/* * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. * Copyright (c) 2008 Dave Chinner * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_trans_priv.h" #include "xfs_error.h" STATIC void xfs_ail_insert(struct xfs_ail *, xfs_log_item_t *); STATIC void xfs_ail_delete(struct xfs_ail *, xfs_log_item_t *); STATIC xfs_log_item_t * xfs_ail_min(struct xfs_ail *); STATIC xfs_log_item_t * xfs_ail_next(struct xfs_ail *, xfs_log_item_t *); #ifdef DEBUG STATIC void xfs_ail_check(struct xfs_ail *, xfs_log_item_t *); #else #define xfs_ail_check(a,l) #endif /* DEBUG */ /* * This is called by the log manager code to determine the LSN * of the tail of the log. This is exactly the LSN of the first * item in the AIL. If the AIL is empty, then this function * returns 0. * * We need the AIL lock in order to get a coherent read of the * lsn of the last item in the AIL. */ xfs_lsn_t xfs_trans_ail_tail( struct xfs_ail *ailp) { xfs_lsn_t lsn; xfs_log_item_t *lip; spin_lock(&ailp->xa_lock); lip = xfs_ail_min(ailp); if (lip == NULL) { lsn = (xfs_lsn_t)0; } else { lsn = lip->li_lsn; } spin_unlock(&ailp->xa_lock); return lsn; } /* * xfs_trans_push_ail * * This routine is called to move the tail of the AIL forward. It does this by * trying to flush items in the AIL whose lsns are below the given * threshold_lsn. * * the push is run asynchronously in a separate thread, so we return the tail * of the log right now instead of the tail after the push. This means we will * either continue right away, or we will sleep waiting on the async thread to * do its work. * * We do this unlocked - we only need to know whether there is anything in the * AIL at the time we are called. We don't need to access the contents of * any of the objects, so the lock is not needed. */ void xfs_trans_ail_push( struct xfs_ail *ailp, xfs_lsn_t threshold_lsn) { xfs_log_item_t *lip; lip = xfs_ail_min(ailp); if (lip && !XFS_FORCED_SHUTDOWN(ailp->xa_mount)) { if (XFS_LSN_CMP(threshold_lsn, ailp->xa_target) > 0) xfsaild_wakeup(ailp, threshold_lsn); } } /* * AIL traversal cursor initialisation. * * The cursor keeps track of where our current traversal is up * to by tracking the next ƣtem in the list for us. However, for * this to be safe, removing an object from the AIL needs to invalidate * any cursor that points to it. hence the traversal cursor needs to * be linked to the struct xfs_ail so that deletion can search all the * active cursors for invalidation. * * We don't link the push cursor because it is embedded in the struct * xfs_ail and hence easily findable. */ STATIC void xfs_trans_ail_cursor_init( struct xfs_ail *ailp, struct xfs_ail_cursor *cur) { cur->item = NULL; if (cur == &ailp->xa_cursors) return; cur->next = ailp->xa_cursors.next; ailp->xa_cursors.next = cur; } /* * Set the cursor to the next item, because when we look * up the cursor the current item may have been freed. */ STATIC void xfs_trans_ail_cursor_set( struct xfs_ail *ailp, struct xfs_ail_cursor *cur, struct xfs_log_item *lip) { if (lip) cur->item = xfs_ail_next(ailp, lip); } /* * Get the next item in the traversal and advance the cursor. * If the cursor was invalidated (inidicated by a lip of 1), * restart the traversal. */ struct xfs_log_item * xfs_trans_ail_cursor_next( struct xfs_ail *ailp, struct xfs_ail_cursor *cur) { struct xfs_log_item *lip = cur->item; if ((__psint_t)lip & 1) lip = xfs_ail_min(ailp); xfs_trans_ail_cursor_set(ailp, cur, lip); return lip; } /* * Now that the traversal is complete, we need to remove the cursor * from the list of traversing cursors. Avoid removing the embedded * push cursor, but use the fact it is always present to make the * list deletion simple. */ void xfs_trans_ail_cursor_done( struct xfs_ail *ailp, struct xfs_ail_cursor *done) { struct xfs_ail_cursor *prev = NULL; struct xfs_ail_cursor *cur; done->item = NULL; if (done == &ailp->xa_cursors) return; prev = &ailp->xa_cursors; for (cur = prev->next; cur; prev = cur, cur = prev->next) { if (cur == done) { prev->next = cur->next; break; } } ASSERT(cur); } /* * Invalidate any cursor that is pointing to this item. This is * called when an item is removed from the AIL. Any cursor pointing * to this object is now invalid and the traversal needs to be * terminated so it doesn't reference a freed object. We set the * cursor item to a value of 1 so we can distinguish between an * invalidation and the end of the list when getting the next item * from the cursor. */ STATIC void xfs_trans_ail_cursor_clear( struct xfs_ail *ailp, struct xfs_log_item *lip) { struct xfs_ail_cursor *cur; /* need to search all cursors */ for (cur = &ailp->xa_cursors; cur; cur = cur->next) { if (cur->item == lip) cur->item = (struct xfs_log_item *) ((__psint_t)cur->item | 1); } } /* * Return the item in the AIL with the current lsn. * Return the current tree generation number for use * in calls to xfs_trans_next_ail(). */ xfs_log_item_t * xfs_trans_ail_cursor_first( struct xfs_ail *ailp, struct