/* * * Copyright (c) 2011, Microsoft Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. * * Authors: * Haiyang Zhang * Hank Janssen * K. Y. Srinivasan * */ #ifndef _HYPERV_H #define _HYPERV_H #include /* * An implementation of HyperV key value pair (KVP) functionality for Linux. * * * Copyright (C) 2010, Novell, Inc. * Author : K. Y. Srinivasan * */ /* * Maximum value size - used for both key names and value data, and includes * any applicable NULL terminators. * * Note: This limit is somewhat arbitrary, but falls easily within what is * supported for all native guests (back to Win 2000) and what is reasonable * for the IC KVP exchange functionality. Note that Windows Me/98/95 are * limited to 255 character key names. * * MSDN recommends not storing data values larger than 2048 bytes in the * registry. * * Note: This value is used in defining the KVP exchange message - this value * cannot be modified without affecting the message size and compatibility. */ /* * bytes, including any null terminators */ #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048) /* * Maximum key size - the registry limit for the length of an entry name * is 256 characters, including the null terminator */ #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512) /* * In Linux, we implement the KVP functionality in two components: * 1) The kernel component which is packaged as part of the hv_utils driver * is responsible for communicating with the host and responsible for * implementing the host/guest protocol. 2) A user level daemon that is * responsible for data gathering. * * Host/Guest Protocol: The host iterates over an index and expects the guest * to assign a key name to the index and also return the value corresponding to * the key. The host will have atmost one KVP transaction outstanding at any * given point in time. The host side iteration stops when the guest returns * an error. Microsoft has specified the following mapping of key names to * host specified index: * * Index Key Name * 0 FullyQualifiedDomainName * 1 IntegrationServicesVersion * 2 NetworkAddressIPv4 * 3 NetworkAddressIPv6 * 4 OSBuildNumber * 5 OSName * 6 OSMajorVersion * 7 OSMinorVersion * 8 OSVersion * 9 ProcessorArchitecture * * The Windows host expects the Key Name and Key Value to be encoded in utf16. * * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the * data gathering functionality in a user mode daemon. The user level daemon * is also responsible for binding the key name to the index as well. The * kernel and user-level daemon communicate using a connector channel. * * The user mode component first registers with the * the kernel component. Subsequently, the kernel component requests, data * for the specified keys. In response to this message the user mode component * fills in the value corresponding to the specified key. We overload the * sequence field in the cn_msg header to define our KVP message types. * * * The kernel component simply acts as a conduit for communication between the * Windows host and the user-level daemon. The kernel component passes up the * index received from the Host to the user-level daemon. If the index is * valid (supported), the corresponding key as well as its * value (both are strings) is returned. If the index is invalid * (not supported), a NULL key string is returned. */ /* * Registry value types. */ #define REG_SZ 1 #define REG_U32 4 #define REG_U64 8 /* * As we look at expanding the KVP functionality to include * IP injection functionality, we need to maintain binary * compatibility with older daemons. * * The KVP opcodes are defined by the host and it was unfortunate * that I chose to treat the registration operation as part of the * KVP operations defined by the host. * Here is the level of compatibility * (between the user level daemon and the kernel KVP driver) that we * will implement: * * An older daemon will always be supported on a newer driver. * A given user level daemon will require a minimal version of the * kernel driver. * If we cannot handle the version differences, we will fail gracefully * (this can happen when we have a user level daemon that is more * advanced