/* * Copyright © 1999-2010 David Woodhouse et al. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifndef __MTD_MTD_H__ #define __MTD_MTD_H__ #include #include #include #include #include #include #define MTD_CHAR_MAJOR 90 #define MTD_BLOCK_MAJOR 31 #define MTD_ERASE_PENDING 0x01 #define MTD_ERASING 0x02 #define MTD_ERASE_SUSPEND 0x04 #define MTD_ERASE_DONE 0x08 #define MTD_ERASE_FAILED 0x10 #define MTD_FAIL_ADDR_UNKNOWN -1LL /* * If the erase fails, fail_addr might indicate exactly which block failed. If * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level * or was not specific to any particular block. */ struct erase_info { struct mtd_info *mtd; uint64_t addr; uint64_t len; uint64_t fail_addr; u_long time; u_long retries; unsigned dev; unsigned cell; void (*callback) (struct erase_info *self); u_long priv; u_char state; struct erase_info *next; }; struct mtd_erase_region_info { uint64_t offset; /* At which this region starts, from the beginning of the MTD */ uint32_t erasesize; /* For this region */ uint32_t numblocks; /* Number of blocks of erasesize in this region */ unsigned long *lockmap; /* If keeping bitmap of locks */ }; /** * struct mtd_oob_ops - oob operation operands * @mode: operation mode * * @len: number of data bytes to write/read * * @retlen: number of data bytes written/read * * @ooblen: number of oob bytes to write/read * @oobretlen: number of oob bytes written/read * @ooboffs: offset of oob data in the oob area (only relevant when * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) * @datbuf: data buffer - if NULL only oob data are read/written * @oobbuf: oob data buffer * * Note, it is allowed to read more than one OOB area at one go, but not write. * The interface assumes that the OOB write requests program only one page's * OOB area. */ struct mtd_oob_ops { unsigned int mode; size_t len; size_t retlen; size_t ooblen; size_t oobretlen; uint32_t ooboffs; uint8_t *datbuf; uint8_t *oobbuf; }; #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 448 /* * Internal ECC layout control structure. For historical reasons, there is a * similar, smaller struct nand_ecclayout_user (in mtd-abi.h) that is retained * for export to user-space via the ECCGETLAYOUT ioctl. * nand_ecclayout should be expandable in the future simply by the above macros. */ struct nand_ecclayout { __u32 eccbytes; __u32 eccpos[MTD_MAX_ECCPOS_ENTRIES_LARGE]; __u32 oobavail; struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES_LARGE]; }; struct module; /* only needed for owner field in mtd_info */ struct mtd_info { u_char type; uint32_t flags; uint64_t size; // Total size of the MTD /* "Major" erase size for the device. Naïve users may take this * to be the only erase size available, or may use the more detailed * information below if they desire */ uint32_t erasesize; /* Minimal writable flash unit size. In case of NOR flash it is 1 (even * though individual bits can be cleared), in case of NAND flash it is * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR * it is of ECC block size, etc. It is illegal to have writesize = 0. * Any driver registering a struct mtd_info must ensure a writesize of * 1 or larger. */ uint32_t writesize; /* * Size of the write buffer used by the MTD. MTD devices having a write * buffer can write multiple writesize chunks at a time. E.g. while * writing 4 * writesize bytes to a device with 2 * writesize bytes * buffer the MTD driver can (but doesn't have to) do 2 writesize * operations, but not 4. Currently, all NANDs have writebufsize * equivalent to writesize (NAND page size). Some NOR flashes do have * writebufsize greater than writesize. */ uint32_t writebufsize; uint32_t oobsize; // Amount of OOB data per block (e.g. 16) uint32_t oobavail; // Available OOB bytes per block /* * If erasesize is a power of 2 then the shift is stored in * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. */ unsigned int erasesize_shift; unsigned int writesize_shift; /* Masks based on erasesize_shift and writesize_shift */ unsigned int erasesize_mask; unsigned int writesize_mask; // Kernel-only stuff starts here. const char *name; int index; /* ECC layout structure pointer - read only! */ struct nand_ecclayout *ecclayout; /* Data for variable erase regions. If numeraseregions is zero, * it means that the whole device has erasesize as given above. */ int numeraseregions; struct mtd_erase_region_info *eraseregions; /* * Do