/* * Linux Security plug * * Copyright (C) 2001 WireX Communications, Inc * Copyright (C) 2001 Greg Kroah-Hartman * Copyright (C) 2001 Networks Associates Technology, Inc * Copyright (C) 2001 James Morris * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Due to this file being licensed under the GPL there is controversy over * whether this permits you to write a module that #includes this file * without placing your module under the GPL. Please consult a lawyer for * advice before doing this. * */ #ifndef __LINUX_SECURITY_H #define __LINUX_SECURITY_H #include #include #include #include #include #include #include #include #include #include #include struct ctl_table; /* * These functions are in security/capability.c and are used * as the default capabilities functions */ extern int cap_capable (struct task_struct *tsk, int cap); extern int cap_settime (struct timespec *ts, struct timezone *tz); extern int cap_ptrace (struct task_struct *parent, struct task_struct *child); extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); extern int cap_bprm_set_security (struct linux_binprm *bprm); extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe); extern int cap_bprm_secureexec(struct linux_binprm *bprm); extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags); extern int cap_inode_removexattr(struct dentry *dentry, char *name); extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags); extern void cap_task_reparent_to_init (struct task_struct *p); extern int cap_syslog (int type); extern int cap_vm_enough_memory (long pages); struct msghdr; struct sk_buff; struct sock; struct sockaddr; struct socket; struct flowi; struct dst_entry; struct xfrm_selector; struct xfrm_policy; struct xfrm_state; struct xfrm_user_sec_ctx; extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); extern int cap_netlink_recv(struct sk_buff *skb, int cap); /* * Values used in the task_security_ops calls */ /* setuid or setgid, id0 == uid or gid */ #define LSM_SETID_ID 1 /* setreuid or setregid, id0 == real, id1 == eff */ #define LSM_SETID_RE 2 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ #define LSM_SETID_RES 4 /* setfsuid or setfsgid, id0 == fsuid or fsgid */ #define LSM_SETID_FS 8 /* forward declares to avoid warnings */ struct nfsctl_arg; struct sched_param; struct swap_info_struct; struct request_sock; /* bprm_apply_creds unsafe reasons */ #define LSM_UNSAFE_SHARE 1 #define LSM_UNSAFE_PTRACE 2 #define LSM_UNSAFE_PTRACE_CAP 4 #ifdef CONFIG_SECURITY /** * struct security_operations - main security structure * * Security hooks for program execution operations. * * @bprm_alloc_security: * Allocate and attach a security structure to the @bprm->security field. * The security field is initialized to NULL when the bprm structure is * allocated. * @bprm contains the linux_binprm structure to be modified. * Return 0 if operation was successful. * @bprm_free_security: * @bprm contains the linux_binprm structure to be modified. * Deallocate and clear the @bprm->security field. * @bprm_apply_creds: * Compute and set the security attributes of a process being transformed * by an execve operation based on the old attributes (current->security) * and the information saved in @bprm->security by the set_security hook. * Since this hook function (and its caller) are void, this hook can not * return an error. However, it can leave the security attributes of the * process unchanged if an access failure occurs at this point. * bprm_apply_creds is called under task_lock. @unsafe indicates various * reasons why it may be unsafe to change security state. * @bprm contains the linux_binprm structure. * @bprm_post_apply_creds: * Runs after bprm_apply_creds with the task_lock dropped, so that * functions which cannot be called safely under the task_lock can * be used. This hook is a good place to perform state changes on * the process such as closing open file descriptors to which access * is no longer granted if the attributes were changed. * Note that a security module might need to save state between * bprm_apply_creds and bprm_post_apply_creds to store the decision * on whether the process may proceed. * @bprm contains the linux_binprm structure. * @bprm_set_security: * Save security information in the bprm->security field, typically based * on information about the bprm->file, for later use by the apply_creds * hook. This hook may also optionally check permissions (e.g. for * transitions between security domains). * This hook may be called multiple times during a single execve, e.g. for * interpreters. The hook can tell whether it has already been called by * checking to see if @bprm->security is non-NULL. If so, then the hook * may decide either to retain the security information saved earlier or * to replace it. * @bprm contains the linux_binprm structure. * Return 0 if the hook is successful and permission is granted. * @bprm_check_security: * This hook mediates the point when a search for a binary handler will * begin. It allows a check the @bprm->security value which is set in * the preceding set_security call. The primary difference from * set_security is that the argv list and envp list are reliably * available in @bprm. This hook may be called multiple times * during a single execve; and in each pass set_security is called * first. * @bprm contains the linux_binprm structure. * Return 0 if the hook is successful and permission is granted. * @bprm_secureexec: * Return a boolean value (0 or 1) indicating whether a "secure exec" * is required. The flag is passed in the auxiliary table * on the initial stack to the ELF interpreter to indicate whether libc * should enable secure mode. * @bprm contains the linux_binprm structure. * * Security hooks for filesystem operations. * * @sb_alloc_security: * Allocate and attach a security structure to the sb->s_security field. * The s_security field is initialized to NULL when the structure is * allocated. * @sb contains the super_block structure to be modified. * Return 0 if operation was successful. * @sb_free_security: * Deallocate and clear the sb->s_security field. * @sb contains the super_block structure to be modified. * @sb_statfs: * Check permission before obtaining filesystem statistics for the @mnt * mountpoint. * @dentry is a handle on the superblock for the filesystem. * Return 0 if permission is granted. * @sb_mount: * Check permission before an object specified by @dev_name is mounted on * the mount point named by @nd. For an ordinary mount, @dev_name * identifies a device if the file system type requires a device. For a * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the * pathname of the object being mounted. * @dev_name contains the name for object being mounted. * @nd contains the nameidata structure for mount point object. * @type contains the filesystem type. * @flags contains the mount flags. * @data contains the filesystem-specific data. * Return 0 if permission is granted. * @sb_copy_data: * Allow mount option data to be copied prior to parsing by the filesystem, * so that the security module can extract security-specific mount * options cleanly (a filesystem may modify the data e.g. with strsep()). * This also allows the original mount data to be stripped of security- * specific options to avoid having to make filesystems aware of them. * @type the type of filesystem being mounted. * @orig the original mount data copied from userspace. * @copy copied data which will be passed to the security module. * Returns 0 if the copy was successful. * @sb_check_sb: * Check permission before the device with superblock @mnt->sb is mounted * on the mount point named by @nd. * @mnt contains the vfsmount for device being mounted. * @nd contains the nameidata object for the mount point. * Return 0 if permission is granted. * @sb_umount: * Check permission before the @mnt file system is unmounted. * @mnt contains the mounted file system. * @flags contains the unmount flags, e.g. MNT_FORCE. * Return 0 if permission is granted. * @sb_umount_close: * Close any files in the @mnt mounted filesystem that are held open by * the security module. This hook is called during an umount operation * prior to checking whether the filesystem is still busy. * @mnt contains the mounted filesystem. * @sb_umount_busy: * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening * any files that were closed by umount_close. This hook is called during * an umount operation if the umount fails after a call to the * umount_close hook. * @mnt contains the mounted filesystem. * @sb_post_remount: * Update the security module's state when a filesystem is remounted. * This hook is only called if the remount was successful. * @mnt contains the mounted file system. * @flags contains the new filesystem flags. * @data contains the filesystem-specific data. * @sb_post_mountroot: * Update the security module's state when the root filesystem is mounted. * This hook is only called if the mount was successful. * @sb_post_addmount: * Update the security module's state when a filesystem is mounted. * This hook is called any time a mount is successfully grafetd to * the tree. * @mnt contains the mounted filesystem. * @mountpoint_nd contains the nameidata structure for the mount point. * @sb_pivotroot: * Check permission before pivoting the root filesystem. * @old_nd contains the nameidata structure for the new location of the current root (put_old). * @new_nd contains the nameidata structure for the new root (new_root). * Return 0 if permission is granted. * @sb_post_pivotroot: * Update module state after a successful pivot. * @old_nd contains the nameidata structure for the old root. * @new_nd contains the nameidata structure for the new root. * * Security hooks for inode operations. * * @inode_alloc_security: * Allocate and attach a security structure to @inode->i_security. The * i_security field is initialized to NULL when the inode structure is * allocated. * @inode contains the inode structure. * Return 0 if operation was successful. * @inode_free_security: * @inode contains the inode structure. * Deallocate the inode security structure and set @inode->i_security to * NULL. * @inode_init_security: * Obtain the security attribute name suffix and value to set on a newly * created inode and set up the incore security field for the new inode. * This hook is called by the fs code as part of the inode creation * transaction and provides for atomic labeling of the inode, unlike * the post_create/mkdir/... hooks called by the VFS. The hook function * is expected to allocate the name and value via kmalloc, with the caller * being responsible for calling kfree after using them. * If the security module does not use security attributes or does * not wish to put a security attribute on this particular inode, * then it should return -EOPNOTSUPP to skip this processing. * @inode contains the inode structure of the newly created inode. * @dir contains the inode structure of the parent directory. * @name will be set to the allocated name suffix (e.g. selinux). * @value will be set to the allocated attribute value. * @len will be set to the length of the value. * Returns 0 if @name and @value have been successfully set, * -EOPNOTSUPP if no security attribute is needed, or * -ENOMEM on memory allocation failure. * @inode_create: * Check permission to create a regular file. * @dir contains inode structure of the parent of the new file. * @dentry contains the dentry structure for the file to be created. * @mode contains the file mode of the file to be created. * Return 0 if permission is granted. * @inode_link: * Check permission before creating a new hard link to a file. * @old_dentry contains the dentry structure for an existing link to the file. * @dir contains the inode structure of the parent directory of the new link. * @new_dentry contains the dentry structure for the new link. * Return 0 if permission is granted. * @inode_unlink: * Check the permission to remove a hard link to a file. * @dir contains the inode structure of parent directory of the file. * @dentry contains the dentry structure for file to be unlinked. * Return 0 if permission is granted. * @inode_symlink: * Check the permission to create a symbolic link to a file. * @dir contains the inode structure of parent directory of the symbolic link. * @dentry contains the dentry structure of the symbolic link. * @old_name contains the pathname of file. * Return 0 if permission is granted. * @inode_mkdir: * Check permissions to create a new directory in the existing directory * associated with inode strcture @dir. * @dir containst the inode structure of parent of the directory to be created. * @dentry contains the dentry structure of new directory. * @mode contains the mode