than the KVP driver. * * We will use values used in this handshake for determining if we have * workable user level daemon and the kernel driver. We begin by taking the * registration opcode out of the KVP opcode namespace. We will however, * maintain compatibility with the existing user-level daemon code. */ /* * Daemon code not supporting IP injection (legacy daemon). */ #define KVP_OP_REGISTER 4 /* * Daemon code supporting IP injection. * The KVP opcode field is used to communicate the * registration information; so define a namespace that * will be distinct from the host defined KVP opcode. */ #define KVP_OP_REGISTER1 100 enum hv_kvp_exchg_op { KVP_OP_GET = 0, KVP_OP_SET, KVP_OP_DELETE, KVP_OP_ENUMERATE, KVP_OP_GET_IP_INFO, KVP_OP_SET_IP_INFO, KVP_OP_COUNT /* Number of operations, must be last. */ }; enum hv_kvp_exchg_pool { KVP_POOL_EXTERNAL = 0, KVP_POOL_GUEST, KVP_POOL_AUTO, KVP_POOL_AUTO_EXTERNAL, KVP_POOL_AUTO_INTERNAL, KVP_POOL_COUNT /* Number of pools, must be last. */ }; /* * Some Hyper-V status codes. */ #define HV_S_OK 0x00000000 #define HV_E_FAIL 0x80004005 #define HV_S_CONT 0x80070103 #define HV_ERROR_NOT_SUPPORTED 0x80070032 #define HV_ERROR_MACHINE_LOCKED 0x800704F7 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F #define HV_INVALIDARG 0x80070057 #define HV_GUID_NOTFOUND 0x80041002 #define ADDR_FAMILY_NONE 0x00 #define ADDR_FAMILY_IPV4 0x01 #define ADDR_FAMILY_IPV6 0x02 #define MAX_ADAPTER_ID_SIZE 128 #define MAX_IP_ADDR_SIZE 1024 #define MAX_GATEWAY_SIZE 512 struct hv_kvp_ipaddr_value { __u16 adapter_id[MAX_ADAPTER_ID_SIZE]; __u8 addr_family; __u8 dhcp_enabled; __u16 ip_addr[MAX_IP_ADDR_SIZE]; __u16 sub_net[MAX_IP_ADDR_SIZE]; __u16 gate_way[MAX_GATEWAY_SIZE]; __u16 dns_addr[MAX_IP_ADDR_SIZE]; } __attribute__((packed)); struct hv_kvp_hdr { __u8 operation; __u8 pool; __u16 pad; } __attribute__((packed)); struct hv_kvp_exchg_msg_value { __u32 value_type; __u32 key_size; __u32 value_size; __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; union { __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE]; __u32 value_u32; __u64 value_u64; }; } __attribute__((packed)); struct hv_kvp_msg_enumerate { __u32 index; struct hv_kvp_exchg_msg_value data; } __attribute__((packed)); struct hv_kvp_msg_get { struct hv_kvp_exchg_msg_value data; }; struct hv_kvp_msg_set { struct hv_kvp_exchg_msg_value data; }; struct hv_kvp_msg_delete { __u32 key_size; __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; }; struct hv_kvp_register { __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; }; struct hv_kvp_msg { union { struct hv_kvp_hdr kvp_hdr; int error; }; union { struct hv_kvp_msg_get kvp_get; struct hv_kvp_msg_set kvp_set; struct hv_kvp_msg_delete kvp_delete; struct hv_kvp_msg_enumerate kvp_enum_data; struct hv_kvp_ipaddr_value kvp_ip_val; struct hv_kvp_register kvp_register; } body; } __attribute__((packed)); struct hv_kvp_ip_msg { __u8 operation; __u8 pool; struct hv_kvp_ipaddr_value kvp_ip_val; } __attribute__((packed)); #ifdef __KERNEL__ #include #include #include #include #include #include #include #include #define MAX_PAGE_BUFFER_COUNT 19 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ #pragma pack(push, 1) /* Single-page buffer */ struct hv_page_buffer { u32 len; u32 offset; u64 pfn; }; /* Multiple-page buffer */ struct hv_multipage_buffer { /* Length and Offset determines the # of pfns in the array */ u32 len; u32 offset; u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; }; /* 0x18 includes the proprietary packet header */ #define MAX_PAGE_BUFFER_PACKET (0x18 + \ (sizeof(struct hv_page_buffer) * \ MAX_PAGE_BUFFER_COUNT)) #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ sizeof(struct hv_multipage_buffer)) #pragma pack(pop) struct hv_ring_buffer { /* Offset in bytes from the start of ring data below */ u32 write_index; /* Offset in bytes from the start of ring data below */ u32 read_index; u32 interrupt_mask; /* * Win8 uses some of the reserved bits to implement * interrupt driven flow management. On the send side * we can request that the receiver interrupt the sender * when the ring transitions from being full to being able * to handle a message