/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HUGETLB_H #define _LINUX_HUGETLB_H #include #include #include #include #include #include #include #include #include #include #include #include struct ctl_table; struct user_struct; struct mmu_gather; struct node; void free_huge_folio(struct folio *folio); #ifdef CONFIG_HUGETLB_PAGE #include #include #include /* * For HugeTLB page, there are more metadata to save in the struct page. But * the head struct page cannot meet our needs, so we have to abuse other tail * struct page to store the metadata. */ #define __NR_USED_SUBPAGE 3 struct hugepage_subpool { spinlock_t lock; long count; long max_hpages; /* Maximum huge pages or -1 if no maximum. */ long used_hpages; /* Used count against maximum, includes */ /* both allocated and reserved pages. */ struct hstate *hstate; long min_hpages; /* Minimum huge pages or -1 if no minimum. */ long rsv_hpages; /* Pages reserved against global pool to */ /* satisfy minimum size. */ }; struct resv_map { struct kref refs; spinlock_t lock; struct list_head regions; long adds_in_progress; struct list_head region_cache; long region_cache_count; struct rw_semaphore rw_sema; #ifdef CONFIG_CGROUP_HUGETLB /* * On private mappings, the counter to uncharge reservations is stored * here. If these fields are 0, then either the mapping is shared, or * cgroup accounting is disabled for this resv_map. */ struct page_counter *reservation_counter; unsigned long pages_per_hpage; struct cgroup_subsys_state *css; #endif }; /* * Region tracking -- allows tracking of reservations and instantiated pages * across the pages in a mapping. * * The region data structures are embedded into a resv_map and protected * by a resv_map's lock. The set of regions within the resv_map represent * reservations for huge pages, or huge pages that have already been * instantiated within the map. The from and to elements are huge page * indices into the associated mapping. from indicates the starting index * of the region. to represents the first index past the end of the region. * * For example, a file region structure with from == 0 and to == 4 represents * four huge pages in a mapping. It is important to note that the to element * represents the first element past the end of the region. This is used in * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. * * Interval notation of the form [from, to) will be used to indicate that * the endpoint from is inclusive and to is exclusive. */ struct file_region { struct list_head link; long from; long to; #ifdef CONFIG_CGROUP_HUGETLB /* * On shared mappings, each reserved region appears as a struct * file_region in resv_map. These fields hold the info needed to * uncharge each reservation. */ struct page_counter *reservation_counter; struct cgroup_subsys_state *css; #endif }; struct hugetlb_vma_lock { struct kref refs; struct rw_semaphore rw_sema; struct vm_area_struct *vma; }; extern struct resv_map *resv_map_alloc(void); void resv_map_release(struct kref *ref); extern spinlock_t hugetlb_lock; extern int hugetlb_max_hstate __read_mostly; #define for_each_hstate(h) \ for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++) struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, long min_hpages); void hugepage_put_subpool(struct hugepage_subpool *spool); void hugetlb_dup_vma_private(struct vm_area_struct *vma); void clear_vma_resv_huge_pages(struct vm_area_struct *vma); int move_hugetlb_page_tables(struct vm_area_struct *vma, struct vm_area_struct *new_vma, unsigned long old_addr, unsigned long new_addr, unsigned long len); int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *, struct vm_area_struct *, struct vm_area_struct *); struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned int *page_mask); void unmap_hugepage_range(struct vm_area_struct *, unsigned long, unsigned long, struct page *, zap_flags_t); void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page, zap_flags_t zap_flags); void hugetlb_report_meminfo(struct seq_file *); int hugetlb_report_node_meminfo(char *buf, int len, int nid); void hugetlb_show_meminfo_node(int nid); unsigned long hugetlb_total_pages(void); vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, unsigned int flags); #ifdef CONFIG_USERFAULTFD int hugetlb_mfill_atomic_pte(pte_t *dst_pte, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, uffd_flags_t flags, struct folio **foliop); #endif /* CONFIG_USERFAULTFD */ bool hugetlb_reserve_pages(struct inode *inode, long from, long to, struct vm_area_struct *vma, vm_flags_t vm_flags); long hugetlb_unreserve_pages(struct inode *inode, long start, long end, long freed); bool isolate_hugetlb(struct folio *folio, struct list_head *list); int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison); int get_huge_page_for_hwpoison(unsigned long pfn, int flags, bool *migratable_cleared); void folio_putback_active_hugetlb(struct folio *folio); void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason); void hugetlb_fix_reserve_counts(struct inode *inode); extern struct mutex *hugetlb_fault_mutex_table; u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx); pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pud_t *pud); bool hugetlbfs_pagecache_present(struct hstate *h, struct vm_area_struct *vma, unsigned long address); struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio); extern int sysctl_hugetlb_shm_group; extern struct list_head huge_boot_pages[MAX_NUMNODES]; /* arch callbacks */ #ifndef CONFIG_HIGHPTE /* * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures * which may go down to the lowest PTE level in their huge_pte_offset() and * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap(). */ static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address) { return pte_offset_kernel(pmd, address); } static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address); } #endif pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long sz); /* * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE. * Returns the pte_t* if found, or NULL if the address is not mapped. * * IMPORTANT: we should normally not directly call this function, instead * this is only a common interface to implement arch-specific * walker. Please use hugetlb_walk() instead, because that will attempt to * verify the locking for you. * * Since this function will walk all the pgtable pages (including not only * high-level pgtable page, but also PUD entry that can be unshared * concurrently for VM_SHARED), the caller of this function should be * responsible of its thread safety. One can follow this rule: * * (1) For private mappings: pmd unsharing is not possible, so holding the * mmap_lock for either read or write is sufficient. Most callers * already hold the mmap_lock, so normally, no special action is * required. * * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged * pgtable page can go away from under us! It can be done by a pmd * unshare with a follow up munmap() on the other process), then we * need either: * * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare * won't happen upon the range (it also makes sure the pte_t we * read is the right and stable one), or, * * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make * sure even if unshare happened the racy unmap() will wait until * i_mmap_rwsem is released. * * Option (2.1) is the safest, which guarantees pte stability from pmd * sharing pov, until the vma lock released. Option (2.2) doesn't protect * a concurrent pmd unshare, but it makes sure the pgtable page is safe to * access. */ pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz); unsigned long hugetlb_mask_last_page(struct hstate *h); int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t *ptep); void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, unsigned long *start, unsigned long *end); extern void __hugetlb_zap_begin(struct vm_area_struct *vma, unsigned long *begin, unsigned long *end); extern void __hugetlb_zap_end(struct vm_area_struct *vma, struct zap_details *details); static inline void hugetlb_zap_begin(struct vm_area_struct *vma, unsigned long *start, unsigned long *end) { if (is_vm_hugetlb_page(vma)) __hugetlb_zap_begin(vma, start, end); } static inline void hugetlb_zap_end(struct vm_area_struct *vma, struct zap_details *details) { if (is_vm_hugetlb_page(vma)) __hugetlb_zap_end(vma, details); } void hugetlb_vma_lock_read(struct vm_area_struct *vma); void hugetlb_vma_unlock_read(struct vm_area_struct *vma); void hugetlb_vma_lock_write(struct vm_area_struct *vma); void hugetlb_vma_unlock_write(struct vm_area_struct *vma); int hugetlb_vma_trylock_write(struct vm_area_struct *vma); void hugetlb_vma_assert_locked(struct vm_area_struct *vma); void hugetlb_vma_lock_release(struct kref *kref); long hugetlb_change_protection(struct vm_area_struct *vma, unsigned long address, unsigned long end, pgprot_t newprot, unsigned long cp_flags); bool is_hugetlb_entry_migration(pte_t pte); bool is_hugetlb_entry_hwpoisoned(pte_t pte); void hugetlb_unshare_all_pmds(struct vm_area_struct *vma); #else /* !CONFIG_HUGETLB_PAGE */ static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma) { } static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma) { } static inline unsigned long hugetlb_total_pages(void) { return 0; } static inline struct address_space *hugetlb_folio_mapping_lock_write( struct folio *folio) { return NULL; } static inline int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { return 0; } static inline void adjust_range_if_pmd_sharing_possible( struct vm_area_struct *vma, unsigned long *start, unsigned long *end) { } static inline void hugetlb_zap_begin( struct vm_area_struct *vma, unsigned long *start, unsigned long *end) { } static inline void hugetlb_zap_end( struct vm_area_struct *vma, struct zap_details *details) { } static inline int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) { BUG(); return 0; } static inline int move_hugetlb_page_tables(struct vm_area_struct *vma, struct vm_area_struct *new_vma, unsigned long old_addr, unsigned long new_addr, unsigned long len) { BUG(); return 0; } static inline void hugetlb_report_meminfo(struct seq_file *m) { } static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid) { return 0; } static inline void hugetlb_show_meminfo_node(int nid) { } static inline int prepare_hugepage_range(struct file *file, unsigned long addr, unsigned long len) { return -EINVAL; } static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma) { } static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma) { } static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma) { } static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma) { } static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma) { return 1; } static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma) { } static inline int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr, unsigned long len) { return 0; } static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { BUG(); } #ifdef CONFIG_USERFAULTFD static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, uffd_flags_t flags, struct folio **foliop) { BUG(); return 0; } #endif /* CONFIG_USERFAULTFD */ static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) { return NULL; } static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list) { return false; } static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) { return 0; } static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags, bool *migratable_cleared) { return 0; } static inline void folio_putback_active_hugetlb(struct folio *folio) { } static inline void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) { } static inline long hugetlb_change_protection( struct vm_area_struct *vma, unsigned long address, unsigned long end, pgprot_t newprot, unsigned long cp_flags) { return 0; } static inline void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page, zap_flags_t zap_flags) { BUG(); } static inline vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, unsigned int flags) { BUG(); return 0; } static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { } #endif /* !CONFIG_HUGETLB_PAGE */ #ifndef pgd_write static inline int pgd_write(pgd_t pgd) { BUG(); return 0; } #endif #define HUGETLB_ANON_FILE "anon_hugepage" enum { /* * The file will be used as an shm file so shmfs accounting rules * apply */ HUGETLB_SHMFS_INODE = 1, /* * The file is being created on the internal vfs mount and shmfs * accounting rules do not apply */ HUGETLB_ANONHUGE_INODE = 2, }; #ifdef CONFIG_HUGETLBFS struct hugetlbfs_sb_info { long max_inodes; /* inodes allowed */ long free_inodes; /* inodes free */ spinlock_t stat_lock; struct hstate *hstate; struct hugepage_subpool *spool; kuid_t uid; kgid_t gid; umode_t mode; }; static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb) { return sb->s_fs_info; } struct hugetlbfs_inode_info { struct inode vfs_inode; unsigned int seals; }; static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode) { return container_of(inode, struct hugetlbfs_inode_info, vfs_inode); } extern const struct vm_operations_struct hugetlb_vm_ops; struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct, int creat_flags, int page_size_log); static inline bool is_file_hugepages(const struct file *file) { return file->f_op->fop_flags & FOP_HUGE_PAGES; } static inline struct hstate *hstate_inode(struct inode *i) { return HUGETLBFS_SB(i->i_sb)->hstate; } #else /* !CONFIG_HUGETLBFS */ #define is_file_hugepages(file) false static inline struct file * hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag, int creat_flags, int page_size_log) { return ERR_PTR(-ENOSYS); } static inline struct hstate *hstate_inode(struct inode *i) { return NULL; } #endif /* !CONFIG_HUGETLBFS */ #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */ unsigned long generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); /* * huegtlb page specific state flags. These flags are located in page.private * of the hugetlb head page. Functions created via the below macros should be * used to manipulate these flags. * * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at * allocation time. Cleared when page is fully instantiated. Free * routine checks flag to restore a reservation on error paths. * Synchronization: Examined or modified by code that knows it has * the only reference to page. i.e. After allocation but before use * or when the page is being freed. * HPG_migratable - Set after a newly allocated page is added to the page * cache and/or page tables. Indicates the page is a candidate for * migration. * Synchronization: Initially set after new page allocation with no * locking. When examined and modified during migration processing * (isolate, migrate, putback) the hugetlb_lock is held. * HPG_temporary - Set on a page that is temporarily allocated from the buddy * allocator. Typically used for migration target pages when no pages * are available in the pool. The hugetlb free page path will * immediately free pages with this flag set to the buddy allocator. * Synchronization: Can be set after huge page allocation from buddy when * code knows it has only reference. All other examinations and * modifications require hugetlb_lock. * HPG_freed - Set when page is on the free lists. * Synchronization: hugetlb_lock held for examination and modification. * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed. * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page * that is not tracked by raw_hwp_page list. */ enum hugetlb_page_flags { HPG_restore_reserve = 0, HPG_migratable, HPG_temporary, HPG_freed, HPG_vmemmap_optimized, HPG_raw_hwp_unreliable, __NR_HPAGEFLAGS, }; /* * Macros to create test, set and clear function definitions for * hugetlb specific page flags. */ #ifdef CONFIG_HUGETLB_PAGE #define TESTHPAGEFLAG(uname, flname) \ static __always_inline \ bool folio_test_hugetlb_##flname(struct folio *folio) \ { void *private = &folio->private; \ return test_bit(HPG_##flname, private); \ } #define SETHPAGEFLAG(uname, flname) \ static __always_inline \ void folio_set_hugetlb_##flname(struct folio *folio) \ { void *private = &folio->private; \ set_bit(HPG_##flname, private); \ } #define CLEARHPAGEFLAG(uname, flname) \ static __always_inline \ void folio_clear_hugetlb_##flname(struct folio *folio) \ { void *private = &folio->private; \ clear_bit(HPG_##flname, private); \ } #else #define TESTHPAGEFLAG(uname, flname) \ static inline bool \ folio_test_hugetlb_##flname(struct folio *folio) \ { return 0; } #define SETHPAGEFLAG(uname, flname) \ static inline void \ folio_set_hugetlb_##flname(struct folio *folio) \ { } #define CLEARHPAGEFLAG(uname, flname) \ static inline void \ folio_clear_hugetlb_##flname(struct folio *folio) \ { } #endif #define HPAGEFLAG(uname, flname) \ TESTHPAGEFLAG(uname, flname) \ SETHPAGEFLAG(uname, flname) \ CLEARHPAGEFLAG(uname, flname) \ /* * Create functions associated with hugetlb page flags */ HPAGEFLAG(RestoreReserve, restore_reserve) HPAGEFLAG(Migratable, migratable) HPAGEFLAG(Temporary, temporary) HPAGEFLAG(Freed, freed) HPAGEFLAG(VmemmapOptimized, vmemmap_optimized) HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable) #ifdef CONFIG_HUGETLB_PAGE #define HSTATE_NAME_LEN 32 /* Defines one hugetlb page size */ struct hstate { struct mutex resize_lock; struct lock_class_key resize_key; int next_nid_to_alloc; int next_nid_to_free; unsigned int order; unsigned int demote_order; unsigned long mask; unsigned long max_huge_pages; unsigned long nr_huge_pages; unsigned long free_huge_pages; unsigned long resv_huge_pages; unsigned long surplus_huge_pages; unsigned long nr_overcommit_huge_pages; struct list_head hugepage_activelist; struct list_head hugepage_freelists[MAX_NUMNODES]; unsigned int max_huge_pages_node[MAX_NUMNODES]; unsigned int nr_huge_pages_node[MAX_NUMNODES]; unsigned int free_huge_pages_node[MAX_NUMNODES]; unsigned int surplus_huge_pages_node[MAX_NUMNODES]; char name[HSTATE_NAME_LEN]; }; struct huge_bootmem_page { struct list_head list; struct hstate *hstate; }; int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list); struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, unsigned long addr, int avoid_reserve); struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback); int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, pgoff_t idx); void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, unsigned long address, struct folio *folio); /* arch callback */ int __init __alloc_bootmem_huge_page(struct hstate *h, int nid); int __init alloc_bootmem_huge_page(struct hstate *h, int nid); bool __init hugetlb_node_alloc_supported(void); void __init hugetlb_add_hstate(unsigned order); bool __init arch_hugetlb_valid_size(unsigned long size); struct hstate *size_to_hstate(unsigned long size); #ifndef HUGE_MAX_HSTATE #define HUGE_MAX_HSTATE 1 #endif extern struct hstate hstates[HUGE_MAX_HSTATE]; extern unsigned int default_hstate_idx; #define default_hstate (hstates[default_hstate_idx]) static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio) { return folio->_hugetlb_subpool; } static inline void hugetlb_set_folio_subpool(struct folio *folio, struct hugepage_subpool *subpool) { folio->_hugetlb_subpool = subpool; } static inline struct hstate *hstate_file(struct file *f) { return hstate_inode(file_inode(f)); } static inline struct hstate *hstate_sizelog(int page_size_log) { if (!page_size_log) return &default_hstate; if (page_size_log < BITS_PER_LONG) return size_to_hstate(1UL << page_size_log); return NULL; } static inline struct hstate *hstate_vma(struct vm_area_struct *vma) { return hstate_file(vma->vm_file); } static inline unsigned long huge_page_size(const struct hstate *h) { return (unsigned long)PAGE_SIZE << h->order; } extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma); extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma); static inline unsigned long huge_page_mask(struct hstate *h) { return h->mask; } static inline unsigned int huge_page_order(struct hstate *h) { return h->order; } static inline unsigned huge_page_shift(struct hstate *h) { return h->order + PAGE_SHIFT; } static inline bool hstate_is_gigantic(struct hstate *h) { return huge_page_order(h) > MAX_PAGE_ORDER; } static inline unsigned int pages_per_huge_page(const struct hstate *h) { return 1 << h->order; } static inline unsigned int blocks_per_huge_page(struct hstate *h) { return huge_page_size(h) / 512; } static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h, struct address_space *mapping, pgoff_t idx) { return filemap_lock_folio(mapping, idx << huge_page_order(h)); } #include #ifndef is_hugepage_only_range static inline int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr, unsigned long len) { return 0; } #define is_hugepage_only_range is_hugepage_only_range #endif #ifndef arch_clear_hugetlb_flags static inline void arch_clear_hugetlb_flags(struct folio *folio) { } #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags #endif #ifndef arch_make_huge_pte static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift, vm_flags_t flags) { return pte_mkhuge(entry); } #endif static inline struct hstate *folio_hstate(struct folio *folio) { VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio); return size_to_hstate(folio_size(folio)); } static inline unsigned hstate_index_to_shift(unsigned index) { return hstates[index].order + PAGE_SHIFT; } static inline int hstate_index(struct hstate *h) { return h - hstates; } int dissolve_free_hugetlb_folio(struct folio *folio); int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn); #ifdef CONFIG_MEMORY_FAILURE extern void folio_clear_hugetlb_hwpoison(struct folio *folio); #else static inline void folio_clear_hugetlb_hwpoison(struct folio *folio) { } #endif #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION #ifndef arch_hugetlb_migration_supported static inline bool arch_hugetlb_migration_supported(struct hstate *h) { if ((huge_page_shift(h) == PMD_SHIFT) || (huge_page_shift(h) == PUD_SHIFT) || (huge_page_shift(h) == PGDIR_SHIFT)) return true; else return false; } #endif #else static inline bool arch_hugetlb_migration_supported(struct hstate *h) { return false; } #endif static inline bool hugepage_migration_supported(struct hstate *h) { return arch_hugetlb_migration_supported(h); } /* * Movability check is different as compared to migration check. * It determines whether or not a huge page should be placed on * movable zone or not. Movability of any huge page should be * required only if huge page size is supported for migration. * There won't be any reason for the huge page to be movable if * it is not migratable to start with. Also the size of the huge * page should be large enough to be placed under a movable zone * and still feasible enough to be migratable. Just the presence * in movable zone does not make the migration feasible. * * So even though large huge page sizes like the gigantic ones * are migratable they should not be movable because its not * feasible to migrate them from movable zone. */ static inline bool hugepage_movable_supported(struct hstate *h) { if (!hugepage_migration_supported(h)) return false; if (hstate_is_gigantic(h)) return false; return true; } /* Movability of hugepages depends on migration support. */ static inline gfp_t htlb_alloc_mask(struct hstate *h) { if (hugepage_movable_supported(h)) return GFP_HIGHUSER_MOVABLE; else return GFP_HIGHUSER; } static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask) { gfp_t modified_mask = htlb_alloc_mask(h); /* Some callers might want to enforce node */ modified_mask |= (gfp_mask & __GFP_THISNODE); modified_mask |= (gfp_mask & __GFP_NOWARN); return modified_mask; } static inline bool htlb_allow_alloc_fallback(int reason) { bool allowed_fallback = false; /* * Note: the memory offline, memory failure and migration syscalls will * be allowed to fallback to other nodes due to lack of a better chioce, * that might break the per-node hugetlb pool. While other cases will * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool. */ switch (reason) { case MR_MEMORY_HOTPLUG: case MR_MEMORY_FAILURE: case MR_SYSCALL: case MR_MEMPOLICY_MBIND: allowed_fallback = true; break; default: break; } return allowed_fallback; } static inline spinlock_t *huge_pte_lockptr(struct hstate *h, struct mm_struct *mm, pte_t *pte) { if (huge_page_size(h) == PMD_SIZE) return pmd_lockptr(mm, (pmd_t *) pte); VM_BUG_ON(huge_page_size(h) == PAGE_SIZE); return &mm->page_table_lock; } #ifndef hugepages_supported /* * Some platform decide whether they support huge pages at boot * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0 * when there is no such support */ #define hugepages_supported() (HPAGE_SHIFT != 0) #endif void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm); static inline void hugetlb_count_init(struct mm_struct *mm) { atomic_long_set(&mm->hugetlb_usage, 0); } static inline void hugetlb_count_add(long l, struct mm_struct *mm) { atomic_long_add(l, &mm->hugetlb_usage); } static inline void hugetlb_count_sub(long l, struct mm_struct *mm) { atomic_long_sub(l, &mm->hugetlb_usage); } #ifndef huge_ptep_modify_prot_start #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep); } #endif #ifndef huge_ptep_modify_prot_commit #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t old_pte, pte_t pte) { unsigned long psize = huge_page_size(hstate_vma(vma)); set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize); } #endif #ifdef CONFIG_NUMA void hugetlb_register_node(struct node *node); void hugetlb_unregister_node(struct node *node); #endif /* * Check if a given raw @page in a hugepage is HWPOISON. */ bool is_raw_hwpoison_page_in_hugepage(struct page *page); #else /* CONFIG_HUGETLB_PAGE */ struct hstate {}; static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio) { return NULL; } static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h, struct address_space *mapping, pgoff_t idx) { return NULL; } static inline int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) { return -ENOMEM; } static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, unsigned long addr, int avoid_reserve) { return NULL; } static inline struct folio * alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) { return NULL; } static inline int __alloc_bootmem_huge_page(struct hstate *h) { return 0; } static inline struct hstate *hstate_file(struct file *f) { return NULL; } static inline struct hstate *hstate_sizelog(int page_size_log) { return NULL; } static inline struct hstate *hstate_vma(struct vm_area_struct *vma) { return NULL; } static inline struct hstate *folio_hstate(struct folio *folio) { return NULL; } static inline struct hstate *size_to_hstate(unsigned long size) { return NULL; } static inline unsigned long huge_page_size(struct hstate *h) { return PAGE_SIZE; } static inline unsigned long huge_page_mask(struct hstate *h) { return PAGE_MASK; } static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) { return PAGE_SIZE; } static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) { return PAGE_SIZE; } static inline unsigned int huge_page_order(struct hstate *h) { return 0; } static inline unsigned int huge_page_shift(struct hstate *h) { return PAGE_SHIFT; } static inline bool hstate_is_gigantic(struct hstate *h) { return false; } static inline unsigned int pages_per_huge_page(struct hstate *h) { return 1; } static inline unsigned hstate_index_to_shift(unsigned index) { return 0; } static inline int hstate_index(struct hstate *h) { return 0; } static inline int dissolve_free_hugetlb_folio(struct folio *folio) { return 0; } static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) { return 0; } static inline bool hugepage_migration_supported(struct hstate *h) { return false; } static inline bool hugepage_movable_supported(struct hstate *h) { return false; } static inline gfp_t htlb_alloc_mask(struct hstate *h) { return 0; } static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask) { return 0; } static inline bool htlb_allow_alloc_fallback(int reason) { return false; } static inline spinlock_t *huge_pte_lockptr(struct hstate *h, struct mm_struct *mm, pte_t *pte) { return &mm->page_table_lock; } static inline void hugetlb_count_init(struct mm_struct *mm) { } static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m) { } static inline void hugetlb_count_sub(long l, struct mm_struct *mm) { } static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { #ifdef CONFIG_MMU return ptep_get(ptep); #else return *ptep; #endif } static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, unsigned long sz) { } static inline void hugetlb_register_node(struct node *node) { } static inline void hugetlb_unregister_node(struct node *node) { } static inline bool hugetlbfs_pagecache_present( struct hstate *h, struct vm_area_struct *vma, unsigned long address) { return false; } #endif /* CONFIG_HUGETLB_PAGE */ static inline spinlock_t *huge_pte_lock(struct hstate *h, struct mm_struct *mm, pte_t *pte) { spinlock_t *ptl; ptl = huge_pte_lockptr(h, mm, pte); spin_lock(ptl); return ptl; } #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) extern void __init hugetlb_cma_reserve(int order); #else static inline __init void hugetlb_cma_reserve(int order) { } #endif #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE static inline bool hugetlb_pmd_shared(pte_t *pte) { return page_count(virt_to_page(pte)) > 1; } #else static inline bool hugetlb_pmd_shared(pte_t *pte) { return false; } #endif bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr); #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE /* * ARCHes with special requirements for evicting HUGETLB backing TLB entries can * implement this. */ #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) #endif static inline bool __vma_shareable_lock(struct vm_area_struct *vma) { return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data; } bool __vma_private_lock(struct vm_area_struct *vma); /* * Safe version of huge_pte_offset() to check the locks. See comments * above huge_pte_offset(). */ static inline pte_t * hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz) { #if defined(CONFIG_HUGETLB_PAGE) && \ defined(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && defined(CONFIG_LOCKDEP) struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; /* * If pmd sharing possible, locking needed to safely walk the * hugetlb pgtables. More information can be found at the comment * above huge_pte_offset() in the same file. * * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP. */ if (__vma_shareable_lock(vma)) WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) && !lockdep_is_held( &vma->vm_file->f_mapping->i_mmap_rwsem)); #endif return huge_pte_offset(vma->vm_mm, addr, sz); } #endif /* _LINUX_HUGETLB_H */