of new directory. * Return 0 if permission is granted. * @inode_rmdir: * Check the permission to remove a directory. * @dir contains the inode structure of parent of the directory to be removed. * @dentry contains the dentry structure of directory to be removed. * Return 0 if permission is granted. * @inode_mknod: * Check permissions when creating a special file (or a socket or a fifo * file created via the mknod system call). Note that if mknod operation * is being done for a regular file, then the create hook will be called * and not this hook. * @dir contains the inode structure of parent of the new file. * @dentry contains the dentry structure of the new file. * @mode contains the mode of the new file. * @dev contains the the device number. * Return 0 if permission is granted. * @inode_rename: * Check for permission to rename a file or directory. * @old_dir contains the inode structure for parent of the old link. * @old_dentry contains the dentry structure of the old link. * @new_dir contains the inode structure for parent of the new link. * @new_dentry contains the dentry structure of the new link. * Return 0 if permission is granted. * @inode_readlink: * Check the permission to read the symbolic link. * @dentry contains the dentry structure for the file link. * Return 0 if permission is granted. * @inode_follow_link: * Check permission to follow a symbolic link when looking up a pathname. * @dentry contains the dentry structure for the link. * @nd contains the nameidata structure for the parent directory. * Return 0 if permission is granted. * @inode_permission: * Check permission before accessing an inode. This hook is called by the * existing Linux permission function, so a security module can use it to * provide additional checking for existing Linux permission checks. * Notice that this hook is called when a file is opened (as well as many * other operations), whereas the file_security_ops permission hook is * called when the actual read/write operations are performed. * @inode contains the inode structure to check. * @mask contains the permission mask. * @nd contains the nameidata (may be NULL). * Return 0 if permission is granted. * @inode_setattr: * Check permission before setting file attributes. Note that the kernel * call to notify_change is performed from several locations, whenever * file attributes change (such as when a file is truncated, chown/chmod * operations, transferring disk quotas, etc). * @dentry contains the dentry structure for the file. * @attr is the iattr structure containing the new file attributes. * Return 0 if permission is granted. * @inode_getattr: * Check permission before obtaining file attributes. * @mnt is the vfsmount where the dentry was looked up * @dentry contains the dentry structure for the file. * Return 0 if permission is granted. * @inode_delete: * @inode contains the inode structure for deleted inode. * This hook is called when a deleted inode is released (i.e. an inode * with no hard links has its use count drop to zero). A security module * can use this hook to release any persistent label associated with the * inode. * @inode_setxattr: * Check permission before setting the extended attributes * @value identified by @name for @dentry. * Return 0 if permission is granted. * @inode_post_setxattr: * Update inode security field after successful setxattr operation. * @value identified by @name for @dentry. * @inode_getxattr: * Check permission before obtaining the extended attributes * identified by @name for @dentry. * Return 0 if permission is granted. * @inode_listxattr: * Check permission before obtaining the list of extended attribute * names for @dentry. * Return 0 if permission is granted. * @inode_removexattr: * Check permission before removing the extended attribute * identified by @name for @dentry. * Return 0 if permission is granted. * @inode_getsecurity: * Copy the extended attribute representation of the security label * associated with @name for @inode into @buffer. @buffer may be * NULL to request the size of the buffer required. @size indicates * the size of @buffer in bytes. Note that @name is the remainder * of the attribute name after the security. prefix has been removed. * @err is the return value from the preceding fs getxattr call, * and can be used by the security module to determine whether it * should try and canonicalize the attribute value. * Return number of bytes used/required on success. * @inode_setsecurity: * Set the security label associated with @name for @inode from the * extended attribute value @value. @size indicates the size of the * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. * Note that @name is the remainder of the attribute name after the * security. prefix has been removed. * Return 0 on success. * @inode_listsecurity: * Copy the extended attribute names for the security labels * associated with @inode into @buffer. The maximum size of @buffer * is specified by @buffer_size. @buffer may be NULL to request * the size of the buffer required. * Returns number of bytes used/required on success. * * Security hooks for file operations * * @file_permission: * Check file permissions before accessing an open file. This hook is * called by various operations that read or write files. A security * module can use this hook to perform additional checking on these * operations, e.g. to revalidate permissions on use to support privilege * bracketing or policy changes. Notice that this hook is used when the * actual read/write operations are performed, whereas the * inode_security_ops hook is called when a file is opened (as well as * many other operations). * Caveat: Although this hook can be used to revalidate permissions for * various system call operations that read or write files, it does not * address the revalidation of permissions for memory-mapped files. * Security modules must handle this separately if they need such * revalidation. * @file contains the file structure being accessed. * @mask contains the requested permissions. * Return 0 if permission is granted. * @file_alloc_security: * Allocate and attach a security structure to the file->f_security field. * The security field is initialized to NULL when the structure is first * created. * @file contains the file structure to secure. * Return 0 if the hook is successful and permission is granted. * @file_free_security: * Deallocate and free any security structures stored in file->f_security. * @file contains the file structure being modified. * @file_ioctl: * @file contains the file structure. * @cmd contains the operation to perform. * @arg contains the operational arguments. * Check permission for an ioctl operation on @file. Note that @arg can * sometimes represents a user space pointer; in other cases, it may be a * simple integer value. When @arg represents a user space pointer, it * should never be used by the security module. * Return 0 if permission is granted. * @file_mmap : * Check permissions for a mmap operation. The @file may be NULL, e.g. * if mapping anonymous memory. * @file contains the file structure for file to map (may be NULL). * @reqprot contains the protection requested by the application. * @prot contains the protection that will be applied by the kernel. * @flags contains the operational flags. * Return 0 if permission is granted. * @file_mprotect: * Check permissions before changing memory access permissions. * @vma contains the memory region to modify. * @reqprot contains the protection requested by the application. * @prot contains the protection that will be applied by the kernel. * Return 0 if permission is granted. * @file_lock: * Check permission before performing file locking operations. * Note: this hook mediates both flock and fcntl style locks. * @file contains the file structure. * @cmd contains the posix-translated lock operation to perform * (e.g. F_RDLCK, F_WRLCK). * Return 0 if permission is granted. * @file_fcntl: * Check permission before allowing the file operation specified by @cmd * from being performed on the file @file. Note that @arg can sometimes * represents a user space pointer; in other cases, it may be a simple * integer value. When @arg represents a user space pointer, it should * never be used by the security module. * @file contains the file structure. * @cmd contains the operation to be performed. * @arg contains the operational arguments. * Return 0 if permission is granted. * @file_set_fowner: * Save owner security information (typically from current->security) in * file->f_security for later use by the send_sigiotask hook. * @file contains the file structure to update. * Return 0 on success. * @file_send_sigiotask: * Check permission for the file owner @fown to send SIGIO or SIGURG to the * process @tsk. Note that this hook is sometimes called from interrupt. * Note that the fown_struct, @fown, is never outside the context of a * struct file, so the file structure (and associated security information) * can always be obtained: * (struct file *)((long)fown - offsetof(struct file,f_owner)); * @tsk contains the structure of task receiving signal. * @fown contains the file owner information. * @sig is the signal that will be sent. When 0, kernel sends SIGIO. * Return 0 if permission is granted. * @file_receive: * This hook allows security modules to control the ability of a process * to receive an open file descriptor via socket IPC. * @file contains the file structure being received. * Return 0 if permission is granted. * * Security hooks for task operations. * * @task_create: * Check permission before creating a child process. See the clone(2) * manual page for definitions of the @clone_flags. * @clone_flags contains the flags indicating what should be shared. * Return 0 if permission is granted. * @task_alloc_security: * @p contains the task_struct for child process. * Allocate and attach a security structure to the p->security field. The * security field is initialized to NULL when the task structure is * allocated. * Return 0 if operation was successful. * @task_free_security: * @p contains the task_struct for process. * Deallocate and clear the p->security field. * @task_setuid: * Check permission before setting one or more of the user identity * attributes of the current process. The @flags parameter indicates * which of the set*uid system calls invoked this hook and how to * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID * definitions at the beginning of this file for the @flags values and * their meanings. * @id0 contains a uid. * @id1 contains a uid. * @id2 contains a uid. * @flags contains one of the LSM_SETID_* values. * Return 0 if permission is granted. * @task_post_setuid: * Update the module's state after setting one or more of the user * identity attributes of the current process. The @flags parameter * indicates which of the set*uid system calls invoked this hook. If * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other * parameters are not used. * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS). * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS). * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS). * @flags contains one of the LSM_SETID_* values. * Return 0 on success. * @task_setgid: * Check permission before setting one or more of the group identity * attributes of the current process. The @flags parameter indicates * which of the set*gid system calls invoked this hook and how to * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID * definitions at the beginning of this file for the @flags values and * their meanings. * @id0 contains a gid. * @id1 contains a gid. * @id2 contains a gid. * @flags contains one of the LSM_SETID_* values. * Return 0 if permission is granted. * @task_setpgid: * Check permission before setting the process group identifier of the * process @p to @pgid. * @p contains the task_struct for process being modified. * @pgid contains the new pgid. * Return 0 if permission is granted. * @task_getpgid: * Check permission before getting the process group identifier of the * process @p. * @p contains the task_struct for the process. * Return 0 if permission is granted. * @task_getsid: * Check permission before getting the session identifier of the process * @p. * @p contains the task_struct for the process. * Return 0 if permission is granted. * @task_getsecid: * Retrieve the security identifier of the process @p. * @p contains the task_struct for the process and place is into @secid. * @task_setgroups: * Check permission before setting the supplementary group set of the * current process. * @group_info contains the new group information. * Return 0 if permission is granted. * @task_setnice: * Check permission before setting the nice value of @p to @nice. * @p contains the task_struct of process. * @nice contains the new nice value. * Return 0 if permission is granted. * @task_setioprio * Check permission before setting the ioprio value of @p to @ioprio. * @p contains the task_struct of process. * @ioprio contains the new ioprio value * Return 0 if permission is granted. * @task_getioprio * Check permission before getting the ioprio value of @p. * @p contains the task_struct of process. * Return 0 if permission is granted. * @task_setrlimit: * Check permission before setting the resource limits of the current * process for @resource to @new_rlim. The old resource limit values can * be examined by dereferencing (current->signal->rlim + resource). * @resource contains the resource whose limit is being set. * @new_rlim contains the new limits for @resource. * Return 0 if permission is granted. * @task_setscheduler: * Check permission before setting scheduling policy and/or parameters of * process @p based on @policy and @lp. * @p contains the task_struct for process. * @policy contains the scheduling policy. * @lp contains the scheduling parameters. * Return 0 if permission is granted. * @task_getscheduler: * Check permission before obtaining scheduling information for process * @p. * @p contains the task_struct for process. * Return 0 if permission is granted. * @task_movememory * Check permission before moving memory owned by process @p. * @p contains the task_struct for process. * Return 0 if permission is granted. * @task_kill: * Check permission before sending signal @sig to @p. @info can be NULL, * the constant 1, or a pointer to a siginfo structure. If @info is 1 or * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming * from the kernel and should typically be permitted. * SIGIO signals are handled separately by the send_sigiotask hook in * file_security_ops. * @p contains the task_struct for process. * @info contains the signal information. * @sig contains the signal value. * @secid contains the sid of the process where the signal originated * Return 0 if permission is granted. * @task_wait: * Check permission before allowing a process to reap a child process @p * and collect its status information. * @p contains the task_struct for process. * Return 0 if permission is granted. * @task_prctl: * Check permission before performing a process control operation on the * current process. * @option contains the operation. * @arg2 contains a argument. * @arg3 contains a argument. * @arg4 contains a argument. * @arg5 contains a argument. * Return 0 if permission is granted. * @task_reparent_to_init: * Set the security attributes in @p->security for a kernel thread that * is being reparented to the init task. * @p contains the task_struct for the kernel thread. * @task_to_inode: * Set the security attributes for an inode based on an associated task's * security attributes, e.g. for /proc/pid inodes. * @p contains the task_struct for the task. * @inode contains the inode structure for the inode. * * Security hooks for Netlink messaging. * * @netlink_send: * Save security information for a netlink message so that permission * checking can be performed when the message is processed. The security * information can be saved using the eff_cap field of the * netlink_skb_parms structure. Also may be used to provide fine * grained control over message transmission. * @sk associated sock of task sending the message., * @skb contains the sk_buff structure for the netlink message. * Return 0 if the information was successfully saved and message * is allowed to be transmitted. * @netlink_recv: * Check permission before processing the received netlink message in * @skb. * @skb contains the sk_buff structure for the netlink message. * @cap indicates the capability required * Return 0 if permission is granted. * * Security hooks for Unix domain networking. * * @unix_stream_connect: * Check permissions before establishing a Unix domain stream connection * between @sock and @other. * @sock contains the socket structure. * @other contains the peer socket structure. * Return 0 if permission is granted. * @unix_may_send: * Check permissions before connecting or sending datagrams from @sock to * @other. * @sock contains the socket structure. * @sock contains the peer socket structure. * Return 0 if permission is granted. * * The @unix_stream_connect and @unix_may_send hooks were necessary because * Linux provides an alternative to the conventional file name space for Unix * domain sockets. Whereas binding and connecting to sockets in the file name * space is mediated by the typical file permissions (and caught by the mknod * and permission hooks in inode_security_ops), binding and connecting to * sockets in the abstract name space is completely unmediated. Sufficient * control of Unix domain sockets in the abstract name space isn't possible * using only the socket layer hooks, since we need to know the actual target * socket, which is not looked up until we are inside the af_unix code. * * Security hooks for socket operations. * * @socket_create: * Check permissions prior to creating a new socket. * @family contains the requested protocol family. * @type contains the requested communications type. * @protocol contains the requested protocol. * @kern set to 1 if a kernel socket. * Return 0 if permission is granted. * @socket_post_create: * This hook allows a module to update or allocate a per-socket security * structure. Note that the security field was not added directly to the * socket structure, but rather, the socket security information is stored * in the associated inode. Typically, the inode alloc_security hook will * allocate and and attach security information to * sock->inode->i_security. This hook may be used to update the * sock->inode->i_security field with additional information that wasn't * available when the inode was allocated. * @sock contains the newly created socket structure. * @family contains the requested protocol family. * @type contains the requested communications type. * @protocol contains the requested protocol. * @kern set to 1 if a kernel socket. * @socket_bind: * Check permission before socket protocol layer bind operation is * performed and the socket @sock is bound to the address specified in the * @address parameter. * @sock contains the socket structure. * @address contains the address to bind to. * @addrlen contains the length of address. * Return 0 if permission is granted. * @socket_connect: * Check permission before socket protocol layer connect operation * attempts to connect socket @sock to a remote address, @address. * @sock contains the socket structure. * @address contains the address of remote endpoint. * @addrlen contains the length of address. * Return 0 if permission is granted. * @socket_listen: * Check permission before socket protocol layer listen operation. * @sock contains the socket structure. * @backlog contains the maximum length for the pending connection queue. * Return 0 if permission is granted. * @socket_accept: * Check permission before accepting a new connection. Note that the new * socket, @newsock, has been created and some information copied to it, * but the accept operation has not actually been performed. * @sock contains the listening socket structure. * @newsock contains the newly created server socket for connection. * Return 0 if permission is granted. * @socket_post_accept: * This hook allows a security module to copy security * information into the newly created socket's inode. * @sock contains the listening socket structure. * @newsock contains the newly created server socket for connection. * @socket_sendmsg: * Check permission before transmitting a message to another socket. * @sock contains the socket structure. * @msg contains the message to be transmitted. * @size contains the size of message. * Return 0 if permission is granted. * @socket_recvmsg: * Check permission before receiving a message from a socket. * @sock contains the socket structure. * @msg contains the message structure. * @size contains the size of message structure. * @flags contains the operational flags. * Return 0 if permission is granted. * @socket_getsockname: * Check permission before the local address (name) of the socket object * @sock is retrieved. * @sock contains the socket structure. * Return 0 if permission is granted. * @socket_getpeername: * Check permission before the remote address (name) of a socket object * @sock is retrieved. * @sock contains the socket structure. * Return 0 if permission is granted. * @socket_getsockopt: * Check permissions before retrieving the options associated with socket * @sock. * @sock contains the socket structure. * @level contains the protocol level to retrieve option from. * @optname contains the name of option to retrieve. * Return 0 if permission is granted. * @socket_setsockopt: * Check permissions before setting the options associated with socket * @sock. * @sock contains the socket structure. * @level contains the protocol level to set options for. * @optname contains the name of the option to set. * Return 0 if permission is granted. * @socket_shutdown: * Checks permission before all or part of a connection on the socket * @sock is shut down. * @sock contains the socket structure. * @how contains the flag indicating how future sends and receives are handled. * Return 0 if permission is granted. * @socket_sock_rcv_skb: * Check permissions on incoming network packets. This hook is distinct * from Netfilter's IP input hooks since it is the first time that the * incoming sk_buff @skb has been associated with a particular socket, @sk. * @sk contains the sock (not socket) associated with the incoming sk_buff. * @skb contains the incoming network data. * @socket_getpeersec: * This hook allows the security module to provide peer socket security * state to userspace via getsockopt SO_GETPEERSEC. * @sock is the local socket. * @optval userspace memory where the security state is to be copied. * @optlen userspace int where the module should copy the actual length * of the security state. * @len as input is the maximum length to copy to userspace provided * by the caller. * Return 0 if all is well, otherwise, typical getsockopt return * values. * @sk_alloc_security: * Allocate and attach a security structure to the sk->sk_security field, * which is used to copy security attributes between local stream sockets. * @sk_free_security: * Deallocate security structure. * @sk_clone_security: * Clone/copy security structure. * @sk_getsecid: * Retrieve the LSM-specific secid for the sock to enable caching of network * authorizations. * @sock_graft: * Sets the socket's isec sid to the sock's sid. * @inet_conn_request: * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid. * @inet_csk_clone: * Sets the new child socket's sid to the openreq sid. * @req_classify_flow: * Sets the flow's sid to the openreq sid. * * Security hooks for XFRM operations. * * @xfrm_policy_alloc_security: * @xp contains the xfrm_policy being added to Security Policy Database * used by the XFRM system. * @sec_ctx contains the security context information being provided by * the user-level policy update program (e.g., setkey). * @sk refers to the sock from which to derive the security context. * Allocate a security structure to the xp->security field; the security * field is initialized to NULL when the xfrm_policy is allocated. Only * one of sec_ctx or sock can be specified. * Return 0 if operation was successful (memory to allocate, legal context) * @xfrm_policy_clone_security: * @old contains an existing xfrm_policy in the SPD. * @new contains a new xfrm_policy being cloned from old. * Allocate a security structure to the new->security field * that contains the information from the old->security field. * Return 0 if operation was successful (memory to allocate). * @xfrm_policy_free_security: * @xp contains the xfrm_policy * Deallocate xp->security. * @xfrm_policy_delete_security: * @xp contains the xfrm_policy. * Authorize deletion of xp->security. * @xfrm_state_alloc_security: * @x contains the xfrm_state being added to the Security Association * Database by the XFRM system. * @sec_ctx contains the security context information being provided by * the user-level SA generation program (e.g., setkey or racoon). * @polsec contains the security context information associated with a xfrm * policy rule from which to take the base context. polsec must be NULL * when sec_ctx is specified. * @secid contains the secid from which to take the mls portion of the context. * Allocate a security structure to the x->security field; the security * field is initialized to NULL when the xfrm_state is allocated. Set the * context to