of size "pending_send_sz". * * Add necessary state for this enhancement. */ u32 pending_send_sz; u32 reserved1[12]; union { struct { u32 feat_pending_send_sz:1; }; u32 value; } feature_bits; /* Pad it to PAGE_SIZE so that data starts on page boundary */ u8 reserved2[4028]; /* * Ring data starts here + RingDataStartOffset * !!! DO NOT place any fields below this !!! */ u8 buffer[0]; } __packed; struct hv_ring_buffer_info { struct hv_ring_buffer *ring_buffer; u32 ring_size; /* Include the shared header */ spinlock_t ring_lock; u32 ring_datasize; /* < ring_size */ u32 ring_data_startoffset; }; struct hv_ring_buffer_debug_info { u32 current_interrupt_mask; u32 current_read_index; u32 current_write_index; u32 bytes_avail_toread; u32 bytes_avail_towrite; }; /* * * hv_get_ringbuffer_availbytes() * * Get number of bytes available to read and to write to * for the specified ring buffer */ static inline void hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi, u32 *read, u32 *write) { u32 read_loc, write_loc, dsize; smp_read_barrier_depends(); /* Capture the read/write indices before they changed */ read_loc = rbi->ring_buffer->read_index; write_loc = rbi->ring_buffer->write_index; dsize = rbi->ring_datasize; *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : read_loc - write_loc; *read = dsize - *write; } /* * We use the same version numbering for all Hyper-V modules. * * Definition of versioning is as follows; * * Major Number Changes for these scenarios; * 1. When a new version of Windows Hyper-V * is released. * 2. A Major change has occurred in the * Linux IC's. * (For example the merge for the first time * into the kernel) Every time the Major Number * changes, the Revision number is reset to 0. * Minor Number Changes when new functionality is added * to the Linux IC's that is not a bug fix. * * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync */ #define HV_DRV_VERSION "3.1" /* * VMBUS version is 32 bit entity broken up into * two 16 bit quantities: major_number. minor_number. * * 0 . 13 (Windows Server 2008) * 1 . 1 (Windows 7) * 2 . 4 (Windows 8) */ #define VERSION_WS2008 ((0 << 16) | (13)) #define VERSION_WIN7 ((1 << 16) | (1)) #define VERSION_WIN8 ((2 << 16) | (4)) #define VERSION_INVAL -1 /* Make maximum size of pipe payload of 16K */ #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) /* Define PipeMode values. */ #define VMBUS_PIPE_TYPE_BYTE 0x00000000 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 /* The size of the user defined data buffer for non-pipe offers. */ #define MAX_USER_DEFINED_BYTES 120 /* The size of the user defined data buffer for pipe offers. */ #define MAX_PIPE_USER_DEFINED_BYTES 116 /* * At the center of the Channel Management library is the Channel Offer. This * struct contains the fundamental information about an offer. */ struct vmbus_channel_offer { uuid_le if_type; uuid_le if_instance; /* * These two fields are not currently used. */ u64 reserved1; u64 reserved2; u16 chn_flags; u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ union { /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ struct { unsigned char user_def[MAX_USER_DEFINED_BYTES]; } std; /* * Pipes: * The following sructure is an integrated pipe protocol, which * is implemented on top of standard user-defined data. Pipe * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own * use. */ struct { u32 pipe_mode; unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; } pipe; } u; /* * The sub_channel_index is defined in win8. */ u16 sub_channel_index; u16 reserved3; } __packed; /* Server Flags */ #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 #define VMBUS_CHANNEL_PARENT_OFFER 0x200 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 struct vmpacket_descriptor { u16 type; u16 offset8; u16 len8; u16 flags; u64 trans_id; } __packed; struct vmpacket_header { u32 prev_pkt_start_offset; struct vmpacket_descriptor descriptor; } __packed; struct vmtransfer_page_range { u32 byte_count; u32 byte_offset; } __packed; struct vmtransfer_page_packet_header { struct vmpacket_descriptor d; u16 xfer_pageset_id; u8 sender_owns_set; u8 reserved; u32 range_cnt; struct vmtransfer_page_range ranges[1]; } __packed; struct vmgpadl_packet_header { struct vmpacket_descriptor d; u32 gpadl; u32 reserved; } __packed; struct vmadd_remove_transfer_page_set { struct vmpacket_descriptor d; u32 gpadl; u16 xfer_pageset_id; u16 reserved; } __packed; /* * This structure defines a range in guest physical space that can be made to * look virtually contiguous. */ struct gpa_range { u32 byte_count; u32 byte_offset; u64 pfn_array[0]; }; /* * This is the format for an Establish Gpadl packet, which contains a handle by * which this GPADL will be known and a set of GPA ranges associated with it. * This can be converted to a MDL by the guest OS. If there are multiple GPA * ranges, then the resulting MDL will be "chained," representing multiple VA * ranges. */ struct vmestablish_gpadl { struct vmpacket_descriptor d; u32 gpadl; u32 range_cnt; struct gpa_range range[1]; } __packed; /* * This is the format for a Teardown Gpadl packet, which indicates that the * GPADL handle in the Establish Gpadl packet will never be referenced again. */ struct vmteardown_gpadl { struct vmpacket_descriptor d; u32 gpadl; u32 reserved; /* for alignment to a 8-byte boundary */ } __packed; /* * This is the format for a GPA-Direct packet, which contains a set of GPA * ranges, in addition to commands and/or data. */ struct vmdata_gpa_direct { struct vmpacket_descriptor d; u32 reserved; u32 range_cnt; struct gpa_range range[1]; } __packed; /* This is the format for a Additional Data Packet. */ struct vmadditional_data { struct vmpacket_descriptor d; u64 total_bytes; u32 offset; u32 byte_cnt; unsigned char data[1]; } __packed; union vmpacket_largest_possible_header { struct vmpacket_descriptor simple_hdr; struct vmtransfer_page_packet_header xfer_page_hdr; struct vmgpadl_packet_header gpadl_hdr; struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; struct vmestablish_gpadl establish_gpadl_hdr; struct vmteardown_gpadl teardown_gpadl_hdr; struct vmdata_gpa_direct data_gpa_direct_hdr; }; #define VMPACKET_DATA_START_ADDRESS(__packet) \ (void *)(((unsigned char *)__packet) + \ ((struct vmpacket_descriptor)__packet)->offset8 * 8) #define VMPACKET_DATA_LENGTH(__packet) \ ((((struct vmpacket_descriptor)__packet)->len8 - \ ((struct vmpacket_descriptor)__packet)->offset8) * 8) #define VMPACKET_TRANSFER_MODE(__packet) \ (((struct IMPACT)__packet)->type) enum vmbus_packet_type { VM_PKT_INVALID = 0x0, VM_PKT_SYNCH = 0x1, VM_PKT_ADD_XFER_PAGESET = 0x2, VM_PKT_RM_XFER_PAGESET = 0x3, VM_PKT_ESTABLISH_GPADL = 0x4, VM_PKT_TEARDOWN_GPADL = 0x5, VM_PKT_DATA_INBAND = 0x6, VM_PKT_DATA_USING_XFER_PAGES = 0x7, VM_PKT_DATA_USING_GPADL = 0x8, VM_PKT_DATA_USING_GPA_DIRECT = 0x9, VM_PKT_CANCEL_REQUEST = 0xa, VM_PKT_COMP = 0xb, VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, VM_PKT_ADDITIONAL_DATA = 0xd }; #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 /* Version 1 messages */ enum vmbus_channel_message_type { CHANNELMSG_INVALID = 0, CHANNELMSG_OFFERCHANNEL = 1, CHANNELMSG_RESCIND_CHANNELOFFER = 2, CHANNELMSG_REQUESTOFFERS = 3, CHANNELMSG_ALLOFFERS_DELIVERED = 4, CHANNELMSG_OPENCHANNEL = 5, CHANNELMSG_OPENCHANNEL_RESULT = 6, CHANNELMSG_CLOSECHANNEL = 7, CHANNELMSG_GPADL_HEADER = 8, CHANNELMSG_GPADL_BODY = 9, CHANNELMSG_GPADL_CREATED = 10, CHANNELMSG_GPADL_TEARDOWN = 11, CHANNELMSG_GPADL_TORNDOWN = 12, CHANNELMSG_RELID_RELEASED = 13, CHANNELMSG_INITIATE_CONTACT = 14, CHANNELMSG_VERSION_RESPONSE = 15, CHANNELMSG_UNLOAD = 16, #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD CHANNELMSG_VIEWRANGE_ADD = 17, CHANNELMSG_VIEWRANGE_REMOVE = 18, #endif CHANNELMSG_COUNT }; struct vmbus_channel_message_header { enum vmbus_channel_message_type msgtype; u32 padding; } __packed; /* Query VMBus Version parameters */ struct vmbus_channel_query_vmbus_version { struct vmbus_channel_message_header header; u32 version; } __packed; /* VMBus Version Supported parameters */ struct vmbus_channel_version_supported { struct vmbus_channel_message_header header; u8 version_supported; } __packed; /* Offer Channel parameters */ struct vmbus_channel_offer_channel { struct vmbus_channel_message_header header; struct vmbus_channel_offer offer; u32 child_relid; u8 monitorid; /* * win7 and beyond splits this field into a bit field. */ u8 monitor_allocated:1; u8 reserved:7; /* * These are new fields added in win7 and later. * Do not access these fields without checking the * negotiated protocol. * * If "is_dedicated_interrupt" is set, we must not set the * associated bit in the channel bitmap while sending the * interrupt to the host. * * connection_id is to be used in signaling the host. */ u16 is_dedicated_interrupt:1; u16 reserved1:15; u32 connection_id; } __packed; /* Rescind Offer parameters */ struct vmbus_channel_rescind_offer { struct vmbus_channel_message_header header; u32 child_relid; } __packed; /* * Request Offer -- no parameters, SynIC message contains the partition ID * Set Snoop -- no parameters, SynIC message contains the partition ID * Clear Snoop -- no parameters, SynIC message contains the partition ID * All Offers Delivered -- no parameters, SynIC message contains the partition * ID * Flush Client -- no parameters, SynIC message contains the partition ID */ /* Open Channel parameters */ struct vmbus_channel_open_channel { struct vmbus_channel_message_header header; /* Identifies the specific VMBus channel that is being opened. */ u32 child_relid; /* ID making a particular open request at a channel offer unique. */ u32 openid; /* GPADL for the channel's ring buffer. */ u32 ringbuffer_gpadlhandle; /* GPADL for the channel's server context save area. */ u32 server_contextarea_gpadlhandle; /* * The upstream ring buffer begins at offset zero in the memory * described by RingBufferGpadlHandle. The downstream ring buffer * follows it at this offset (in pages). */ u32 downstream_ringbuffer_pageoffset; /* User-specific data to be passed along to the server endpoint. */ unsigned char userdata[MAX_USER_DEFINED_BYTES]; } __packed; /* Open Channel Result parameters */ struct vmbus_channel_open_result { struct vmbus_channel_message_header header; u32 child_relid; u32 openid; u32 status; } __packed; /* Close channel parameters; */ struct vmbus_channel_close_channel { struct vmbus_channel_message_header header; u32 child_relid; } __packed; /* Channel Message GPADL */ #define GPADL_TYPE_RING_BUFFER 1 #define GPADL_TYPE_SERVER_SAVE_AREA 2 #define GPADL_TYPE_TRANSACTION 8 /* * The number of PFNs in a GPADL message is defined by the number of * pages that would be spanned by ByteCount and ByteOffset. If the * implied number of PFNs won't fit in this packet, there will be a * follow-up packet that contains more. */ struct vmbus_channel_gpadl_header { struct vmbus_channel_message_header header; u32 child_relid; u32 gpadl; u16 range_buflen; u16 rangecount; struct gpa_range range[0]; } __packed; /* This is the followup packet that contains more PFNs. */ struct vmbus_channel_gpadl_body { struct vmbus_channel_message_header header; u32 msgnumber; u32 gpadl; u64 pfn[0]; } __packed; struct vmbus_channel_gpadl_created { struct vmbus_channel_message_header header; u32 child_relid; u32 gpadl; u32 creation_status; } __packed; struct vmbus_channel_gpadl_teardown { struct vmbus_channel_message_header header; u32 child_relid; u32 gpadl; } __packed; struct vmbus_channel_gpadl_torndown { struct vmbus_channel_message_header header; u32 gpadl; } __packed; #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD struct vmbus_channel_view_range_add { struct vmbus_channel_message_header header; PHYSICAL_ADDRESS viewrange_base; u64 viewrange_length; u32 child_relid; } __packed; struct vmbus_channel_view_range_remove { struct vmbus_channel_message_header header; PHYSICAL_ADDRESS viewrange_base; u32 child_relid; } __packed; #endif struct vmbus_channel_relid_released { struct vmbus_channel_message_header header; u32 child_relid; } __packed; struct vmbus_channel_initiate_contact { struct vmbus_channel_message_header header; u32 vmbus_version_requested; u32 padding2; u64 interrupt_page; u64 monitor_page1; u64 monitor_page2; } __packed; struct vmbus_channel_version_response { struct vmbus_channel_message_header header; u8 version_supported; } __packed; enum vmbus_channel_state { CHANNEL_OFFER_STATE, CHANNEL_OPENING_STATE, CHANNEL_OPEN_STATE, }; struct vmbus_channel_debug_info { u32 relid; enum vmbus_channel_state state; uuid_le interfacetype; uuid_le interface_instance; u32 monitorid; u32 servermonitor_pending; u32 servermonitor_latency; u32 servermonitor_connectionid; u32 clientmonitor_pending; u32 clientmonitor_latency; u32 clientmonitor_connectionid; struct hv_ring_buffer_debug_info inbound; struct hv_ring_buffer_debug_info outbound; }; /* * Represents each channel msg on the vmbus connection This is a * variable-size data structure depending on the msg type itself */ struct vmbus_channel_msginfo { /* Bookkeeping stuff */ struct list_head msglistentry; /* So far, this is only used to handle gpadl body message */ struct list_head submsglist; /* Synchronize the request/response if needed */ struct completion waitevent; union { struct vmbus_channel_version_supported version_supported; struct vmbus_channel_open_result open_result; struct vmbus_channel_gpadl_torndown gpadl_torndown; struct vmbus_channel_gpadl_created gpadl_created; struct vmbus_channel_version_response version_response; } response; u32 msgsize; /* * The channel message that goes out on the "wire". * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header */ unsigned char msg[0]; }; struct vmbus_close_msg { struct vmbus_channel_msginfo info; struct vmbus_channel_close_channel msg; }; struct vmbus_channel { struct list_head listentry; struct hv_device *device_obj; struct work_struct work; enum vmbus_channel_state state; struct vmbus_channel_offer_channel offermsg; /* * These are based on the OfferMsg.MonitorId. * Save it here for easy access. */ u8 monitor_grp; u8 monitor_bit; u32 ringbuffer_gpadlhandle; /* Allocated memory for ring buffer */ void *ringbuffer_pages; u32 ringbuffer_pagecount; struct hv_ring_buffer_info outbound; /* send to parent */ struct hv_ring_buffer_info inbound; /* receive from parent */ spinlock_t inbound_lock; struct workqueue_struct *controlwq; struct vmbus_close_msg close_msg; /* Channel callback are invoked in this workqueue context */ /* HANDLE dataWorkQueue; */ void (*onchannel_callback)(void *context); void *channel_callback_context; /* * A channel can be marked for efficient (batched) * reading: * If batched_reading is set to "true", we read until the * channel is empty and hold off interrupts from the host * during the entire read process. * If batched_reading is set to "false", the client is not * going to perform batched reading. * * By default we will enable batched reading; specific * drivers that don't want this behavior can turn it off. */ bool batched_reading; }; static inline void set_channel_read_state(struct vmbus_channel *c, bool state) { c->batched_reading = state; } void vmbus_onmessage(void *context); int vmbus_request_offers(void); /* The format must be the same as struct vmdata_gpa_direct */ struct vmbus_channel_packet_page_buffer { u16 type; u16 dataoffset8; u16 length8; u16 flags; u64 transactionid; u32 reserved; u32 rangecount; struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; } __packed; /* The format must be the same as struct vmdata_gpa_direct */ struct vmbus_channel_packet_multipage_buffer { u16 type; u16 dataoffset8; u16 length8; u16 flags; u64 transactionid; u32 reserved; u32 rangecount; /* Always 1 in this case */ struct hv_multipage_buffer range; } __packed; extern int vmbus_open(struct vmbus_channel *channel, u32 send_ringbuffersize, u32 recv_ringbuffersize, void *userdata, u32 userdatalen, void(*onchannel_callback)(void *context), void *context); extern void vmbus_close(struct vmbus_channel *channel); extern int vmbus_sendpacket(struct vmbus_channel *channel, const void *buffer, u32 bufferLen, u64 requestid, enum vmbus_packet_type type, u32 flags); extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, struct hv_page_buffer pagebuffers[], u32 pagecount, void *buffer, u32 bufferlen, u64 requestid); extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, struct hv_multipage_buffer *mpb, void *buffer, u32 bufferlen, u64 requestid); extern int vmbus_establish_gpadl(struct vmbus_channel *channel, void *kbuffer, u32 size, u32 *gpadl_handle); extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, u32 gpadl_handle); extern