /* #ifdef CONFIG_RCU_NOCB_CPU */ /* No ->nocb_lock to acquire. */ static void rcu_nocb_lock(struct rcu_data *rdp) { } /* No ->nocb_lock to release. */ static void rcu_nocb_unlock(struct rcu_data *rdp) { } /* No ->nocb_lock to release. */ static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, unsigned long flags) { local_irq_restore(flags); } /* Lockdep check that ->cblist may be safely accessed. */ static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) { lockdep_assert_irqs_disabled(); } static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) { } static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) { return NULL; } static void rcu_init_one_nocb(struct rcu_node *rnp) { } static bool wake_nocb_gp(struct rcu_data *rdp, bool force) { return false; } static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, unsigned long j, bool lazy) { return true; } static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func, unsigned long flags, bool lazy) { WARN_ON_ONCE(1); /* Should be dead code! */ } static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, unsigned long flags) { WARN_ON_ONCE(1); /* Should be dead code! */ } static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) { } static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) { return false; } static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) { return false; } static void rcu_spawn_cpu_nocb_kthread(int cpu) { } static void show_rcu_nocb_state(struct rcu_data *rdp) { } #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */