/* * Kernel Probes (KProbes) * kernel/kprobes.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct Created by Vamsi Krishna S Kernel * Probes initial implementation (includes suggestions from * Rusty Russell). * 2004-Aug Updated by Prasanna S Panchamukhi with * hlists and exceptions notifier as suggested by Andi Kleen. * 2004-July Suparna Bhattacharya added jumper probes * interface to access function arguments. * 2004-Sep Prasanna S Panchamukhi Changed Kprobes * exceptions notifier to be first on the priority list. * 2005-May Hien Nguyen , Jim Keniston * and Prasanna S Panchamukhi * added function-return probes. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KPROBE_HASH_BITS 6 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) /* * Some oddball architectures like 64bit powerpc have function descriptors * so this must be overridable. */ #ifndef kprobe_lookup_name #define kprobe_lookup_name(name, addr) \ addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) #endif static int kprobes_initialized; static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; /* NOTE: change this value only with kprobe_mutex held */ static bool kprobes_all_disarmed; /* This protects kprobe_table and optimizing_list */ static DEFINE_MUTEX(kprobe_mutex); static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; static struct { raw_spinlock_t lock ____cacheline_aligned_in_smp; } kretprobe_table_locks[KPROBE_TABLE_SIZE]; static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) { return &(kretprobe_table_locks[hash].lock); } /* * Normally, functions that we'd want to prohibit kprobes in, are marked * __kprobes. But, there are cases where such functions already belong to * a different section (__sched for preempt_schedule) * * For such cases, we now have a blacklist */ static struct kprobe_blackpoint kprobe_blacklist[] = { {"preempt_schedule",}, {"native_get_debugreg",}, {"irq_entries_start",}, {"common_interrupt",}, {"mcount",}, /* mcount can be called from everywhere */ {NULL} /* Terminator */ }; #ifdef __ARCH_WANT_KPROBES_INSN_SLOT /* * kprobe->ainsn.insn points to the copy of the instruction to be * single-stepped. x86_64, POWER4 and above have no-exec support and * stepping on the instruction on a vmalloced/kmalloced/data page * is a recipe for disaster */ struct kprobe_insn_page { struct list_head list; kprobe_opcode_t *insns; /* Page of instruction slots */ int nused; int ngarbage; char slot_used[]; }; #define KPROBE_INSN_PAGE_SIZE(slots) \ (offsetof(struct kprobe_insn_page, slot_used) + \ (sizeof(char) * (slots))) struct kprobe_insn_cache { struct list_head pages; /* list of kprobe_insn_page */ size_t insn_size; /* size of instruction slot */ int nr_garbage; }; static int slots_per_page(struct kprobe_insn_cache *c) { return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); } enum kprobe_slot_state { SLOT_CLEAN = 0, SLOT_DIRTY = 1, SLOT_USED = 2, }; static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */ static struct kprobe_insn_cache kprobe_insn_slots = { .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), .insn_size = MAX_INSN_SIZE, .nr_garbage = 0, }; static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c); /** * __get_insn_slot() - Find a slot on an executable page for an instruction. * We allocate an executable page if there's no room on existing ones. */ static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c) { struct kprobe_insn_page *kip; retry: list_for_each_entry(kip, &c->pages, list) { if (kip->nused < slots_per_page(c)) { int i; for (i = 0; i < slots_per_page(c); i++) { if (kip->slot_used[i] == SLOT_CLEAN) { kip->slot_used[i] = SLOT_USED; kip->nused++; return kip->insns + (i * c->insn_size); } } /* kip->nused is broken. Fix it. */ kip->nused = slots_per_page(c); WARN_ON(1); } } /* If there are any garbage slots, collect it and try again. */ if (c->nr_garbage && collect_garbage_slots(c) == 0) goto retry; /* All out of space. Need to allocate a new page. */ kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); if (!kip) return NULL; /* * Use module_alloc so this page is within +/- 2GB of where the * kernel image and loaded module images reside. This is required * so x86_64 can correctly handle the %rip-relative fixups. */ kip->insns = module_alloc(PAGE_SIZE); if (!kip->insns) { kfree(kip); return NULL; } INIT_LIST_HEAD(&kip->list); memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); kip->slot_used[0] = SLOT_USED; kip->nused = 1; kip->ngarbage = 0; list_add(&kip->list, &c->pages); return kip->insns; } kprobe_opcode_t __kprobes *get_insn_slot(void) { kprobe_opcode_t *ret = NULL; mutex_lock(&kprobe_insn_mutex); ret = __get_insn_slot(&kprobe_insn_slots); mutex_unlock(&kprobe_insn_mutex); return ret; } /* Return 1 if all garbages are collected, otherwise 0. */ static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) { kip->slot_used[idx] = SLOT_CLEAN; kip->nused--; if (kip->nused == 0) { /* * Page is no longer in use. Free it unless * it's the last one. We keep the last one * so as not to have to set it up again the * next time somebody inserts a probe. */ if (!list_is_singular(&kip->list)) { list_del(&kip->list); module_free(NULL, kip->insns); kfree(kip); } return 1; } return 0; } static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c) { struct kprobe_insn_page *kip, *next; /* Ensure no-one is interrupted on the garbages */ synchronize_sched(); list_for_each_entry_safe(kip, next, &c->pages, list) { int i; if (kip->ngarbage == 0) continue; kip->ngarbage = 0; /* we will collect all garbages */ for (i = 0; i < slots_per_page(c); i++) { if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) break; } } c->nr_garbage = 0; return 0; } static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c, kprobe_opcode_t *slot, int dirty) { struct kprobe_insn_page *kip; list_for_each_entry(kip, &c->pages, list) { long idx = ((long)slot - (long)kip->insns) / (c->insn_size * sizeof(kprobe_opcode_t)); if (idx >= 0 && idx < slots_per_page(c)) { WARN_ON(kip->slot_used[idx] != SLOT_USED); if (dirty) { kip->slot_used[idx] = SLOT_DIRTY; kip->ngarbage++; if (++c->nr_garbage > slots_per_page(c)) collect_garbage_slots(c); } else collect_one_slot(kip, idx); return; } } /* Could not free this slot. */ WARN_ON(1); } void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) { mutex_lock(&kprobe_insn_mutex); __free_insn_slot(&kprobe_insn_slots, slot, dirty); mutex_unlock(&kprobe_insn_mutex); } #ifdef CONFIG_OPTPROBES /* For optimized_kprobe buffer */ static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */ static struct kprobe_insn_cache kprobe_optinsn_slots = { .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), /* .insn_size is initialized later */ .nr_garbage = 0, }; /* Get a slot for optimized_kprobe buffer */ kprobe_opcode_t __kprobes *get_optinsn_slot(void) { kprobe_opcode_t *ret = NULL; mutex_lock(&kprobe_optinsn_mutex); ret = __get_insn_slot(&kprobe_optinsn_slots); mutex_unlock(&kprobe_optinsn_mutex); return ret; } void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty) { mutex_lock(&kprobe_optinsn_mutex); __free_insn_slot(&kprobe_optinsn_slots, slot, dirty); mutex_unlock(&kprobe_optinsn_mutex); } #endif #endif /* We have preemption disabled.. so it is safe to use __ versions */ static inline void set_kprobe_instance(struct kprobe *kp) { __this_cpu_write(kprobe_instance, kp); } static inline void reset_kprobe_instance(void) { __this_cpu_write(kprobe_instance, NULL); } /* * This routine is called either: * - under the kprobe_mutex - during kprobe_[un]register() * OR * - with preemption disabled - from arch/xxx/kernel/kprobes.c */ struct kprobe __kprobes *get_kprobe(void *addr) { struct hlist_head *head; struct hlist_node *node; struct kprobe *p; head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; hlist_for_each_entry_rcu(p, node, head, hlist) { if (p->addr == addr) return p; } return NULL; } static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); /* Return true if the kprobe is an aggregator */ static inline int kprobe_aggrprobe(struct kprobe *p) { return p->pre_handler == aggr_pre_handler; } /* Return true(!0) if the kprobe is unused */ static inline int kprobe_unused(struct kprobe *p) { return kprobe_aggrprobe(p) && kprobe_disabled(p) && list_empty(&p->list); } /* * Keep all fields in the kprobe consistent */ static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) { memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); } #ifdef CONFIG_OPTPROBES /* NOTE: change this value only with kprobe_mutex held */ static bool kprobes_allow_optimization; /* * Call all pre_handler on the list, but ignores its return value. * This must be called from arch-dep optimized caller. */ void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->pre_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); kp->pre_handler(kp, regs); } reset_kprobe_instance(); } } /* Free optimized instructions and optimized_kprobe */ static __kprobes void free_aggr_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); arch_remove_optimized_kprobe(op); arch_remove_kprobe(p); kfree(op); } /* Return true(!0) if the kprobe is ready for optimization. */ static inline int kprobe_optready(struct kprobe *p) { struct optimized_kprobe *op; if (kprobe_aggrprobe(p)) { op = container_of(p, struct optimized_kprobe, kp); return arch_prepared_optinsn(&op->optinsn); } return 0; } /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ static inline int kprobe_disarmed(struct kprobe *p) { struct optimized_kprobe *op; /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ if (!kprobe_aggrprobe(p)) return kprobe_disabled(p); op = container_of(p, struct optimized_kprobe, kp); return kprobe_disabled(p) && list_empty(&op->list); } /* Return true(!0) if the probe is queued on (un)optimizing lists */ static int __kprobes kprobe_queued(struct kprobe *p) { struct optimized_kprobe *op; if (kprobe_aggrprobe(p)) { op = container_of(p, struct optimized_kprobe, kp); if (!list_empty(&op->list)) return 1; } return 0; } /* * Return an optimized kprobe whose optimizing code replaces * instructions including addr (exclude breakpoint). */ static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr) { int i; struct kprobe *p = NULL; struct optimized_kprobe *op; /* Don't check i == 0, since that is a breakpoint case. */ for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) p = get_kprobe((void *)(addr - i)); if (p && kprobe_optready(p)) { op = container_of(p, struct optimized_kprobe, kp); if (arch_within_optimized_kprobe(op, addr)) return p; } return NULL; } /* Optimization staging list, protected by kprobe_mutex */ static LIST_HEAD(optimizing_list); static LIST_HEAD(unoptimizing_list); static void kprobe_optimizer(struct work_struct *work); static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); static DECLARE_COMPLETION(optimizer_comp); #define OPTIMIZE_DELAY 5 /* * Optimize (replace a breakpoint with a jump) kprobes listed on * optimizing_list. */ static __kprobes void do_optimize_kprobes(void) { /* Optimization never be done when disarmed */ if (kprobes_all_disarmed || !kprobes_allow_optimization || list_empty(&optimizing_list)) return; /* * The optimization/unoptimization refers online_cpus via * stop_machine() and cpu-hotplug modifies online_cpus. * And same time, text_mutex will be held in cpu-hotplug and here. * This combination can cause a deadlock (cpu-hotplug try to lock * text_mutex but stop_machine can not be done because online_cpus * has been changed) * To avoid this deadlock, we need to call get_online_cpus() * for preventing cpu-hotplug outside of text_mutex locking. */ get_online_cpus(); mutex_lock(&text_mutex); arch_optimize_kprobes(&optimizing_list); mutex_unlock(&text_mutex); put_online_cpus(); } /* * Unoptimize (replace a jump with a breakpoint and remove the breakpoint * if need) kprobes listed on unoptimizing_list. */ static __kprobes void do_unoptimize_kprobes(struct list_head *free_list) { struct optimized_kprobe *op, *tmp; /* Unoptimization must be done anytime */ if (list_empty(&unoptimizing_list)) return; /* Ditto to do_optimize_kprobes */ get_online_cpus(); mutex_lock(&text_mutex); arch_unoptimize_kprobes(&unoptimizing_list, free_list); /* Loop free_list for disarming */ list_for_each_entry_safe(op, tmp, free_list, list) { /* Disarm probes if marked disabled */ if (kprobe_disabled(&op->kp)) arch_disarm_kprobe(&op->kp); if (kprobe_unused(&op->kp)) { /* * Remove unused probes from hash list. After waiting * for synchronization, these probes are reclaimed. * (reclaiming is done by do_free_cleaned_kprobes.) */ hlist_del_rcu(&op->kp.hlist); } else list_del_init(&op->list); } mutex_unlock(&text_mutex); put_online_cpus(); } /* Reclaim all kprobes on the free_list */ static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list) { struct optimized_kprobe *op, *tmp; list_for_each_entry_safe(op, tmp, free_list, list) { BUG_ON(!kprobe_unused(&op->kp)); list_del_init(&op->list); free_aggr_kprobe(&op->kp); } } /* Start optimizer after OPTIMIZE_DELAY passed */ static __kprobes void kick_kprobe_optimizer(void) { if (!delayed_work_pending(&optimizing_work)) schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); } /* Kprobe jump optimizer */ static __kprobes void kprobe_optimizer(struct work_struct *work) { LIST_HEAD(free_list); mutex_lock(&kprobe_mutex); /* Lock modules while optimizing kprobes */ mutex_lock(&module_mutex); /* * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) * kprobes before waiting for quiesence period. */ do_unoptimize_kprobes(&free_list); /* * Step 2: Wait for quiesence period to ensure all running interrupts * are done. Because optprobe may modify multiple instructions * there is a chance that Nth instruction is interrupted. In that * case, running interrupt can return to 2nd-Nth byte of jump * instruction. This wait is for avoiding it. */ synchronize_sched(); /* Step 3: Optimize kprobes after quiesence period */ do_optimize_kprobes(); /* Step 4: Free cleaned kprobes after quiesence period */ do_free_cleaned_kprobes(&free_list); mutex_unlock(&module_mutex); mutex_unlock(&kprobe_mutex); /* Step 5: Kick optimizer again if needed */ if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) kick_kprobe_optimizer(); else /* Wake up all waiters */ complete_all(&optimizer_comp); } /* Wait for completing optimization and unoptimization */ static __kprobes void wait_for_kprobe_optimizer(void) { if (delayed_work_pending(&optimizing_work)) wait_for_completion(&optimizer_comp); } /* Optimize kprobe if p is ready to be optimized */ static __kprobes void optimize_kprobe(struct kprobe *p) { struct optimized_kprobe *op; /* Check if the kprobe is disabled or not ready for optimization. */ if (!kprobe_optready(p) || !kprobes_allow_optimization || (kprobe_disabled(p) || kprobes_all_disarmed)) return; /* Both of break_handler and post_handler are not supported. */ if (p->break_handler || p->post_handler) return; op = container_of(p, struct optimized_kprobe, kp); /* Check there is no other kprobes at the optimized instructions */ if (arch_check_optimized_kprobe(op) < 0) return; /* Check if it is already optimized. */ if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) return; op->kp.flags |= KPROBE_FLAG_OPTIMIZED; if (!list_empty(&op->list)) /* This is under unoptimizing. Just dequeue the probe */ list_del_init(&op->list); else { list_add(&op->list, &optimizing_list); kick_kprobe_optimizer(); } } /* Short cut to direct unoptimizing */ static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op) { get_online_cpus(); arch_unoptimize_kprobe(op); put_online_cpus(); if (kprobe_disabled(&op->kp)) arch_disarm_kprobe(&op->kp); } /* Unoptimize a kprobe if p is optimized */ static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force) { struct optimized_kprobe *op; if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) return; /* This is not an optprobe nor optimized */ op = container_of(p, struct optimized_kprobe, kp); if (!kprobe_optimized(p)) { /* Unoptimized or unoptimizing case */ if (force && !list_empty(&op->list)) { /* * Only if this is unoptimizing kprobe and forced, * forcibly unoptimize it. (No need to unoptimize * unoptimized kprobe again :) */ list_del_init(&op->list); force_unoptimize_kprobe(op); } return; } op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; if (!list_empty(&op->list)) { /* Dequeue from the optimization queue */ list_del_init(&op->list); return; } /* Optimized kprobe case */ if (force) /* Forcibly update the code: this is a special case */ force_unoptimize_kprobe(op); else { list_add(&op->list, &unoptimizing_list); kick_kprobe_optimizer(); } } /* Cancel unoptimizing for reusing */ static void reuse_unused_kprobe(struct kprobe *ap) { struct optimized_kprobe *op; BUG_ON(!kprobe_unused(ap)); /* * Unused kprobe MUST be on the way of delayed unoptimizing (means * there is still a relative jump) and disabled. */ op = container_of(ap, struct optimized_kprobe, kp); if (unlikely(list_empty(&op->list))) printk(KERN_WARNING "Warning: found a stray unused " "aggrprobe@%p\n", ap->addr); /* Enable the probe again */ ap->flags &= ~KPROBE_FLAG_DISABLED; /* Optimize it again (remove from op->list) */ BUG_ON(!kprobe_optready(ap)); optimize_kprobe(ap); } /* Remove optimized instructions */ static void __kprobes kill_optimized_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); if (!list_empty(&op->list)) /* Dequeue from the (un)optimization queue */ list_del_init(&op->list); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; /* Don't touch the code, because it is already freed. */ arch_remove_optimized_kprobe(op); } /* Try to prepare optimized instructions */ static __kprobes void prepare_optimized_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); arch_prepare_optimized_kprobe(op); } /* Allocate new optimized_kprobe and try to prepare optimized instructions */ static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); if (!op) return NULL; INIT_LIST_HEAD(&op->list); op->kp.addr = p->addr; arch_prepare_optimized_kprobe(op); return &op->kp; } static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); /* * Prepare an optimized_kprobe and optimize it * NOTE: p must be a normal registered kprobe */ static __kprobes void try_to_optimize_kprobe(struct kprobe *p) { struct kprobe *ap; struct optimized_kprobe *op; /* For preparing optimization, jump_label_text_reserved() is called */ jump_label_lock(); mutex_lock(&text_mutex); ap = alloc_aggr_kprobe(p); if (!ap) goto out; op = container_of(ap, struct optimized_kprobe, kp); if (!arch_prepared_optinsn(&op->optinsn)) { /* If failed to setup optimizing, fallback to kprobe */ arch_remove_optimized_kprobe(op); kfree(op); goto out; } init_aggr_kprobe(ap, p); optimize_kprobe(ap); /* This just kicks optimizer thread */ out: mutex_unlock(&text_mutex); jump_label_unlock(); } #ifdef CONFIG_SYSCTL /* This should be called with kprobe_mutex locked */ static void __kprobes optimize_all_kprobes(void) { struct hlist_head *head; struct hlist_node *node; struct kprobe *p; unsigned int i; /* If optimization is already allowed, just return */ if (kprobes_allow_optimization) return; kprobes_allow_optimization = true; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry_rcu(p, node, head, hlist) if (!kprobe_disabled(p)) optimize_kprobe(p); } printk(KERN_INFO "Kprobes globally optimized\n"); } /* This should be called with kprobe_mutex locked */ static void __kprobes unoptimize_all_kprobes(void) { struct hlist_head *head; struct hlist_node *node; struct kprobe *p; unsigned int i; /* If optimization is already prohibited, just return */ if (!kprobes_allow_optimization) return; kprobes_allow_optimization = false; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry_rcu(p, node, head, hlist) { if (!kprobe_disabled(p)) unoptimize_kprobe(p, false); } } /* Wait for unoptimizing completion */ wait_for_kprobe_optimizer(); printk(KERN_INFO "Kprobes globally unoptimized\n"); } int sysctl_kprobes_optimization; int proc_kprobes_optimization_handler(struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { int ret; mutex_lock(&kprobe_mutex); sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; ret = proc_dointvec_minmax(table, write, buffer, length, ppos); if (sysctl_kprobes_optimization) optimize_all_kprobes(); else unoptimize_all_kprobes(); mutex_unlock(&kprobe_mutex); return ret; } #endif /* CONFIG_SYSCTL */ /* Put a breakpoint for a probe. Must be called with text_mutex locked */ static void __kprobes __arm_kprobe(struct kprobe *p) { struct kprobe *_p; /* Check collision with other optimized kprobes */ _p = get_optimized_kprobe((unsigned long)p->addr); if (unlikely(_p)) /* Fallback to unoptimized kprobe */ unoptimize_kprobe(_p, true); arch_arm_kprobe(p); optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ } /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt) { struct kprobe *_p; unoptimize_kprobe(p, false); /* Try to unoptimize */ if (!kprobe_queued(p)) { arch_disarm_kprobe(p); /* If another kprobe was blocked, optimize it. */ _p = get_optimized_kprobe((unsigned long)p->addr); if (unlikely(_p) && reopt) optimize_kprobe(_p); } /* TODO: reoptimize others after unoptimized this probe */ } #else /* !CONFIG_OPTPROBES */ #define optimize_kprobe(p) do {} while (0) #define unoptimize_kprobe(p, f) do {} while (0) #define kill_optimized_kprobe(p) do {} while (0) #define prepare_optimized_kprobe(p) do {} while (0) #define try_to_optimize_kprobe(p) do {} while (0) #define __arm_kprobe(p) arch_arm_kprobe(p) #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) #define kprobe_disarmed(p) kprobe_disabled(p) #define wait_for_kprobe_optimizer() do {} while (0) /* There should be no unused kprobes can be reused without optimization */ static void reuse_unused_kprobe(struct kprobe *ap) { printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); BUG_ON(kprobe_unused(ap)); } static __kprobes void free_aggr_kprobe(struct kprobe *p) { arch_remove_kprobe(p); kfree(p); } static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) { return kzalloc(sizeof(struct kprobe), GFP_KERNEL); } #endif /* CONFIG_OPTPROBES */ /* Arm a kprobe with text_mutex */ static void __kprobes arm_kprobe(struct kprobe *kp) { /* * Here, since __arm_kprobe() doesn't use stop_machine(), * this doesn't cause deadlock on text_mutex. So, we don't * need get_online_cpus(). */ mutex_lock(&text_mutex); __arm_kprobe(kp); mutex_unlock(&text_mutex); } /* Disarm a kprobe with text_mutex */ static void __kprobes disarm_kprobe(struct kprobe *kp) { /* Ditto */ mutex_lock(&text_mutex); __disarm_kprobe(kp, true); mutex_unlock(&text_mutex); } /* * Aggregate handlers for multiple kprobes support - these handlers * take care of invoking the individual kprobe handlers on p->list */ static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->pre_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); if (kp->pre_handler(kp, regs)) return 1; } reset_kprobe_instance(); } return 0; } static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, unsigned long flags) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->post_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); kp->post_handler(kp, regs, flags); reset_kprobe_instance(); } } } static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, int trapnr) { struct kprobe *cur = __this_cpu_read(kprobe_instance); /* * if we faulted "during" the execution of a user specified * probe handler, invoke just that probe's fault handler */ if (cur && cur->fault_handler) { if (cur->fault_handler(cur, regs, trapnr)) return 1; } return 0; } static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe *cur = __this_cpu_read(kprobe_instance); int ret = 0; if (cur && cur->break_handler) { if (cur->break_handler(cur, regs)) ret = 1; } reset_kprobe_instance(); return ret; } /* Walks the list and increments nmissed count for multiprobe case */ void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) { struct kprobe *kp; if (!kprobe_aggrprobe(p)) { p->nmissed++; } else { list_for_each_entry_rcu(kp, &p->list, list) kp->nmissed++; } return; } void __kprobes recycle_rp_inst(struct kretprobe_instance *ri, struct hlist_head *head) { struct kretprobe *rp = ri->rp; /* remove rp inst off the rprobe_inst_table */ hlist_del(&ri->hlist); INIT_HLIST_NODE(&ri->hlist); if (likely(rp)) { raw_spin_lock(&rp->lock); hlist_add_head(&ri->hlist, &rp->free_instances); raw_spin_unlock(&rp->lock); } else /* Unregistering */ hlist_add_head(&ri->hlist, head); } void __kprobes kretprobe_hash_lock(struct task_struct *tsk, struct hlist_head **head, unsigned long *flags) __acquires(hlist_lock) { unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); raw_spinlock_t *hlist_lock; *head = &kretprobe_inst_table[hash]; hlist_lock = kretprobe_table_lock_ptr(hash); raw_spin_lock_irqsave(hlist_lock, *flags); } static void __kprobes kretprobe_table_lock(unsigned long hash, unsigned long *flags) __acquires(hlist_lock) { raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); raw_spin_lock_irqsave(hlist_lock, *flags); } void __kprobes kretprobe_hash_unlock(struct task_struct *tsk, unsigned long *flags) __releases(hlist_lock) { unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); raw_spinlock_t *hlist_lock; hlist_lock = kretprobe_table_lock_ptr(hash); raw_spin_unlock_irqrestore(hlist_lock, *flags); } static void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags) __releases(hlist_lock) { raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); raw_spin_unlock_irqrestore(hlist_lock, *flags); } /* * This function is called from finish_task_switch when task tk becomes dead, * so that we can recycle any function-return probe instances associated * with this task. These left over instances represent probed functions * that have been called but will never return. */ void __kprobes kprobe_flush_task(struct task_struct *tk) { struct kretprobe_instance *ri; struct hlist_head *head, empty_rp; struct hlist_node *node, *tmp; unsigned long hash, flags = 0; if (unlikely(!kprobes_initialized)) /* Early boot. kretprobe_table_locks not yet initialized. */ return; INIT_HLIST_HEAD(&empty_rp); hash = hash_ptr(tk, KPROBE_HASH_BITS); head = &kretprobe_inst_table[hash]; kretprobe_table_lock(hash, &flags); hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { if (ri->task == tk) recycle_rp_inst(ri, &empty_rp); } kretprobe_table_unlock(hash, &flags); hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { hlist_del(&ri->hlist); kfree(ri); } } static inline void free_rp_inst(struct kretprobe *rp) { struct kretprobe_instance *ri; struct hlist_node *pos, *next; hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) { hlist_del(&ri->hlist); kfree(ri); } } static void __kprobes cleanup_rp_inst(struct kretprobe *rp) { unsigned long flags, hash; struct kretprobe_instance *ri; struct hlist_node *pos, *next; struct hlist_head *head; /* No race here */ for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { kretprobe_table_lock(hash, &flags); head = &kretprobe_inst_table[hash]; hlist_for_each_entry_safe(ri, pos, next, head, hlist) { if (ri->rp == rp) ri->rp = NULL; } kretprobe_table_unlock(hash, &flags); } free_rp_inst(rp); } /* * Add the new probe to ap->list. Fail if this is the * second jprobe at the address - two jprobes can't coexist */ static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) { BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); if (p->break_handler || p->post_handler) unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ if (p->break_handler) { if (ap->break_handler) return -EEXIST; list_add_tail_rcu(&p->list, &ap->list); ap->break_handler = aggr_break_handler; } else list_add_rcu(&p->list, &ap->list); if (p->post_handler && !ap->post_handler) ap->post_handler = aggr_post_handler; return 0; } /* * Fill in the required fields of the "manager kprobe". Replace the * earlier kprobe in the hlist with the manager kprobe */ static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) { /* Copy p's insn slot to ap */ copy_kprobe(p, ap); flush_insn_slot(ap); ap->addr = p->addr; ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; ap->pre_handler = aggr_pre_handler; ap->fault_handler = aggr_fault_handler; /* We don't care the kprobe which has gone. */ if (p->post_handler && !kprobe_gone(p)) ap->post_handler = aggr_post_handler; if (p->break_handler && !kprobe_gone(p)) ap->break_handler = aggr_break_handler; INIT_LIST_HEAD(&ap->list); INIT_HLIST_NODE(&ap->hlist); list_add_rcu(&p->list, &ap->list); hlist_replace_rcu(&p->hlist, &ap->hlist); } /* * This is the second or subsequent kprobe at the address - handle * the intricacies */ static int __kprobes register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) { int ret = 0; struct kprobe *ap = orig_p; /* For preparing optimization, jump_label_text_reserved() is called */ jump_label_lock(); /* * Get online CPUs to avoid text_mutex deadlock.with stop machine, * which is invoked by unoptimize_kprobe() in add_new_kprobe() */ get_online_cpus(); mutex_lock(&text_mutex); if (!kprobe_aggrprobe(orig_p)) { /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ ap = alloc_aggr_kprobe(orig_p); if (!ap) { ret = -ENOMEM; goto out; } init_aggr_kprobe(ap, orig_p); } else if (kprobe_unused(ap)) /* This probe is going to die. Rescue it */ reuse_unused_kprobe(ap); if (kprobe_gone(ap)) { /* * Attempting to insert new probe at the same location that * had a probe in the module vaddr area which already * freed. So, the instruction slot has already been * released. We need a new slot for the new probe. */ ret = arch_prepare_kprobe(ap); if (ret) /* * Even if fail to allocate new slot, don't need to * free aggr_probe. It will be used next time, or * freed by unregister_kprobe. */ goto out; /* Prepare optimized instructions if possible. */ prepare_optimized_kprobe(ap); /* * Clear gone flag to prevent allocating new slot again, and * set disabled flag because it is not armed yet. */ ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) | KPROBE_FLAG_DISABLED; } /* Copy ap's insn slot to p */ copy_kprobe(ap, p); ret = add_new_kprobe(ap, p); out: mutex_unlock(&text_mutex); put_online_cpus(); jump_label_unlock(); if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { ap->flags &= ~KPROBE_FLAG_DISABLED; if (!kprobes_all_disarmed) /* Arm the breakpoint again. */ arm_kprobe(ap); } return ret; } static int __kprobes in_kprobes_functions(unsigned long addr) { struct kprobe_blackpoint *kb; if (addr >= (unsigned long)__kprobes_text_start && addr < (unsigned long)__kprobes_text_end) return -EINVAL; /* * If there exists a kprobe_blacklist, verify and * fail any probe registration in the prohibited area */ for (kb = kprobe_blacklist; kb->name != NULL; kb++) { if (kb->start_addr) { if (addr >= kb->start_addr && addr < (kb->start_addr + kb->range)) return -EINVAL; } } return 0; } /* * If we have a symbol_name argument, look it up and add the offset field * to it. This way, we can specify a relative address to a symbol. * This returns encoded errors if it fails to look up symbol or invalid * combination of parameters. */ static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) { kprobe_opcode_t *addr = p->addr; if ((p->symbol_name && p->addr) || (!p->symbol_name && !p->addr)) goto invalid; if (p->symbol_name) { kprobe_lookup_name(p->symbol_name, addr); if (!addr) return ERR_PTR(-ENOENT); } addr = (kprobe_opcode_t *)(((char *)addr) + p->offset); if (addr) return addr; invalid: return ERR_PTR(-EINVAL); } /* Check passed kprobe is valid and return kprobe in kprobe_table. */ static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p) { struct kprobe *ap, *list_p; ap = get_kprobe(p->addr); if (unlikely(!ap)) return NULL; if (p != ap) { list_for_each_entry_rcu(list_p, &ap->list, list) if (list_p == p) /* kprobe p is a valid probe */ goto valid; return NULL; } valid: return ap; } /* Return error if the kprobe is being re-registered */ static inline int check_kprobe_rereg(struct kprobe *p) { int ret = 0; mutex_lock(&kprobe_mutex); if (__get_valid_kprobe(p)) ret = -EINVAL; mutex_unlock(&kprobe_mutex); return ret; } static __kprobes int check_kprobe_address_safe(struct kprobe *p, struct module **probed_mod) { int ret = 0; jump_label_lock(); preempt_disable(); /* Ensure it is not in reserved area nor out of text */ if (!kernel_text_address((unsigned long) p->addr) || in_kprobes_functions((unsigned long) p->addr) || ftrace_text_reserved(p->addr, p->addr) || jump_label_text_reserved(p->addr, p->addr)) { ret = -EINVAL; goto out; } /* Check if are we probing a module */ *probed_mod = __module_text_address((unsigned long) p->addr); if (*probed_mod) { /* * We must hold a refcount of the probed module while updating * its code to prohibit unexpected unloading. */ if (unlikely(!try_module_get(*probed_mod))) { ret = -ENOENT; goto out; } /* * If the module freed .init.text, we couldn't insert * kprobes in there. */ if (within_module_init((unsigned long)p->addr, *probed_mod) && (*probed_mod)->state != MODULE_STATE_COMING) { module_put(*probed_mod); *probed_mod = NULL; ret = -ENOENT; } } out: preempt_enable(); jump_label_unlock(); return ret; } int __kprobes register_kprobe(struct kprobe *p) { int ret; struct kprobe *old_p; struct module *probed_mod; kprobe_opcode_t *addr; /* Adjust probe address from symbol */ addr = kprobe_addr(p); if (IS_ERR(addr)) return PTR_ERR(addr); p->addr = addr; ret = check_kprobe_rereg(p); if (ret) return ret; /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ p->flags &= KPROBE_FLAG_DISABLED; p->nmissed = 0; INIT_LIST_HEAD(&p->list); ret = check_kprobe_address_safe(p, &probed_mod); if (ret) return ret; mutex_lock(&kprobe_mutex); old_p = get_kprobe(p->addr); if (old_p) { /* Since this may unoptimize old_p, locking text_mutex. */ ret = register_aggr_kprobe(old_p, p); goto out; } mutex_lock(&text_mutex); /* Avoiding text modification */ ret = arch_prepare_kprobe(p); mutex_unlock(&text_mutex); if (ret) goto out; INIT_HLIST_NODE(&p->hlist); hlist_add_head_rcu(&p->hlist, &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); if (!kprobes_all_disarmed && !kprobe_disabled(p)) arm_kprobe(p); /* Try to optimize kprobe */ try_to_optimize_kprobe(p); out: mutex_unlock(&kprobe_mutex); if (probed_mod) module_put(probed_mod); return ret; } EXPORT_SYMBOL_GPL(register_kprobe); /* Check if all probes on the aggrprobe are disabled */ static int __kprobes aggr_kprobe_disabled(struct kprobe *ap) { struct kprobe *kp; list_for_each_entry_rcu(kp, &ap->list, list) if (!kprobe_disabled(kp)) /* * There is an active probe on the list. * We can't disable this ap. */ return 0; return 1; } /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p) { struct kprobe *orig_p; /* Get an original kprobe for return */ orig_p = __get_valid_kprobe(p); if (unlikely(orig_p == NULL)) return NULL; if (!kprobe_disabled(p)) { /* Disable probe if it is a child probe */ if (p != orig_p) p->flags |= KPROBE_FLAG_DISABLED; /* Try to disarm and disable this/parent probe */ if (p == orig_p || aggr_kprobe_disabled(orig_p)) { disarm_kprobe(orig_p); orig_p->flags |= KPROBE_FLAG_DISABLED; } } return orig_p; } /* * Unregister a kprobe without a scheduler synchronization. */ static int __kprobes __unregister_kprobe_top(struct kprobe *p) { struct kprobe *ap, *list_p; /* Disable kprobe. This will disarm it if needed. */ ap = __disable_kprobe(p); if (ap == NULL) return -EINVAL; if (ap == p) /* * This probe is an independent(and non-optimized) kprobe * (not an aggrprobe). Remove from the hash list. */ goto disarmed; /* Following process expects this probe is an aggrprobe */ WARN_ON(!kprobe_aggrprobe(ap)); if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) /* * !disarmed could be happen if the probe is under delayed * unoptimizing. */ goto disarmed; else { /* If disabling probe has special handlers, update aggrprobe */ if (p->break_handler && !kprobe_gone(p)) ap->break_handler = NULL; if (p->post_handler && !kprobe_gone(p)) { list_for_each_entry_rcu(list_p, &ap->list, list) { if ((list_p != p) && (list_p->post_handler)) goto noclean; } ap->post_handler = NULL; } noclean: /* * Remove from the aggrprobe: this path will do nothing in * __unregister_kprobe_bottom(). */ list_del_rcu(&p->list); if (!kprobe_disabled(ap) && !kprobes_all_disarmed) /* * Try to optimize this probe again, because post * handler may have been changed. */ optimize_kprobe(ap); } return 0; disarmed: BUG_ON(!kprobe_disarmed(ap)); hlist_del_rcu(&ap->hlist); return 0; } static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) { struct kprobe *ap; if (list_empty(&p->list)) /* This is an independent kprobe */ arch_remove_kprobe(p); else if (list_is_singular(&p->list)) { /* This is the last child of an aggrprobe */ ap = list_entry(p->list.next, struct kprobe, list); list_del(&p->list); free_aggr_kprobe(ap); } /* Otherwise, do nothing. */ } int __kprobes register_kprobes(struct kprobe **kps, int num) { int i, ret = 0; if (num <= 0) return -EINVAL; for (i = 0; i < num; i++) { ret = register_kprobe(kps[i]); if (ret < 0) { if (i > 0) unregister_kprobes(kps, i); break; } } return ret; } EXPORT_SYMBOL_GPL(register_kprobes); void __kprobes unregister_kprobe(struct kprobe *p) { unregister_kprobes(&p, 1); } EXPORT_SYMBOL_GPL(unregister_kprobe); void __kprobes unregister_kprobes(struct kprobe **kps, int num) { int i; if (num <= 0) return; mutex_lock(&kprobe_mutex); for (i = 0; i < num; i++) if (__unregister_kprobe_top(kps[i]) < 0) kps[i]->addr = NULL; mutex_unlock(&kprobe_mutex); synchronize_sched(); for (i = 0; i < num; i++) if (kps[i]->addr) __unregister_kprobe_bottom(kps[i]); } EXPORT_SYMBOL_GPL(unregister_kprobes); static struct notifier_block kprobe_exceptions_nb = { .notifier_call = kprobe_exceptions_notify, .priority = 0x7fffffff /* we need to be notified first */ }; unsigned long __weak arch_deref_entry_point(void *entry) { return (unsigned long)entry; } int __kprobes register_jprobes(struct jprobe **jps, int num) { struct jprobe *jp; int ret = 0, i; if (num <= 0) return -EINVAL; for (i = 0; i < num; i++) { unsigned long addr, offset; jp = jps[i]; addr = arch_deref_entry_point(jp->entry); /* Verify probepoint is a function entry point */ if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0) { jp->kp.pre_handler = setjmp_pre_handler; jp->kp.break_handler = longjmp_break_handler; ret = register_kprobe(&jp->kp); } else ret = -EINVAL; if (ret < 0) { if (i > 0) unregister_jprobes(jps, i); break; } } return ret; } EXPORT_SYMBOL_GPL(register_jprobes); int __kprobes register_jprobe(struct jprobe *jp) { return register_jprobes(&jp, 1); } EXPORT_SYMBOL_GPL(register_jprobe); void __kprobes unregister_jprobe(struct jprobe *jp) { unregister_jprobes(&jp, 1); } EXPORT_SYMBOL_GPL(unregister_jprobe); void __kprobes unregister_jprobes(struct jprobe **jps, int num) { int i; if (num <= 0) return; mutex_lock(&kprobe_mutex); for (i = 0; i < num; i++) if (__unregister_kprobe_top(&jps[i]->kp) < 0) jps[i]->kp.addr = NULL; mutex_unlock(&kprobe_mutex); synchronize_sched(); for (i = 0; i < num; i++) { if (jps[i]->kp.addr) __unregister_kprobe_bottom(&jps[i]->kp); } } EXPORT_SYMBOL_GPL(unregister_jprobes); #ifdef CONFIG_KRETPROBES /* * This kprobe pre_handler is registered with every kretprobe. When probe * hits it will set up the return probe. */ static int __kprobes pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) { struct kretprobe *rp = container_of(p, struct kretprobe, kp); unsigned long hash, flags = 0; struct kretprobe_instance *ri; /*TODO: consider to only swap