correspond to either sec_ctx or polsec, with the mls portion * taken from secid in the latter case. * Return 0 if operation was successful (memory to allocate, legal context). * @xfrm_state_free_security: * @x contains the xfrm_state. * Deallocate x->security. * @xfrm_state_delete_security: * @x contains the xfrm_state. * Authorize deletion of x->security. * @xfrm_policy_lookup: * @xp contains the xfrm_policy for which the access control is being * checked. * @fl_secid contains the flow security label that is used to authorize * access to the policy xp. * @dir contains the direction of the flow (input or output). * Check permission when a flow selects a xfrm_policy for processing * XFRMs on a packet. The hook is called when selecting either a * per-socket policy or a generic xfrm policy. * Return 0 if permission is granted. * @xfrm_state_pol_flow_match: * @x contains the state to match. * @xp contains the policy to check for a match. * @fl contains the flow to check for a match. * Return 1 if there is a match. * @xfrm_flow_state_match: * @fl contains the flow key to match. * @xfrm points to the xfrm_state to match. * Return 1 if there is a match. * @xfrm_decode_session: * @skb points to skb to decode. * @secid points to the flow key secid to set. * @ckall says if all xfrms used should be checked for same secid. * Return 0 if ckall is zero or all xfrms used have the same secid. * * Security hooks affecting all Key Management operations * * @key_alloc: * Permit allocation of a key and assign security data. Note that key does * not have a serial number assigned at this point. * @key points to the key. * @flags is the allocation flags * Return 0 if permission is granted, -ve error otherwise. * @key_free: * Notification of destruction; free security data. * @key points to the key. * No return value. * @key_permission: * See whether a specific operational right is granted to a process on a * key. * @key_ref refers to the key (key pointer + possession attribute bit). * @context points to the process to provide the context against which to * evaluate the security data on the key. * @perm describes the combination of permissions required of this key. * Return 1 if permission granted, 0 if permission denied and -ve it the * normal permissions model should be effected. * * Security hooks affecting all System V IPC operations. * * @ipc_permission: * Check permissions for access to IPC * @ipcp contains the kernel IPC permission structure * @flag contains the desired (requested) permission set * Return 0 if permission is granted. * * Security hooks for individual messages held in System V IPC message queues * @msg_msg_alloc_security: * Allocate and attach a security structure to the msg->security field. * The security field is initialized to NULL when the structure is first * created. * @msg contains the message structure to be modified. * Return 0 if operation was successful and permission is granted. * @msg_msg_free_security: * Deallocate the security structure for this message. * @msg contains the message structure to be modified. * * Security hooks for System V IPC Message Queues * * @msg_queue_alloc_security: * Allocate and attach a security structure to the * msq->q_perm.security field. The security field is initialized to * NULL when the structure is first created. * @msq contains the message queue structure to be modified. * Return 0 if operation was successful and permission is granted. * @msg_queue_free_security: * Deallocate security structure for this message queue. * @msq contains the message queue structure to be modified. * @msg_queue_associate: * Check permission when a message queue is requested through the * msgget system call. This hook is only called when returning the * message queue identifier for an existing message queue, not when a * new message queue is created. * @msq contains the message queue to act upon. * @msqflg contains the operation control flags. * Return 0 if permission is granted. * @msg_queue_msgctl: * Check permission when a message control operation specified by @cmd * is to be performed on the message queue @msq. * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. * @msq contains the message queue to act upon. May be NULL. * @cmd contains the operation to be performed. * Return 0 if permission is granted. * @msg_queue_msgsnd: * Check permission before a message, @msg, is enqueued on the message * queue, @msq. * @msq contains the message queue to send message to. * @msg contains the message to be enqueued. * @msqflg contains operational flags. * Return 0 if permission is granted. * @msg_queue_msgrcv: * Check permission before a message, @msg, is removed from the message * queue, @msq. The @target task structure contains a pointer to the * process that will be receiving the message (not equal to the current * process when inline receives are being performed). * @msq contains the message queue to retrieve message from. * @msg contains the message destination. * @target contains the task structure for recipient process. * @type contains the type of message requested. * @mode contains the operational flags. * Return 0 if permission is granted. * * Security hooks for System V Shared Memory Segments * * @shm_alloc_security: * Allocate and attach a security structure to the shp->shm_perm.security * field. The security field is initialized to NULL when the structure is * first created. * @shp contains the shared memory structure to be modified. * Return 0 if operation was successful and permission is granted. * @shm_free_security: * Deallocate the security struct for this memory segment. * @shp contains the shared memory structure to be modified. * @shm_associate: * Check permission when a shared memory region is requested through the * shmget system call. This hook is only called when returning the shared * memory region identifier for an existing region, not when a new shared * memory region is created. * @shp contains the shared memory structure to be modified. * @shmflg contains the operation control flags. * Return 0 if permission is granted. * @shm_shmctl: * Check permission when a shared memory control operation specified by * @cmd is to be performed on the shared memory region @shp. * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. * @shp contains shared memory structure to be modified. * @cmd contains the operation to be performed. * Return 0 if permission is granted. * @shm_shmat: * Check permissions prior to allowing the shmat system call to attach the * shared memory segment @shp to the data segment of the calling process. * The attaching address is specified by @shmaddr. * @shp contains the shared memory structure to be modified. * @shmaddr contains the address to attach memory region to. * @shmflg contains the operational flags. * Return 0 if permission is granted. * * Security hooks for System V Semaphores * * @sem_alloc_security: * Allocate and attach a security structure to the sma->sem_perm.security * field. The security field is initialized to NULL when the structure is * first created. * @sma contains the semaphore structure * Return 0 if operation was successful and permission is granted. * @sem_free_security: * deallocate security struct for this semaphore * @sma contains the semaphore structure. * @sem_associate: * Check permission when a semaphore is requested through the semget * system call. This hook is only called when returning the semaphore * identifier for an existing semaphore, not when a new one must be * created. * @sma contains the semaphore structure. * @semflg contains the operation control flags. * Return 0 if permission is granted. * @sem_semctl: * Check permission when a semaphore operation specified by @cmd is to be * performed on the semaphore @sma. The @sma may be NULL, e.g. for * IPC_INFO or SEM_INFO. * @sma contains the semaphore structure. May be NULL. * @cmd contains the operation to be performed. * Return 0 if permission is granted. * @sem_semop * Check permissions before performing operations on members of the * semaphore set @sma. If the @alter flag is nonzero, the semaphore set * may be modified. * @sma contains the semaphore structure. * @sops contains the operations to perform. * @nsops contains the number of operations to perform. * @alter contains the flag indicating whether changes are to be made. * Return 0 if permission is granted. * * @ptrace: * Check permission before allowing the @parent process to trace the * @child process. * Security modules may also want to perform a process tracing check * during an execve in the set_security or apply_creds hooks of * binprm_security_ops if the process is being traced and its security * attributes would be changed by the execve. * @parent contains the task_struct structure for parent process. * @child contains the task_struct structure for child process. * Return 0 if permission is granted. * @capget: * Get the @effective, @inheritable, and @permitted capability sets for * the @target process. The hook may also perform permission checking to * determine if the current process is allowed to see the capability sets * of the @target process. * @target contains the task_struct structure for target process. * @effective contains the effective capability set. * @inheritable contains the inheritable capability set. * @permitted contains the permitted capability set. * Return 0 if the capability sets were successfully obtained. * @capset_check: * Check permission before setting the @effective, @inheritable, and * @permitted capability sets for the @target process. * Caveat: @target is also set to current if a set of processes is * specified (i.e. all processes other than current and init or a * particular process group). Hence, the capset_set hook may need to * revalidate permission to the actual target process. * @target contains the task_struct structure for target process. * @effective contains the effective capability set. * @inheritable contains the inheritable capability set. * @permitted contains the permitted capability set. * Return 0 if permission is granted. * @capset_set: * Set the @effective, @inheritable, and @permitted capability sets for * the @target process. Since capset_check cannot always check permission * to the real @target process, this hook may also perform permission * checking to determine if the current process is allowed to set the * capability sets of the @target process. However, this hook has no way * of returning an error due to the structure of the sys_capset code. * @target contains the task_struct structure for target process. * @effective contains the effective capability set. * @inheritable contains the inheritable capability set. * @permitted contains the permitted capability set. * @capable: * Check whether the @tsk process has the @cap capability. * @tsk contains the task_struct for the process. * @cap contains the capability . * Return 0 if the capability is granted for @tsk. * @acct: * Check permission before enabling or disabling process accounting. If * accounting is being enabled, then @file refers to the open file used to * store accounting records. If accounting is being disabled, then @file * is NULL. * @file contains the file structure for the accounting file (may be NULL). * Return 0 if permission is granted. * @sysctl: * Check permission before accessing the @table sysctl variable in the * manner specified by @op. * @table contains the ctl_table structure for the sysctl variable. * @op contains the operation (001 = search, 002 = write, 004 = read). * Return 0 if permission is granted. * @syslog: * Check permission before accessing the kernel message ring or changing * logging to the console. * See the syslog(2) manual page for an explanation of the @type values. * @type contains the type of action. * Return 0 if permission is granted. * @settime: * Check permission to change the system time. * struct timespec and timezone are defined in include/linux/time.h * @ts contains new time * @tz contains new timezone * Return 0 if permission is granted. * @vm_enough_memory: * Check permissions for allocating a new virtual mapping. * @pages contains the number of pages. * Return 0 if permission is granted. * * @register_security: * allow module stacking. * @name contains the name of the security module being stacked. * @ops contains a pointer to the struct security_operations of the module to stack. * @unregister_security: * remove a stacked module. * @name contains the name of the security module being unstacked. * @ops contains a pointer to the struct security_operations of the module to unstack. * * @secid_to_secctx: * Convert secid to security context. * @secid contains the security ID. * @secdata contains the pointer that stores the converted security