int vmbus_recvpacket(struct vmbus_channel *channel, void *buffer, u32 bufferlen, u32 *buffer_actual_len, u64 *requestid); extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, void *buffer, u32 bufferlen, u32 *buffer_actual_len, u64 *requestid); extern void vmbus_get_debug_info(struct vmbus_channel *channel, struct vmbus_channel_debug_info *debug); extern void vmbus_ontimer(unsigned long data); struct hv_dev_port_info { u32 int_mask; u32 read_idx; u32 write_idx; u32 bytes_avail_toread; u32 bytes_avail_towrite; }; /* Base driver object */ struct hv_driver { const char *name; /* the device type supported by this driver */ uuid_le dev_type; const struct hv_vmbus_device_id *id_table; struct device_driver driver; int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); int (*remove)(struct hv_device *); void (*shutdown)(struct hv_device *); }; /* Base device object */ struct hv_device { /* the device type id of this device */ uuid_le dev_type; /* the device instance id of this device */ uuid_le dev_instance; struct device device; struct vmbus_channel *channel; }; static inline struct hv_device *device_to_hv_device(struct device *d) { return container_of(d, struct hv_device, device); } static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) { return container_of(d, struct hv_driver, driver); } static inline void hv_set_drvdata(struct hv_device *dev, void *data) { dev_set_drvdata(&dev->device, data); } static inline void *hv_get_drvdata(struct hv_device *dev) { return dev_get_drvdata(&dev->device); } /* Vmbus interface */ #define vmbus_driver_register(driver) \ __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name); void vmbus_driver_unregister(struct hv_driver *hv_driver); /** * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device * * This macro is used to create a struct hv_vmbus_device_id that matches a * specific device. */ #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \ g8, g9, ga, gb, gc, gd, ge, gf) \ .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \ g8, g9, ga, gb, gc, gd, ge, gf }, /* * Common header for Hyper-V ICs */ #define ICMSGTYPE_NEGOTIATE 0 #define ICMSGTYPE_HEARTBEAT 1 #define ICMSGTYPE_KVPEXCHANGE 2 #define ICMSGTYPE_SHUTDOWN 3 #define ICMSGTYPE_TIMESYNC 4 #define ICMSGTYPE_VSS 5 #define ICMSGHDRFLAG_TRANSACTION 1 #define ICMSGHDRFLAG_REQUEST 2 #define ICMSGHDRFLAG_RESPONSE 4 /* * While we want to handle util services as regular devices, * there is only one instance of each of these services; so * we statically allocate the service specific state. */ struct hv_util_service { u8 *recv_buffer; void (*util_cb)(void *); int (*util_init)(struct hv_util_service *); void (*util_deinit)(void); }; struct vmbuspipe_hdr { u32 flags; u32 msgsize; } __packed; struct ic_version { u16 major; u16 minor; } __packed; struct icmsg_hdr { struct ic_version icverframe; u16 icmsgtype; struct ic_version icvermsg; u16 icmsgsize; u32 status; u8 ictransaction_id; u8 icflags; u8 reserved[2]; } __packed; struct icmsg_negotiate { u16 icframe_vercnt; u16 icmsg_vercnt; u32 reserved; struct ic_version icversion_data[1]; /* any size array */ } __packed; struct shutdown_msg_data { u32 reason_code; u32 timeout_seconds; u32 flags; u8 display_message[2048]; } __packed; struct heartbeat_msg_data { u64 seq_num; u32 reserved[8]; } __packed; /* Time Sync IC defs */ #define ICTIMESYNCFLAG_PROBE 0 #define ICTIMESYNCFLAG_SYNC 1 #define ICTIMESYNCFLAG_SAMPLE 2 #ifdef __x86_64__ #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ #else #define WLTIMEDELTA 116444736000000000LL #endif struct ictimesync_data { u64 parenttime; u64 childtime; u64 roundtriptime; u8 flags; } __packed; struct hyperv_service_callback { u8 msg_type; char *log_msg; uuid_le data; struct vmbus_channel *channel; void (*callback) (void *context); }; #define MAX_SRV_VER 0x7ffffff extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *, struct icmsg_negotiate *, u8 *, int, int); int hv_kvp_init(struct hv_util_service *); void hv_kvp_deinit(void); void hv_kvp_onchannelcallback(void *); /* * Negotiated version with the Host. */ extern __u32 vmbus_proto_version; #endif /* __KERNEL__ */ #endif /* _HYPERV_H */