the RA after the last pre_handler fired */ hash = hash_ptr(current, KPROBE_HASH_BITS); raw_spin_lock_irqsave(&rp->lock, flags); if (!hlist_empty(&rp->free_instances)) { ri = hlist_entry(rp->free_instances.first, struct kretprobe_instance, hlist); hlist_del(&ri->hlist); raw_spin_unlock_irqrestore(&rp->lock, flags); ri->rp = rp; ri->task = current; if (rp->entry_handler && rp->entry_handler(ri, regs)) { raw_spin_lock_irqsave(&rp->lock, flags); hlist_add_head(&ri->hlist, &rp->free_instances); raw_spin_unlock_irqrestore(&rp->lock, flags); return 0; } arch_prepare_kretprobe(ri, regs); /* XXX(hch): why is there no hlist_move_head? */ INIT_HLIST_NODE(&ri->hlist); kretprobe_table_lock(hash, &flags); hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); kretprobe_table_unlock(hash, &flags); } else { rp->nmissed++; raw_spin_unlock_irqrestore(&rp->lock, flags); } return 0; } int __kprobes register_kretprobe(struct kretprobe *rp) { int ret = 0; struct kretprobe_instance *inst; int i; void *addr; if (kretprobe_blacklist_size) { addr = kprobe_addr(&rp->kp); if (IS_ERR(addr)) return PTR_ERR(addr); for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { if (kretprobe_blacklist[i].addr == addr) return -EINVAL; } } rp->kp.pre_handler = pre_handler_kretprobe; rp->kp.post_handler = NULL; rp->kp.fault_handler = NULL; rp->kp.break_handler = NULL; /* Pre-allocate memory for max kretprobe instances */ if (rp->maxactive <= 0) { #ifdef CONFIG_PREEMPT rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); #else rp->maxactive = num_possible_cpus(); #endif } raw_spin_lock_init(&rp->lock); INIT_HLIST_HEAD(&rp->free_instances); for (i = 0; i < rp->maxactive; i++) { inst = kmalloc(sizeof(struct kretprobe_instance) + rp->data_size, GFP_KERNEL); if (inst == NULL) { free_rp_inst(rp); return -ENOMEM; } INIT_HLIST_NODE(&inst->hlist); hlist_add_head(&inst->hlist, &rp->free_instances); } rp->nmissed = 0; /* Establish function entry probe point */ ret = register_kprobe(&rp->kp); if (ret != 0) free_rp_inst(rp); return ret; } EXPORT_SYMBOL_GPL(register_kretprobe); int __kprobes register_kretprobes(struct kretprobe **rps, int num) { int ret = 0, i; if (num <= 0) return -EINVAL; for (i = 0; i < num; i++) { ret = register_kretprobe(rps[i]); if (ret < 0) { if (i > 0) unregister_kretprobes(rps, i); break; } } return ret; } EXPORT_SYMBOL_GPL(register_kretprobes); void __kprobes unregister_kretprobe(struct kretprobe *rp) { unregister_kretprobes(&rp, 1); } EXPORT_SYMBOL_GPL(unregister_kretprobe); void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) { int i; if (num <= 0) return; mutex_lock(&kprobe_mutex); for (i = 0; i < num; i++) if (__unregister_kprobe_top(&rps[i]->kp) < 0) rps[i]->kp.addr = NULL; mutex_unlock(&kprobe_mutex); synchronize_sched(); for (i = 0; i < num; i++) { if (rps[i]->kp.addr) { __unregister_kprobe_bottom(&rps[i]->kp); cleanup_rp_inst(rps[i]); } } } EXPORT_SYMBOL_GPL(unregister_kretprobes); #else /* CONFIG_KRETPROBES */ int __kprobes register_kretprobe(struct kretprobe *rp) { return -ENOSYS; } EXPORT_SYMBOL_GPL(register_kretprobe); int __kprobes register_kretprobes(struct kretprobe **rps, int num) { return -ENOSYS; } EXPORT_SYMBOL_GPL(register_kretprobes); void __kprobes unregister_kretprobe(struct kretprobe *rp) { } EXPORT_SYMBOL_GPL(unregister_kretprobe); void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) { } EXPORT_SYMBOL_GPL(unregister_kretprobes); static int __kprobes pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) { return 0; } #endif /* CONFIG_KRETPROBES */ /* Set the kprobe gone and remove its instruction buffer. */ static void __kprobes kill_kprobe(struct kprobe *p) { struct kprobe *kp; p->flags |= KPROBE_FLAG_GONE; if (kprobe_aggrprobe(p)) { /* * If this is an aggr_kprobe, we have to list all the * chained probes and mark them GONE. */ list_for_each_entry_rcu(kp, &p->list, list) kp->flags |= KPROBE_FLAG_GONE; p->post_handler = NULL; p->break_handler = NULL; kill_optimized_kprobe(p); } /* * Here, we can remove insn_slot safely, because no thread calls * the original probed function (which will be freed soon) any more. */ arch_remove_kprobe(p); } /* Disable one kprobe */ int __kprobes disable_kprobe(struct kprobe *kp) { int ret = 0; mutex_lock(&kprobe_mutex); /* Disable this kprobe */ if (__disable_kprobe(kp) == NULL) ret = -EINVAL; mutex_unlock(&kprobe_mutex); return ret; } EXPORT_SYMBOL_GPL(disable_kprobe); /* Enable one kprobe */ int __kprobes enable_kprobe(struct kprobe *kp) { int ret = 0; struct kprobe *p; mutex_lock(&kprobe_mutex); /* Check whether specified probe is valid. */ p = __get_valid_kprobe(kp); if (unlikely(p == NULL)) { ret = -EINVAL; goto out; } if (kprobe_gone(kp)) { /* This kprobe has gone, we couldn't enable it. */ ret = -EINVAL; goto out; } if (p != kp) kp->flags &= ~KPROBE_FLAG_DISABLED; if (!kprobes_all_disarmed && kprobe_disabled(p)) { p->flags &= ~KPROBE_FLAG_DISABLED; arm_kprobe(p); } out: mutex_unlock(&kprobe_mutex); return ret; } EXPORT_SYMBOL_GPL(enable_kprobe); void __kprobes dump_kprobe(struct kprobe *kp) { printk(KERN_WARNING "Dumping kprobe:\n"); printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", kp->symbol_name, kp->addr, kp->offset); } /* Module notifier call back, checking kprobes on the module */ static int __kprobes kprobes_module_callback(struct notifier_block *nb, unsigned long val, void *data) { struct module *mod = data; struct hlist_head *head; struct hlist_node *node; struct kprobe *p; unsigned int i; int checkcore = (val == MODULE_STATE_GOING); if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) return NOTIFY_DONE; /* * When MODULE_STATE_GOING was notified, both of module .text and * .init.text sections would be freed. When MODULE_STATE_LIVE was * notified, only .init.text section would be freed. We need to * disable kprobes which have been inserted in the sections. */ mutex_lock(&kprobe_mutex); for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry_rcu(p, node, head, hlist) if (within_module_init((unsigned long)p->addr, mod) || (checkcore && within_module_core((unsigned long)p->addr, mod))) { /* * The vaddr this probe is installed will soon * be vfreed buy not synced to disk. Hence, * disarming the breakpoint isn't needed. */ kill_kprobe(p); } } mutex_unlock(&kprobe_mutex); return NOTIFY_DONE; } static struct notifier_block kprobe_module_nb = { .notifier_call = kprobes_module_callback, .priority = 0 }; static int __init init_kprobes(void) { int i, err = 0; unsigned long offset = 0, size = 0; char *modname, namebuf[128]; const char *symbol_name; void *addr; struct kprobe_blackpoint *kb; /* FIXME allocate the probe table, currently defined statically */ /* initialize all list heads */ for (i = 0; i < KPROBE_TABLE_SIZE; i++) { INIT_HLIST_HEAD(&kprobe_table[i]); INIT_HLIST_HEAD(&kretprobe_inst_table[i]); raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); } /* * Lookup and populate the kprobe_blacklist. * * Unlike the kretprobe blacklist, we'll need to determine * the range of addresses that belong to the said functions, * since a kprobe need not necessarily be at the beginning * of a function. */ for (kb = kprobe_blacklist; kb->name != NULL; kb++) { kprobe_lookup_name(kb->name, addr); if (!addr) continue; kb->start_addr = (unsigned long)addr; symbol_name = kallsyms_lookup(kb->start_addr, &size, &offset, &modname, namebuf); if (!symbol_name) kb->range = 0; else kb->range = size; } if (kretprobe_blacklist_size) { /* lookup the function address from its name */ for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { kprobe_lookup_name(kretprobe_blacklist[i].name, kretprobe_blacklist[i].addr); if (!kretprobe_blacklist[i].addr) printk("kretprobe: lookup failed: %s\n", kretprobe_blacklist[i].name); } } #if defined(CONFIG_OPTPROBES) #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) /* Init kprobe_optinsn_slots */ kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; #endif /* By default, kprobes can be optimized */ kprobes_allow_optimization = true; #endif /* By default, kprobes are armed */ kprobes_all_disarmed = false; err = arch_init_kprobes(); if (!err) err = register_die_notifier(&kprobe_exceptions_nb); if (!err) err = register_module_notifier(&kprobe_module_nb); kprobes_initialized = (err == 0); if (!err) init_test_probes(); return err; } #ifdef CONFIG_DEBUG_FS static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, const char *sym, int offset, char *modname, struct kprobe *pp) { char *kprobe_type; if (p->pre_handler == pre_handler_kretprobe) kprobe_type = "r"; else if (p->pre_handler == setjmp_pre_handler) kprobe_type = "j"; else kprobe_type = "k"; if (sym) seq_printf(pi, "%p %s %s+0x%x %s ", p->addr, kprobe_type, sym, offset, (modname ? modname : " ")); else seq_printf(pi, "%p %s %p ", p->addr, kprobe_type, p->addr); if (!pp) pp = p; seq_printf(pi, "%s%s%s\n", (kprobe_gone(p) ? "[GONE]" : ""), ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), (kprobe_optimized(pp) ? "[OPTIMIZED]" : "")); } static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) { return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; } static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) { (*pos)++; if (*pos >= KPROBE_TABLE_SIZE) return NULL; return pos; } static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v) { /* Nothing to do */ } static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) { struct hlist_head *head; struct hlist_node *node; struct kprobe *p, *kp; const char *sym = NULL; unsigned int i = *(loff_t *) v; unsigned long offset = 0; char *modname, namebuf[128]; head = &kprobe_table[i]; preempt_disable(); hlist_for_each_entry_rcu(p, node, head, hlist) { sym = kallsyms_lookup((unsigned long)p->addr, NULL, &offset, &modname, namebuf); if (kprobe_aggrprobe(p)) { list_for_each_entry_rcu(kp, &p->list, list) report_probe(pi, kp, sym, offset, modname, p); } else report_probe(pi, p, sym, offset, modname, NULL); } preempt_enable(); return 0; } static const struct seq_operations kprobes_seq_ops = { .start = kprobe_seq_start, .next = kprobe_seq_next, .stop = kprobe_seq_stop, .show = show_kprobe_addr }; static int __kprobes kprobes_open(struct inode *inode, struct file *filp) { return seq_open(filp, &kprobes_seq_ops); } static const struct file_operations debugfs_kprobes_operations = { .open = kprobes_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static void __kprobes arm_all_kprobes(void) { struct hlist_head *head; struct hlist_node *node; struct kprobe *p; unsigned int i; mutex_lock(&kprobe_mutex); /* If kprobes are armed, just return */ if (!kprobes_all_disarmed) goto already_enabled; /* Arming kprobes doesn't optimize kprobe itself */ mutex_lock(&text_mutex); for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry_rcu(p, node, head, hlist) if (!kprobe_disabled(p)) __arm_kprobe(p); } mutex_unlock(&text_mutex); kprobes_all_disarmed = false; printk(KERN_INFO "Kprobes globally enabled\n"); already_enabled: mutex_unlock(&kprobe_mutex); return; } static void __kprobes disarm_all_kprobes(void) { struct hlist_head *head; struct hlist_node *node; struct kprobe *p; unsigned int i; mutex_lock(&kprobe_mutex); /* If kprobes are already disarmed, just return */ if (kprobes_all_disarmed) { mutex_unlock(&kprobe_mutex); return; } kprobes_all_disarmed = true; printk(KERN_INFO "Kprobes globally disabled\n"); mutex_lock(&text_mutex); for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry_rcu(p, node, head, hlist) { if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) __disarm_kprobe(p, false); } } mutex_unlock(&text_mutex); mutex_unlock(&kprobe_mutex); /* Wait for disarming all kprobes by optimizer */ wait_for_kprobe_optimizer(); } /* * XXX: The debugfs bool file interface doesn't allow for callbacks * when the bool state is switched. We can reuse that facility when * available */ static ssize_t read_enabled_file_bool(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char buf[3]; if (!kprobes_all_disarmed) buf[0] = '1'; else buf[0] = '0'; buf[1] = '\n'; buf[2] = 0x00; return simple_read_from_buffer(user_buf, count, ppos, buf, 2); } static ssize_t write_enabled_file_bool(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; size_t buf_size; buf_size = min(count, (sizeof(buf)-1)); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; switch (buf[0]) { case 'y': case 'Y': case '1': arm_all_kprobes(); break; case 'n': case 'N': case '0': disarm_all_kprobes(); break; } return count; } static const struct file_operations fops_kp = { .read = read_enabled_file_bool, .write = write_enabled_file_bool, .llseek = default_llseek, }; static int __kprobes debugfs_kprobe_init(void) { struct dentry *dir, *file; unsigned int value = 1; dir = debugfs_create_dir("kprobes", NULL); if (!dir) return -ENOMEM; file = debugfs_create_file("list", 0444, dir, NULL, &debugfs_kprobes_operations); if (!file) { debugfs_remove(dir); return -ENOMEM; } file = debugfs_create_file("enabled", 0600, dir, &value, &fops_kp); if (!file) { debugfs_remove(dir); return -ENOMEM; } return 0; } late_initcall(debugfs_kprobe_init); #endif /* CONFIG_DEBUG_FS */ module_init(init_kprobes); /* defined in arch/.../kernel/kprobes.c */ EXPORT_SYMBOL_GPL(jprobe_return);