context. * * @release_secctx: * Release the security context. * @secdata contains the security context. * @seclen contains the length of the security context. * * This is the main security structure. */ struct security_operations { int (*ptrace) (struct task_struct * parent, struct task_struct * child); int (*capget) (struct task_struct * target, kernel_cap_t * effective, kernel_cap_t * inheritable, kernel_cap_t * permitted); int (*capset_check) (struct task_struct * target, kernel_cap_t * effective, kernel_cap_t * inheritable, kernel_cap_t * permitted); void (*capset_set) (struct task_struct * target, kernel_cap_t * effective, kernel_cap_t * inheritable, kernel_cap_t * permitted); int (*capable) (struct task_struct * tsk, int cap); int (*acct) (struct file * file); int (*sysctl) (struct ctl_table * table, int op); int (*quotactl) (int cmds, int type, int id, struct super_block * sb); int (*quota_on) (struct dentry * dentry); int (*syslog) (int type); int (*settime) (struct timespec *ts, struct timezone *tz); int (*vm_enough_memory) (long pages); int (*bprm_alloc_security) (struct linux_binprm * bprm); void (*bprm_free_security) (struct linux_binprm * bprm); void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe); void (*bprm_post_apply_creds) (struct linux_binprm * bprm); int (*bprm_set_security) (struct linux_binprm * bprm); int (*bprm_check_security) (struct linux_binprm * bprm); int (*bprm_secureexec) (struct linux_binprm * bprm); int (*sb_alloc_security) (struct super_block * sb); void (*sb_free_security) (struct super_block * sb); int (*sb_copy_data)(struct file_system_type *type, void *orig, void *copy); int (*sb_kern_mount) (struct super_block *sb, void *data); int (*sb_statfs) (struct dentry *dentry); int (*sb_mount) (char *dev_name, struct nameidata * nd, char *type, unsigned long flags, void *data); int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd); int (*sb_umount) (struct vfsmount * mnt, int flags); void (*sb_umount_close) (struct vfsmount * mnt); void (*sb_umount_busy) (struct vfsmount * mnt); void (*sb_post_remount) (struct vfsmount * mnt, unsigned long flags, void *data); void (*sb_post_mountroot) (void); void (*sb_post_addmount) (struct vfsmount * mnt, struct nameidata * mountpoint_nd); int (*sb_pivotroot) (struct nameidata * old_nd, struct nameidata * new_nd); void (*sb_post_pivotroot) (struct nameidata * old_nd, struct nameidata * new_nd); int (*inode_alloc_security) (struct inode *inode); void (*inode_free_security) (struct inode *inode); int (*inode_init_security) (struct inode *inode, struct inode *dir, char **name, void **value, size_t *len); int (*inode_create) (struct inode *dir, struct dentry *dentry, int mode); int (*inode_link) (struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry); int (*inode_unlink) (struct inode *dir, struct dentry *dentry); int (*inode_symlink) (struct inode *dir, struct dentry *dentry, const char *old_name); int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); int (*inode_mknod) (struct inode *dir, struct dentry *dentry, int mode, dev_t dev); int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry); int (*inode_readlink) (struct dentry *dentry); int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd); int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); void (*inode_delete) (struct inode *inode); int (*inode_setxattr) (struct dentry *dentry, char *name, void *value, size_t size, int flags); void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value, size_t size, int flags); int (*inode_getxattr) (struct dentry *dentry, char *name); int (*inode_listxattr) (struct dentry *dentry); int (*inode_removexattr) (struct dentry *dentry, char *name); const char *(*inode_xattr_getsuffix) (void); int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err); int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags); int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size); int (*file_permission) (struct file * file, int mask); int (*file_alloc_security) (struct file * file); void (*file_free_security) (struct file * file); int (*file_ioctl) (struct file * file, unsigned int cmd, unsigned long arg); int (*file_mmap) (struct file * file, unsigned long reqprot, unsigned long prot, unsigned long flags); int (*file_mprotect) (struct vm_area_struct * vma, unsigned long reqprot, unsigned long prot); int (*file_lock) (struct file * file, unsigned int cmd); int (*file_fcntl) (struct file * file, unsigned int cmd, unsigned long arg); int (*file_set_fowner) (struct file * file); int (*file_send_sigiotask) (struct task_struct * tsk, struct fown_struct * fown, int sig); int (*file_receive) (struct file * file); int (*task_create) (unsigned long clone_flags); int (*task_alloc_security) (struct task_struct * p); void (*task_free_security) (struct task_struct * p); int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags); int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ , uid_t old_euid, uid_t old_suid, int flags); int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags); int (*task_setpgid) (struct task_struct * p, pid_t pgid); int (*task_getpgid) (struct task_struct * p); int (*task_getsid) (struct task_struct * p); void (*task_getsecid) (struct task_struct * p, u32 * secid); int (*task_setgroups) (struct group_info *group_info); int (*task_setnice) (struct task_struct * p, int nice); int (*task_setioprio) (struct task_struct * p, int ioprio); int (*task_getioprio) (struct task_struct * p); int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim); int (*task_setscheduler) (struct task_struct * p, int policy, struct sched_param * lp); int (*task_getscheduler) (struct task_struct * p); int (*task_movememory) (struct task_struct * p); int (*task_kill) (struct task_struct * p, struct siginfo * info, int sig, u32 secid); int (*task_wait) (struct task_struct * p); int (*task_prctl) (int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5); void (*task_reparent_to_init) (struct task_struct * p); void (*task_to_inode)(struct task_struct *p, struct inode *inode); int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag); int (*msg_msg_alloc_security) (struct msg_msg * msg); void (*msg_msg_free_security) (struct msg_msg * msg); int (*msg_queue_alloc_security) (struct msg_queue * msq); void (*msg_queue_free_security) (struct msg_queue * msq); int (*msg_queue_associate) (struct msg_queue * msq, int msqflg); int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd); int (*msg_queue_msgsnd) (struct msg_queue * msq, struct msg_msg * msg, int msqflg); int (*msg_queue_msgrcv) (struct msg_queue * msq, struct msg_msg * msg, struct task_struct * target, long type, int mode); int (*shm_alloc_security) (struct shmid_kernel * shp); void (*shm_free_security) (struct shmid_kernel * shp); int (*shm_associate) (struct shmid_kernel * shp, int shmflg); int (*shm_shmctl) (struct shmid_kernel * shp, int cmd); int (*shm_shmat) (struct shmid_kernel * shp, char __user *shmaddr, int shmflg); int (*sem_alloc_security) (struct sem_array * sma); void (*sem_free_security) (struct sem_array * sma); int (*sem_associate) (struct sem_array * sma, int semflg); int (*sem_semctl) (struct sem_array * sma, int cmd); int (*sem_semop) (struct sem_array * sma, struct sembuf * sops, unsigned nsops, int alter); int (*netlink_send) (struct sock * sk, struct sk_buff * skb); int (*netlink_recv) (struct sk_buff * skb, int cap); /* allow module stacking */ int (*register_security) (const char *name, struct security_operations *ops); int (*unregister_security) (const char *name, struct security_operations *ops); void (*d_instantiate) (struct dentry *dentry, struct inode *inode); int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size); int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size); int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen); void (*release_secctx)(char *secdata, u32 seclen); #ifdef CONFIG_SECURITY_NETWORK int (*unix_stream_connect) (struct socket * sock, struct socket * other, struct sock * newsk); int (*unix_may_send) (struct socket * sock, struct socket * other); int (*socket_create) (int family, int type, int protocol, int kern); void (*socket_post_create) (struct socket * sock, int family, int type, int protocol, int kern); int (*socket_bind) (struct socket * sock, struct sockaddr * address, int addrlen); int (*socket_connect) (struct socket * sock, struct sockaddr * address, int addrlen); int (*socket_listen) (struct socket * sock, int backlog); int (*socket_accept) (struct socket * sock, struct socket * newsock); void (*socket_post_accept) (struct socket * sock, struct socket * newsock); int (*socket_sendmsg) (struct socket * sock, struct msghdr * msg, int size); int (*socket_recvmsg) (struct socket * sock, struct msghdr * msg, int size, int flags); int (*socket_getsockname) (struct socket * sock); int (*socket_getpeername) (struct socket * sock); int (*socket_getsockopt) (struct socket * sock, int level, int optname); int (*socket_setsockopt) (struct socket * sock, int level, int optname); int (*socket_shutdown) (struct socket * sock, int how); int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb); int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid); int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); void (*sk_free_security) (struct sock *sk); void (*sk_clone_security) (const struct sock *sk, struct sock *newsk); void (*sk_getsecid) (struct sock *sk, u32 *secid); void (*sock_graft)(struct sock* sk, struct socket *parent); int (*inet_conn_request)(struct sock *sk, struct sk_buff *skb, struct request_sock *req); void (*inet_csk_clone)(struct sock *newsk, const struct request_sock *req); void (*req_classify_flow)(const struct request_sock *req, struct flowi *fl); #endif /* CONFIG_SECURITY_NETWORK */ #ifdef CONFIG_SECURITY_NETWORK_XFRM int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx, struct sock *sk); int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new); void (*xfrm_policy_free_security) (struct xfrm_policy *xp); int (*xfrm_policy_delete_security) (struct xfrm_policy *xp); int (*xfrm_state_alloc_security) (struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx, struct xfrm_sec_ctx *polsec, u32 secid); void (*xfrm_state_free_security) (struct xfrm_state *x); int (*xfrm_state_delete_security) (struct xfrm_state *x); int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 fl_secid, u8 dir); int (*xfrm_state_pol_flow_match)(struct xfrm_state *x, struct xfrm_policy *xp, struct flowi *fl); int (*xfrm_flow_state_match)(struct flowi *fl, struct xfrm_state *xfrm); int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall); #endif /* CONFIG_SECURITY_NETWORK_XFRM */ /* key management security hooks */ #ifdef CONFIG_KEYS int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags); void (*key_free)(struct key *key); int (*key_permission)(key_ref_t key_ref, struct task_struct *context, key_perm_t perm); #endif /* CONFIG_KEYS */ }; /* global variables */ extern struct security_operations *security_ops; /* inline stuff */ static inline int security_ptrace (struct task_struct * parent, struct task_struct * child) { return security_ops->ptrace (parent, child); } static inline int security_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return security_ops->capget (target, effective, inheritable, permitted); } static inline int security_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return security_ops->capset_check (target, effective, inheritable, permitted); } static inline void security_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { security_ops->capset_set (target, effective, inheritable, permitted); } static inline int security_capable(struct task_struct *tsk, int cap) { return security_ops->capable(tsk, cap); } static inline int security_acct (struct file *file) { return security_ops->acct (file); } static inline int security_sysctl(struct ctl_table *table, int op) { return security_ops->sysctl(table, op); } static inline int security_quotactl (int cmds, int type, int id, struct super_block *sb) { return security_ops->quotactl (cmds, type, id, sb); } static inline int security_quota_on (struct dentry * dentry) { return security_ops->quota_on (dentry); } static inline int security_syslog(int type) { return security_ops->syslog(type); } static inline int security_settime(struct timespec *ts, struct timezone *tz) { return security_ops->settime(ts, tz); } static inline int security_vm_enough_memory(long pages) { return security_ops->vm_enough_memory(pages); } static inline int security_bprm_alloc (struct linux_binprm *bprm) { return security_ops->bprm_alloc_security (bprm); } static inline void security_bprm_free (struct linux_binprm *bprm) { security_ops->bprm_free_security (bprm); } static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) { security_ops->bprm_apply_creds (bprm, unsafe); } static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) { security_ops->bprm_post_apply_creds (bprm); } static inline int security_bprm_set (struct linux_binprm *bprm) { return security_ops->bprm_set_security (bprm); } static inline int security_bprm_check (struct linux_binprm *bprm) { return security_ops->bprm_check_security (bprm); } static inline int security_bprm_secureexec (struct linux_binprm *bprm) { return security_ops->bprm_secureexec (bprm); } static inline int security_sb_alloc (struct super_block *sb) { return security_ops->sb_alloc_security (sb); } static inline void security_sb_free (struct super_block *sb) { security_ops->sb_free_security (sb); } static inline int security_sb_copy_data (struct file_system_type *type, void *orig, void *copy) { return security_ops->sb_copy_data (type, orig, copy); } static inline int security_sb_kern_mount (struct super_block *sb, void *data) { return security_ops->sb_kern_mount (sb, data); } static inline int security_sb_statfs (struct dentry *dentry) { return security_ops->sb_statfs (dentry); } static inline int security_sb_mount (char *dev_name, struct nameidata *nd, char *type, unsigned long flags, void *data) { return security_ops->sb_mount (dev_name, nd, type, flags, data); } static inline int security_sb_check_sb (struct vfsmount *mnt, struct nameidata *nd) { return security_ops->sb_check_sb (mnt, nd); } static inline int security_sb_umount (struct vfsmount *mnt, int flags) { return security_ops->sb_umount (mnt, flags); } static inline void security_sb_umount_close (struct vfsmount *mnt) { security_ops->sb_umount_close (mnt); } static inline void security_sb_umount_busy (struct vfsmount *mnt) { security_ops->sb_umount_busy (mnt); } static inline void security_sb_post_remount (struct vfsmount *mnt, unsigned long flags, void *data) { security_ops->sb_post_remount (mnt, flags, data); } static inline void security_sb_post_mountroot (void) { security_ops->sb_post_mountroot (); } static inline void security_sb_post_addmount (struct vfsmount *mnt, struct nameidata *mountpoint_nd) { security_ops->sb_post_addmount (mnt, mountpoint_nd); } static inline int security_sb_pivotroot (struct nameidata *old_nd, struct nameidata *new_nd) { return security_ops->sb_pivotroot (old_nd, new_nd); } static inline void security_sb_post_pivotroot (struct nameidata *old_nd, struct nameidata *new_nd) { security_ops->sb_post_pivotroot (old_nd, new_nd); } static inline int security_inode_alloc (struct inode *inode) { return security_ops->inode_alloc_security (inode); } static inline void security_inode_free (struct inode *inode) { security_ops->inode_free_security (inode); } static inline int security_inode_init_security (struct inode *inode, struct inode *dir, char **name, void **value, size_t *len) { if (unlikely (IS_PRIVATE (inode))) return -EOPNOTSUPP; return security_ops->inode_init_security (inode, dir, name, value, len); } static inline int security_inode_create (struct inode *dir, struct dentry *dentry, int mode) { if (unlikely (IS_PRIVATE (dir))) return 0; return security_ops->inode_create (dir, dentry, mode); } static inline int security_inode_link (struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) { if (unlikely (IS_PRIVATE (old_dentry->d_inode))) return 0; return security_ops->inode_link (old_dentry, dir, new_dentry); } static inline int security_inode_unlink (struct inode *dir, struct dentry *dentry) { if (unlikely (IS_PRIVATE (dentry->d_inode))) return 0; return security_ops->inode_unlink (dir, dentry); } static inline int security_inode_symlink (struct inode *dir, struct dentry *dentry, const char *old_name) { if (unlikely (IS_PRIVATE (dir))) return 0; return security_ops->inode_symlink (dir, dentry, old_name); } static inline int security_inode_mkdir (struct inode *dir, struct dentry *dentry, int mode) { if (unlikely (IS_PRIVATE (dir))) return 0; return security_ops->inode_mkdir (dir, dentry, mode); } static inline int security_inode_rmdir (struct inode *dir, struct dentry *dentry) { if (unlikely (IS_PRIVATE (dentry->d_inode))) return 0; return security_ops->inode_rmdir (dir, dentry); } static inline int security_inode_mknod (struct inode *dir, struct dentry *dentry, int mode, dev_t dev) { if (unlikely (IS_PRIVATE (dir))) return 0; return security_ops->inode_mknod (dir, dentry, mode, dev); } static inline int security_inode_rename (struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { if (unlikely (IS_PRIVATE (old_dentry->d_inode) || (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode)))) return 0; return security_ops->inode_rename (old_dir, old_dentry, new_dir, new_dentry); } static inline int security_inode_readlink (struct dentry *dentry) { if (unlikely (IS_PRIVATE (dentry->d_inode))) return 0; return security_ops->inode_readlink (dentry); } static inline int security_inode_follow_link (struct dentry *dentry, struct nameidata *nd) { if (unlikely (IS_PRIVATE (dentry->d_inode))) return 0; return security_ops->inode_follow_link (dentry, nd); } static inline int security_inode_permission (struct inode *inode, int mask, struct nameidata *nd) { if (unlikely (IS_PRIVATE (inode))) return 0; return security_ops->inode_permission (inode, mask, nd); } static inline int security_inode_setattr (struct dentry *dentry, struct iattr *attr) { if (unlikely (IS_PRIVATE (dentry->d_inode))) return 0; return security_ops->inode_setattr (dentry, attr); } static inline int security_inode_getattr (struct vfsmount *mnt, struct dentry *dentry) { if (unlikely (IS_PRIVATE (dentry->d_inode))) return 0; return security_ops->inode_getattr (mnt, dentry); } static inline void security_inode_delete (struct inode *inode) { if (unlikely (IS_PRIVATE (inode))) return; security_ops->inode_delete (inode); } static inline int security_inode_setxattr (struct dentry *dentry, char *name, void *value, size_t size, int flags) { if (unlikely (IS_PRIVATE (dentry->d_inode))) return 0; return security_ops->inode_setxattr (dentry, name, value, size, flags); } static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, void *value, size_t size, int flags) { if (unlikely (IS_PRIVATE (dentry->d_inode))) return; security_ops->inode_post_setxattr (dentry, name, value, size, flags); } static inline int security_inode_getxattr (struct dentry *dentry, char *name) { if (unlikely (IS_PRIVATE (dentry->d_inode))) return 0; return security_ops->inode_getxattr (dentry, name); } static inline int security_inode_listxattr (struct dentry *dentry) { if (unlikely (IS_PRIVATE (dentry->d_inode))) return 0; return security_ops->inode_listxattr (dentry); } static inline int security_inode_removexattr (struct dentry *dentry, char *name) { if (unlikely (IS_PRIVATE (dentry->d_inode))) return 0; return security_ops->inode_removexattr (dentry, name); } static inline const char *security_inode_xattr_getsuffix(void) { return security_ops->inode_xattr_getsuffix(); } static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) { if (unlikely (IS_PRIVATE (inode))) return 0; return security_ops->inode_getsecurity(inode, name, buffer, size, err); } static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) { if (unlikely (IS_PRIVATE (inode))) return 0; return security_ops->inode_setsecurity(inode, name, value, size, flags); } static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) { if (unlikely (IS_PRIVATE (inode))) return 0; return security_ops->inode_listsecurity(inode, buffer, buffer_size); } static inline int security_file_permission (struct file *file, int mask) { return security_ops->file_permission (file, mask); } static inline int security_file_alloc (struct file *file) { return security_ops->file_alloc_security (file); } static inline void security_file_free (struct file *file) { security_ops->file_free_security (file); } static inline int security_file_ioctl (struct file *file, unsigned int cmd, unsigned long arg) { return security_ops->file_ioctl (file, cmd, arg); } static inline int security_file_mmap (struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags) { return security_ops->file_mmap (file, reqprot, prot, flags); } static inline int security_file_mprotect (struct vm_area_struct *vma, unsigned long reqprot, unsigned long prot) { return security_ops->file_mprotect (vma, reqprot, prot); } static inline int security_file_lock (struct file *file, unsigned int cmd) { return security_ops->file_lock (file, cmd); } static inline int security_file_fcntl (struct file *file, unsigned int cmd, unsigned long arg) { return security_ops->file_fcntl (file, cmd, arg); } static inline int security_file_set_fowner (struct file *file) { return security_ops->file_set_fowner (file); } static inline int security_file_send_sigiotask (struct task_struct *tsk, struct fown_struct *fown, int sig) { return security_ops->file_send_sigiotask (tsk, fown, sig); } static inline int security_file_receive (struct file *file) { return security_ops->file_receive (file); } static inline int security_task_create (unsigned long clone_flags) { return security_ops->task_create (clone_flags); } static inline int security_task_alloc (struct task_struct *p) { return security_ops->task_alloc_security (p); } static inline void security_task_free (struct task_struct *p) { security_ops->task_free_security (p); } static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, int flags) { return security_ops->task_setuid (id0, id1, id2, flags); } static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags) { return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags); } static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, int flags) { return security_ops->task_setgid (id0, id1, id2, flags); } static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) { return security_ops->task_setpgid (p, pgid); } static inline int security_task_getpgid (struct task_struct *p) { return security_ops->task_getpgid (p); } static inline int security_task_getsid (struct task_struct *p) { return security_ops->task_getsid (p); } static inline void security_task_getsecid (struct task_struct *p, u32 *secid) { security_ops->task_getsecid (p, secid); } static inline int security_task_setgroups (struct group_info *group_info) { return security_ops->task_setgroups (group_info); } static inline int security_task_setnice (struct task_struct *p, int nice) { return security_ops->task_setnice (p, nice); } static inline int security_task_setioprio (struct task_struct *p, int ioprio) { return security_ops->task_setioprio (p, ioprio); } static inline int security_task_getioprio (struct task_struct *p) { return security_ops->task_getioprio (p); } static inline int security_task_setrlimit (unsigned int resource, struct rlimit *new_rlim) { return security_ops->task_setrlimit (resource, new_rlim); } static inline int security_task_setscheduler (struct task_struct *p, int policy, struct sched_param *lp) { return security_ops->task_setscheduler (p, policy, lp); } static inline int security_task_getscheduler (struct task_struct *p) { return security_ops->task_getscheduler (p); } static inline int security_task_movememory (struct task_struct *p) { return security_ops->task_movememory (p); } static inline int security_task_kill (struct task_struct *p, struct siginfo *info, int sig, u32 secid) { return security_ops->task_kill (p, info, sig, secid); } static inline int security_task_wait (struct task_struct *p) { return security_ops->task_wait (p); } static inline int security_task_prctl (int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { return security_ops->task_prctl (option, arg2, arg3, arg4, arg5); } static inline void security_task_reparent_to_init (struct task_struct *p) { security_ops->task_reparent_to_init (p); } static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) { security_ops->task_to_inode(p, inode); } static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, short flag) { return security_ops->ipc_permission (ipcp, flag); } static inline int security_msg_msg_alloc (struct msg_msg * msg) { return security_ops->msg_msg_alloc_security (msg); } static inline void security_msg_msg_free (struct msg_msg * msg) { security_ops->msg_msg_free_security(msg); } static inline int security_msg_queue_alloc (struct msg_queue *msq) { return security_ops->msg_queue_alloc_security (msq); } static inline void security_msg_queue_free (struct msg_queue *msq) { security_ops->msg_queue_free_security (msq); } static inline int security_msg_queue_associate (struct msg_queue * msq, int msqflg) { return security_ops->msg_queue_associate (msq, msqflg); } static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) { return security_ops->msg_queue_msgctl (msq, cmd); } static inline