not call via these pointers, use corresponding mtd_*() * wrappers instead. */ int (*erase) (struct mtd_info *mtd, struct erase_info *instr); int (*point) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys); void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len); unsigned long (*get_unmapped_area) (struct mtd_info *mtd, unsigned long len, unsigned long offset, unsigned long flags); int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); int (*read_oob) (struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); int (*write_oob) (struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len); int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len); int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, u_char *buf); int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len); int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen); void (*sync) (struct mtd_info *mtd); int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); int (*is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); int (*block_isbad) (struct mtd_info *mtd, loff_t ofs); int (*block_markbad) (struct mtd_info *mtd, loff_t ofs); int (*suspend) (struct mtd_info *mtd); void (*resume) (struct mtd_info *mtd); /* * If the driver is something smart, like UBI, it may need to maintain * its own reference counting. The below functions are only for driver. */ int (*get_device) (struct mtd_info *mtd); void (*put_device) (struct mtd_info *mtd); /* Backing device capabilities for this device * - provides mmap capabilities */ struct backing_dev_info *backing_dev_info; struct notifier_block reboot_notifier; /* default mode before reboot */ /* ECC status information */ struct mtd_ecc_stats ecc_stats; /* Subpage shift (NAND) */ int subpage_sft; void *priv; struct module *owner; struct device dev; int usecount; }; /* * Erase is an asynchronous operation. Device drivers are supposed * to call instr->callback() whenever the operation completes, even * if it completes with a failure. * Callers are supposed to pass a callback function and wait for it * to be called before writing to the block. */ static inline int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) { return mtd->erase(mtd, instr); } /* * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. */ static inline int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys) { *retlen = 0; if (!mtd->point) return -EOPNOTSUPP; return mtd->point(mtd, from, len, retlen, virt, phys); } /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ static inline void mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { return mtd->unpoint(mtd, from, len); } /* * Allow NOMMU mmap() to directly map the device (if not NULL) * - return the address to which the offset maps * - return -ENOSYS to indicate refusal to do the mapping */ static inline unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, unsigned long offset, unsigned long flags) { if (!mtd->get_unmapped_area) return -EOPNOTSUPP; return mtd->get_unmapped_area(mtd, len, offset, flags); } static inline int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { return mtd->read(mtd, from, len, retlen, buf); } static inline int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { *retlen = 0; if (!mtd->write) return -EROFS; return mtd->write(mtd, to, len, retlen, buf); } /* * In blackbox flight recorder like scenarios we want to make successful writes * in interrupt context. panic_write() is only intended to be called when its * known the kernel is about to panic and we need the write to succeed. Since * the kernel is not going to be running for much longer, this function can * break locks and delay to ensure the write succeeds (but not sleep). */ static inline int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { *retlen = 0; if (!mtd->panic_write) return -EOPNOTSUPP; return mtd->panic_write(mtd, to, len, retlen, buf); } static inline int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { ops->retlen = ops->oobretlen = 0; if (!mtd->read_oob) return -EOPNOTSUPP; return mtd->read_oob(mtd, from, ops); } static inline int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { ops->retlen = ops->oobretlen = 0; if (!mtd->write_oob) return -EOPNOTSUPP; return mtd->write_oob(mtd, to, ops); } /* * Method to access the protection register area, present in some flash * devices. The user data is one time programmable but the factory data is read * only. */ static inline int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, size_t len) { if (!mtd->get_fact_prot_info) return -EOPNOTSUPP; return mtd->get_fact_prot_info(mtd, buf, len); } static inline int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { *retlen = 0; if (!mtd->read_fact_prot_reg) return -EOPNOTSUPP; return mtd->read_fact_prot_reg(mtd, from, len, retlen, buf); } static inline int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf, size_t len) { if (!mtd->get_user_prot_info) return -EOPNOTSUPP; return mtd->get_user_prot_info(mtd, buf, len); } static inline int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { *retlen = 0; if (!mtd->read_user_prot_reg) return -EOPNOTSUPP; return mtd->read_user_prot_reg(mtd, from, len, retlen, buf); } static inline int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, u_char *buf) { *retlen = 0; if (!mtd->write_user_prot_reg) return -EOPNOTSUPP; return mtd->write_user_prot_reg(mtd, to, len, retlen, buf); } static inline int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) { if (!mtd->lock_user_prot_reg) return -EOPNOTSUPP; return mtd->lock_user_prot_reg(mtd, from, len); } int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen); static inline void mtd_sync(struct mtd_info *mtd) { if (mtd->sync) mtd->sync(mtd); } /* Chip-supported device locking */ static inline int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { if (!mtd->lock) return -EOPNOTSUPP; return mtd->lock(mtd, ofs, len); } static inline int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { if (!mtd->unlock) return -EOPNOTSUPP; return mtd->unlock(mtd, ofs, len); } static inline int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) { if (!mtd->is_locked) return -EOPNOTSUPP; return mtd->is_locked(mtd, ofs, len); } static inline int mtd_suspend(struct mtd_info *mtd) { if (!mtd->suspend) return -EOPNOTSUPP; return mtd->suspend(mtd); } static inline void mtd_resume(struct mtd_info *mtd) { if (mtd->resume) mtd->resume(mtd); } static inline int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) { if (!mtd->block_isbad) return -EOPNOTSUPP; return mtd->block_isbad(mtd, ofs); } static inline int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) { return mtd->block_markbad(mtd, ofs); } static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) { if (mtd->erasesize_shift) return sz >> mtd->erasesize_shift; do_div(sz, mtd->erasesize); return sz; } static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) { if (mtd->erasesize_shift) return sz & mtd->erasesize_mask; return do_div(sz, mtd->erasesize); } static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) { if (mtd->writesize_shift) return sz >> mtd->writesize_shift; do_div(sz, mtd->writesize); return sz; } static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) { if (mtd->writesize_shift) return sz & mtd->writesize_mask; return do_div(sz, mtd->writesize); } static inline int mtd_has_oob(const struct mtd_info *mtd) { return mtd->read_oob && mtd->write_oob; } static inline int mtd_can_have_bb(const struct mtd_info *mtd) { return !!mtd->block_isbad; } /* Kernel-side ioctl definitions */ struct mtd_partition; struct mtd_part_parser_data; extern int mtd_device_parse_register(struct mtd_info *mtd, const char **part_probe_types, struct mtd_part_parser_data *parser_data, const struct mtd_partition *defparts, int defnr_parts); #define mtd_device_register(master, parts, nr_parts) \ mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) extern int mtd_device_unregister(struct mtd_info *master); extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); extern int __get_mtd_device(struct mtd_info *mtd); extern void __put_mtd_device(struct mtd_info *mtd); extern struct mtd_info *get_mtd_device_nm(const char *name); extern void put_mtd_device(struct mtd_info *mtd); struct mtd_notifier { void (*add)(struct mtd_info *mtd); void (*remove)(struct mtd_info *mtd); struct list_head list; }; extern void register_mtd_user (struct mtd_notifier *new); extern int unregister_mtd_user (struct mtd_notifier *old); void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); void mtd_erase_callback(struct erase_info *instr); static inline int mtd_is_bitflip(int err) { return err == -EUCLEAN; } static inline int mtd_is_eccerr(int err) { return err == -EBADMSG; } static inline int mtd_is_bitflip_or_eccerr(int err) { return mtd_is_bitflip(err) || mtd_is_eccerr(err); } #endif /* __MTD_MTD_H__ */