int security_msg_queue_msgsnd (struct msg_queue * msq, struct msg_msg * msg, int msqflg) { return security_ops->msg_queue_msgsnd (msq, msg, msqflg); } static inline int security_msg_queue_msgrcv (struct msg_queue * msq, struct msg_msg * msg, struct task_struct * target, long type, int mode) { return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode); } static inline int security_shm_alloc (struct shmid_kernel *shp) { return security_ops->shm_alloc_security (shp); } static inline void security_shm_free (struct shmid_kernel *shp) { security_ops->shm_free_security (shp); } static inline int security_shm_associate (struct shmid_kernel * shp, int shmflg) { return security_ops->shm_associate(shp, shmflg); } static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) { return security_ops->shm_shmctl (shp, cmd); } static inline int security_shm_shmat (struct shmid_kernel * shp, char __user *shmaddr, int shmflg) { return security_ops->shm_shmat(shp, shmaddr, shmflg); } static inline int security_sem_alloc (struct sem_array *sma) { return security_ops->sem_alloc_security (sma); } static inline void security_sem_free (struct sem_array *sma) { security_ops->sem_free_security (sma); } static inline int security_sem_associate (struct sem_array * sma, int semflg) { return security_ops->sem_associate (sma, semflg); } static inline int security_sem_semctl (struct sem_array * sma, int cmd) { return security_ops->sem_semctl(sma, cmd); } static inline int security_sem_semop (struct sem_array * sma, struct sembuf * sops, unsigned nsops, int alter) { return security_ops->sem_semop(sma, sops, nsops, alter); } static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) { if (unlikely (inode && IS_PRIVATE (inode))) return; security_ops->d_instantiate (dentry, inode); } static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) { return security_ops->getprocattr(p, name, value, size); } static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) { return security_ops->setprocattr(p, name, value, size); } static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb) { return security_ops->netlink_send(sk, skb); } static inline int security_netlink_recv(struct sk_buff * skb, int cap) { return security_ops->netlink_recv(skb, cap); } static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) { return security_ops->secid_to_secctx(secid, secdata, seclen); } static inline void security_release_secctx(char *secdata, u32 seclen) { return security_ops->release_secctx(secdata, seclen); } /* prototypes */ extern int security_init (void); extern int register_security (struct security_operations *ops); extern int unregister_security (struct security_operations *ops); extern int mod_reg_security (const char *name, struct security_operations *ops); extern int mod_unreg_security (const char *name, struct security_operations *ops); extern struct dentry *securityfs_create_file(const char *name, mode_t mode, struct dentry *parent, void *data, struct file_operations *fops); extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); extern void securityfs_remove(struct dentry *dentry); #else /* CONFIG_SECURITY */ /* * This is the default capabilities functionality. Most of these functions * are just stubbed out, but a few must call the proper capable code. */ static inline int security_init(void) { return 0; } static inline int security_ptrace (struct task_struct *parent, struct task_struct * child) { return cap_ptrace (parent, child); } static inline int security_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return cap_capget (target, effective, inheritable, permitted); } static inline int security_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return cap_capset_check (target, effective, inheritable, permitted); } static inline void security_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { cap_capset_set (target, effective, inheritable, permitted); } static inline int security_capable(struct task_struct *tsk, int cap) { return cap_capable(tsk, cap); } static inline int security_acct (struct file *file) { return 0; } static inline int security_sysctl(struct ctl_table *table, int op) { return 0; } static inline int security_quotactl (int cmds, int type, int id, struct super_block * sb) { return 0; } static inline int security_quota_on (struct dentry * dentry) { return 0; } static inline int security_syslog(int type) { return cap_syslog(type); } static inline int security_settime(struct timespec *ts, struct timezone *tz) { return cap_settime(ts, tz); } static inline int security_vm_enough_memory(long pages) { return cap_vm_enough_memory(pages); } static inline int security_bprm_alloc (struct linux_binprm *bprm) { return 0; } static inline void security_bprm_free (struct linux_binprm *bprm) { } static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) { cap_bprm_apply_creds (bprm, unsafe); } static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) { return; } static inline int security_bprm_set (struct linux_binprm *bprm) { return cap_bprm_set_security (bprm); } static inline int security_bprm_check (struct linux_binprm *bprm) { return 0; } static inline int security_bprm_secureexec (struct linux_binprm *bprm) { return cap_bprm_secureexec(bprm); } static inline int security_sb_alloc (struct super_block *sb) { return 0; } static inline void security_sb_free (struct super_block *sb) { } static inline int security_sb_copy_data (struct file_system_type *type, void *orig, void *copy) { return 0; } static inline int security_sb_kern_mount (struct super_block *sb, void *data) { return 0; } static inline int security_sb_statfs (struct dentry *dentry) { return 0; } static inline int security_sb_mount (char *dev_name, struct nameidata *nd, char *type, unsigned long flags, void *data) { return 0; } static inline int security_sb_check_sb (struct vfsmount *mnt, struct nameidata *nd) { return 0; } static inline int security_sb_umount (struct vfsmount *mnt, int flags) { return 0; } static inline void security_sb_umount_close (struct vfsmount *mnt) { } static inline void security_sb_umount_busy (struct vfsmount *mnt) { } static inline void security_sb_post_remount (struct vfsmount *mnt, unsigned long flags, void *data) { } static inline void security_sb_post_mountroot (void) { } static inline void security_sb_post_addmount (struct vfsmount *mnt, struct nameidata *mountpoint_nd) { } static inline int security_sb_pivotroot (struct nameidata *old_nd, struct nameidata *new_nd) { return 0; } static inline void security_sb_post_pivotroot (struct nameidata *old_nd, struct nameidata *new_nd) { } static inline int security_inode_alloc (struct inode *inode) { return 0; } static inline void security_inode_free (struct inode *inode) { } static inline int security_inode_init_security (struct inode *inode, struct inode *dir, char **name, void **value, size_t *len) { return -EOPNOTSUPP; } static inline int security_inode_create (struct inode *dir, struct dentry *dentry, int mode) { return 0; } static inline int security_inode_link (struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) { return 0; } static inline int security_inode_unlink (struct inode *dir, struct dentry *dentry) { return 0; } static inline int security_inode_symlink (struct inode *dir, struct dentry *dentry, const char *old_name) { return 0; } static inline int security_inode_mkdir (struct inode *dir, struct dentry *dentry, int mode) { return 0; } static inline int security_inode_rmdir (struct inode *dir, struct dentry *dentry) { return 0; } static inline int security_inode_mknod (struct inode *dir, struct dentry *dentry, int mode, dev_t dev) { return 0; } static inline int security_inode_rename (struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { return 0; } static inline int security_inode_readlink (struct dentry *dentry) { return 0; } static inline int security_inode_follow_link (struct dentry *dentry, struct nameidata *nd) { return 0; } static inline int security_inode_permission (struct inode *inode, int mask, struct nameidata *nd) { return 0; } static inline int security_inode_setattr (struct dentry *dentry, struct iattr *attr) { return 0; } static inline int security_inode_getattr (struct vfsmount *mnt, struct dentry *dentry) { return 0; } static inline void security_inode_delete (struct inode *inode) { } static inline int security_inode_setxattr (struct dentry *dentry, char *name, void *value, size_t size, int flags) { return cap_inode_setxattr(dentry, name, value, size, flags); } static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, void *value, size_t size, int flags) { } static inline int security_inode_getxattr (struct dentry *dentry, char *name) { return 0; } static inline int security_inode_listxattr (struct dentry *dentry) { return 0; } static inline int security_inode_removexattr (struct dentry *dentry, char *name) { return cap_inode_removexattr(dentry, name); } static inline const char *security_inode_xattr_getsuffix (void) { return NULL ; } static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) { return -EOPNOTSUPP; } static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) { return -EOPNOTSUPP; } static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) { return 0; } static inline int security_file_permission (struct file *file, int mask) { return 0; } static inline int security_file_alloc (struct file *file) { return 0; } static inline void security_file_free (struct file *file) { } static inline int security_file_ioctl (struct file *file, unsigned int cmd, unsigned long arg) { return 0; } static inline int security_file_mmap (struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags) { return 0; } static inline int security_file_mprotect (struct vm_area_struct *vma, unsigned long reqprot, unsigned long prot) { return 0; } static inline int security_file_lock (struct file *file, unsigned int cmd) { return 0; } static inline int security_file_fcntl (struct file *file, unsigned int cmd, unsigned long arg) { return 0; } static inline int security_file_set_fowner (struct file *file) { return 0; } static inline int security_file_send_sigiotask (struct task_struct *tsk, struct fown_struct *fown, int sig) { return 0; } static inline int security_file_receive (struct file *file) { return 0; } static inline int security_task_create (unsigned long clone_flags) { return 0; } static inline int security_task_alloc (struct task_struct *p) { return 0; } static inline void security_task_free (struct task_struct *p) { } static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, int flags) { return 0; } static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags) { return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags); } static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, int flags) { return 0; } static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) { return 0; } static inline int security_task_getpgid (struct task_struct *p) { return 0; } static inline int security_task_getsid (struct task_struct *p) { return 0; } static inline void security_task_getsecid (struct task_struct *p, u32 *secid) { } static inline int security_task_setgroups (struct group_info *group_info) { return 0; } static inline int security_task_setnice (struct task_struct *p, int nice) { return 0; } static inline int security_task_setioprio (struct task_struct *p, int ioprio) { return 0; } static inline int security_task_getioprio (struct task_struct *p) { return 0; } static inline int security_task_setrlimit (unsigned int resource, struct rlimit *new_rlim) { return 0; } static inline int security_task_setscheduler (struct task_struct *p, int policy, struct sched_param *lp) { return 0; } static inline int security_task_getscheduler (struct task_struct *p) { return 0; } static inline int security_task_movememory (struct task_struct *p) { return 0; } static inline int security_task_kill (struct task_struct *p, struct siginfo *info, int sig, u32 secid) { return 0; } static inline int security_task_wait (struct task_struct *p) { return 0; } static inline int security_task_prctl (int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { return 0; } static inline void security_task_reparent_to_init (struct task_struct *p) { cap_task_reparent_to_init (p); } static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) { } static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, short flag) { return 0; } static inline int security_msg_msg_alloc (struct msg_msg * msg) { return 0; } static inline void security_msg_msg_free (struct msg_msg * msg) { } static inline int security_msg_queue_alloc (struct msg_queue *msq) { return 0; } static inline void security_msg_queue_free (struct msg_queue *msq) { } static inline int security_msg_queue_associate (struct msg_queue * msq, int msqflg) { return 0; } static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) { return 0; } static inline int security_msg_queue_msgsnd (struct msg_queue * msq, struct msg_msg * msg, int msqflg) { return 0; } static inline int security_msg_queue_msgrcv (struct msg_queue * msq, struct msg_msg * msg, struct task_struct * target, long type, int mode) { return 0; } static inline int security_shm_alloc (struct shmid_kernel *shp) { return 0; } static inline void security_shm_free (struct shmid_kernel *shp) { } static inline int security_shm_associate (struct shmid_kernel * shp, int shmflg) { return 0; } static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) { return 0; } static inline int security_shm_shmat (struct shmid_kernel * shp, char __user *shmaddr, int shmflg) { return 0; } static inline int security_sem_alloc (struct sem_array *sma) { return 0; } static inline void security_sem_free (struct sem_array *sma) { } static inline int security_sem_associate (struct sem_array * sma, int semflg) { return 0; } static inline int security_sem_semctl (struct sem_array * sma, int cmd) { return 0; } static inline int security_sem_semop (struct sem_array * sma, struct sembuf * sops, unsigned nsops, int alter) { return 0; } static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) { } static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) { return -EINVAL; } static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) { return -EINVAL; } static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb) { return cap_netlink_send (sk, skb); } static inline int security_netlink_recv (struct sk_buff *skb, int cap) { return cap_netlink_recv (skb, cap); } static inline struct dentry *securityfs_create_dir(const char *name, struct dentry *parent) { return ERR_PTR(-ENODEV); } static inline struct dentry *securityfs_create_file(const char *name, mode_t mode, struct dentry *parent, void *data, struct file_operations *fops) { return ERR_PTR(-ENODEV); } static inline void securityfs_remove(struct dentry *dentry) { } static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) { return -EOPNOTSUPP; } static inline void security_release_secctx(char *secdata, u32 seclen) { } #endif /* CONFIG_SECURITY */ #ifdef CONFIG_SECURITY_NETWORK static inline int security_unix_stream_connect(struct socket * sock, struct socket * other, struct sock * newsk) { return security_ops->unix_stream_connect(sock, other, newsk); } static inline int security_unix_may_send(struct socket * sock, struct socket * other) { return security_ops->unix_may_send(sock, other); } static inline int security_socket_create (int family, int type, int protocol, int kern) { return security_ops->socket_create(family, type, protocol, kern); } static inline void security_socket_post_create(struct socket * sock, int family, int type, int protocol, int kern) { security_ops->socket_post_create(sock, family, type, protocol, kern); } static inline int security_socket_bind(struct socket * sock, struct sockaddr * address, int addrlen) { return security_ops->socket_bind(sock, address, addrlen); } static inline int security_socket_connect(struct socket * sock, struct sockaddr * address, int addrlen) { return security_ops->socket_connect(sock, address, addrlen); } static inline int security_socket_listen(struct socket * sock, int backlog) { return security_ops->socket_listen(sock, backlog); } static inline int security_socket_accept(struct socket * sock, struct socket * newsock) { return security_ops->socket_accept(sock, newsock); } static inline void security_socket_post_accept(struct socket * sock, struct socket * newsock) { security_ops->socket_post_accept(sock, newsock); } static inline int security_socket_sendmsg(struct socket * sock, struct msghdr * msg, int size) { return security_ops->socket_sendmsg(sock, msg, size); } static inline int security_socket_recvmsg(struct socket * sock, struct msghdr * msg, int size, int flags) { return security_ops->socket_recvmsg(sock, msg, size, flags); } static inline int security_socket_getsockname(struct socket * sock) { return security_ops->socket_getsockname(sock); } static inline int security_socket_getpeername(struct socket * sock) { return security_ops->socket_getpeername(sock); } static inline int security_socket_getsockopt(struct socket * sock, int level, int optname) { return security_ops->socket_getsockopt(sock, level, optname); } static inline int security_socket_setsockopt(struct socket * sock, int level, int optname) { return security_ops->socket_setsockopt(sock, level, optname); } static inline int security_socket_shutdown(struct socket * sock, int how) { return security_ops->socket_shutdown(sock, how); } static inline int security_sock_rcv_skb (struct sock * sk, struct sk_buff * skb) { return security_ops->socket_sock_rcv_skb (sk, skb); } static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, int __user *optlen, unsigned len) { return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); } static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) { return security_ops->socket_getpeersec_dgram(sock, skb, secid); } static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) { return security_ops->sk_alloc_security(sk, family, priority); } static inline void security_sk_free(struct sock *sk) { return security_ops->sk_free_security(sk); } static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) { return security_ops->sk_clone_security(sk, newsk); } static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) { security_ops->sk_getsecid(sk, &fl->secid); } static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) { security_ops->req_classify_flow(req, fl); } static inline void security_sock_graft(struct sock* sk, struct socket *parent) { security_ops->sock_graft(sk, parent); } static inline int security_inet_conn_request(struct sock *sk, struct sk_buff *skb, struct request_sock *req) { return security_ops->inet_conn_request(sk, skb, req); } static inline void security_inet_csk_clone(struct sock *newsk, const struct request_sock *req) { security_ops->inet_csk_clone(newsk, req); } #else /* CONFIG_SECURITY_NETWORK */ static inline int security_unix_stream_connect(struct socket * sock, struct socket * other, struct sock * newsk) { return 0; } static inline int security_unix_may_send(struct socket * sock, struct socket * other) { return 0; } static inline int security_socket_create (int family, int type, int protocol, int kern) { return 0; } static inline void security_socket_post_create(struct socket * sock, int family, int type, int protocol, int kern) { } static inline int security_socket_bind(struct socket * sock, struct sockaddr * address, int addrlen) { return 0; } static inline int security_socket_connect(struct socket * sock, struct sockaddr * address, int addrlen) { return 0; } static inline int security_socket_listen(struct socket * sock, int backlog) { return 0; } static inline int security_socket_accept(struct socket * sock, struct socket * newsock) { return 0; } static inline void security_socket_post_accept(struct socket * sock, struct socket * newsock) { } static inline int security_socket_sendmsg(struct socket * sock, struct msghdr * msg, int size) { return 0; } static inline int security_socket_recvmsg(struct socket * sock, struct msghdr * msg, int size, int flags) { return 0; } static inline int security_socket_getsockname(struct socket * sock) { return 0; } static inline int security_socket_getpeername(struct socket * sock) { return 0; } static inline int security_socket_getsockopt(struct socket * sock, int level, int optname) { return 0; } static inline int security_socket_setsockopt(struct socket * sock, int level, int optname) { return 0; } static inline int security_socket_shutdown(struct socket * sock, int how) { return 0; } static inline int security_sock_rcv_skb (struct sock * sk, struct sk_buff * skb) { return 0; } static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, int __user *optlen, unsigned len) { return -ENOPROTOOPT; } static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) { return -ENOPROTOOPT; } static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) { return 0; } static inline void security_sk_free(struct sock *sk) { } static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) { } static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) { } static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) { } static inline void security_sock_graft(struct sock* sk, struct socket *parent) { } static inline int security_inet_conn_request(struct sock *sk, struct sk_buff *skb, struct request_sock *req) { return 0; } static inline void security_inet_csk_clone(struct sock *newsk, const struct request_sock *req) { } #endif /* CONFIG_SECURITY_NETWORK */ #ifdef CONFIG_SECURITY_NETWORK_XFRM static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) { return security_ops->xfrm_policy_alloc_security(xp, sec_ctx, NULL); } static inline int security_xfrm_sock_policy_alloc(struct xfrm_policy *xp, struct sock *sk) { return security_ops->xfrm_policy_alloc_security(xp, NULL, sk); } static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) { return security_ops->xfrm_policy_clone_security(old, new); } static inline void security_xfrm_policy_free(struct xfrm_policy *xp) { security_ops->xfrm_policy_free_security(xp); } static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) { return security_ops->xfrm_policy_delete_security(xp); } static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) { return security_ops->xfrm_state_alloc_security(x, sec_ctx, NULL, 0); } static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, struct xfrm_sec_ctx *polsec, u32 secid) { if (!polsec) return 0; return security_ops->xfrm_state_alloc_security(x, NULL, polsec, secid); } static inline int security_xfrm_state_delete(struct xfrm_state *x) { return security_ops->xfrm_state_delete_security(x); } static inline void security_xfrm_state_free(struct xfrm_state *x) { security_ops->xfrm_state_free_security(x); } static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) { return security_ops->xfrm_policy_lookup(xp, fl_secid, dir); } static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, struct xfrm_policy *xp, struct flowi *fl) { return security_ops->xfrm_state_pol_flow_match(x, xp, fl); } static inline int security_xfrm_flow_state_match(struct flowi *fl, struct xfrm_state *xfrm) { return security_ops->xfrm_flow_state_match(fl, xfrm); } static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) { return security_ops->xfrm_decode_session(skb, secid, 1); } static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) { int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); BUG_ON(rc); } #else /* CONFIG_SECURITY_NETWORK_XFRM */ static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) { return 0; } static inline int security_xfrm_sock_policy_alloc(struct xfrm_policy *xp, struct sock *sk) { return 0; } static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) { return 0; } static inline void security_xfrm_policy_free(struct xfrm_policy *xp) { } static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) { return 0; } static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) { return 0; } static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, struct xfrm_sec_ctx *polsec, u32 secid) { return 0; } static inline void security_xfrm_state_free(struct xfrm_state *x) { } static inline int security_xfrm_state_delete(struct xfrm_state *x) { return 0; } static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) { return 0; } static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, struct xfrm_policy *xp, struct flowi *fl) { return 1; } static inline int security_xfrm_flow_state_match(struct flowi *fl, struct xfrm_state *xfrm) { return 1; } static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) { return 0; } static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) { } #endif /* CONFIG_SECURITY_NETWORK_XFRM */ #ifdef CONFIG_KEYS #ifdef CONFIG_SECURITY static inline int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) { return security_ops->key_alloc(key, tsk, flags); } static inline void security_key_free(struct key *key) { security_ops->key_free(key); } static inline int security_key_permission(key_ref_t key_ref, struct task_struct *context, key_perm_t perm) { return security_ops->key_permission(key_ref, context, perm); } #else static inline int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) { return 0; } static inline void security_key_free(struct key *key) { } static inline int security_key_permission(key_ref_t key_ref, struct task_struct *context, key_perm_t perm) { return 0; } #endif #endif /* CONFIG_KEYS */ #endif /* ! __LINUX_SECURITY_H */