xfs_ail_cursor *cur, xfs_lsn_t lsn) { xfs_log_item_t *lip; xfs_trans_ail_cursor_init(ailp, cur); lip = xfs_ail_min(ailp); if (lsn == 0) goto out; list_for_each_entry(lip, &ailp->xa_ail, li_ail) { if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0) goto out; } lip = NULL; out: xfs_trans_ail_cursor_set(ailp, cur, lip); return lip; } /* * xfsaild_push does the work of pushing on the AIL. Returning a timeout of * zero indicates that the caller should sleep until woken. */ long xfsaild_push( struct xfs_ail *ailp, xfs_lsn_t *last_lsn) { long tout = 0; xfs_lsn_t last_pushed_lsn = *last_lsn; xfs_lsn_t target = ailp->xa_target; xfs_lsn_t lsn; xfs_log_item_t *lip; int flush_log, count, stuck; xfs_mount_t *mp = ailp->xa_mount; struct xfs_ail_cursor *cur = &ailp->xa_cursors; int push_xfsbufd = 0; spin_lock(&ailp->xa_lock); xfs_trans_ail_cursor_init(ailp, cur); lip = xfs_trans_ail_cursor_first(ailp, cur, *last_lsn); if (!lip || XFS_FORCED_SHUTDOWN(mp)) { /* * AIL is empty or our push has reached the end. */ xfs_trans_ail_cursor_done(ailp, cur); spin_unlock(&ailp->xa_lock); *last_lsn = 0; return tout; } XFS_STATS_INC(xs_push_ail); /* * While the item we are looking at is below the given threshold * try to flush it out. We'd like not to stop until we've at least * tried to push on everything in the AIL with an LSN less than * the given threshold. * * However, we will stop after a certain number of pushes and wait * for a reduced timeout to fire before pushing further. This * prevents use from spinning when we can't do anything or there is * lots of contention on the AIL lists. */ lsn = lip->li_lsn; flush_log = stuck = count = 0; while ((XFS_LSN_CMP(lip->li_lsn, target) < 0)) { int lock_result; /* * If we can lock the item without sleeping, unlock the AIL * lock and flush the item. Then re-grab the AIL lock so we * can look for the next item on the AIL. List changes are * handled by the AIL lookup functions internally * * If we can't lock the item, either its holder will flush it * or it is already being flushed or it is being relogged. In * any of these case it is being taken care of and we can just * skip to the next item in the list. */ lock_result = IOP_TRYLOCK(lip); spin_unlock(&ailp->xa_lock); switch (lock_result) { case XFS_ITEM_SUCCESS: XFS_STATS_INC(xs_push_ail_success); IOP_PUSH(lip); last_pushed_lsn = lsn; break; case XFS_ITEM_PUSHBUF: XFS_STATS_INC(xs_push_ail_pushbuf); IOP_PUSHBUF(lip); last_pushed_lsn = lsn; push_xfsbufd = 1; break; case XFS_ITEM_PINNED: XFS_STATS_INC(xs_push_ail_pinned); stuck++; flush_log = 1; break; case XFS_ITEM_LOCKED: XFS_STATS_INC(xs_push_ail_locked); last_pushed_lsn = lsn; stuck++; break; default: ASSERT(0); break; } spin_lock(&ailp->xa_lock); /* should we bother continuing? */ if (XFS_FORCED_SHUTDOWN(mp)) break; ASSERT(mp->m_log); count++; /* * Are there too many items we can't do anything with? * If we we are skipping too many items because we can't flush * them or they are already being flushed, we back off and * given them time to complete whatever operation is being * done. i.e. remove pressure from the AIL while we can't make * progress so traversals don't slow down further inserts and * removals to/from the AIL. * * The value of 100 is an arbitrary magic number based on * observation. */ if (stuck > 100) break; lip = xfs_trans_ail_cursor_next(ailp, cur); if (lip == NULL) break; lsn = lip->li_lsn; } xfs_trans_ail_cursor_done(ailp, cur); spin_unlock(&ailp->xa_lock); if (flush_log) { /* * If something we need to push out was pinned, then * push out the log so it will become unpinned and * move forward in the AIL. */ XFS_STATS_INC(xs_push_ail_flush); xfs_log_force(mp, 0); } if (push_xfsbufd) { /* we've got delayed write buffers to flush */ wake_up_process(mp->m_ddev_targp->bt_task); } if (!count) { /* We're past our target or empty, so idle */ last_pushed_lsn = 0; } else if (XFS_LSN_CMP(lsn, target) >= 0) { /* * We reached the target so wait a bit longer for I/O to * complete and remove pushed items from the AIL before we * start the next scan from the start of the AIL. */ tout = 50; last_pushed_lsn = 0; } else if ((stuck * 100) / count > 90) { /* * Either there is a lot of contention on the AIL or we * are stuck due to operations in progress. "Stuck" in this * case is defined as >90% of the items we tried to push * were stuck. * * Backoff a bit more to allow some I/O to complete before * continuing from where we were. */ tout = 20; } else { /* more to do, but wait a short while before continuing */ tout = 10; } *last_lsn = last_pushed_lsn; return tout; } /* * This is to be called when an item is unlocked that may have * been in the AIL. It will wake up the first member of the AIL * wait list if this item's unlocking might allow it to progress. * If the item is in the AIL, then we need to get the AIL lock * while doing our checking so we don't race with someone going * to sleep waiting for this event in xfs_trans_push_ail(). */ void xfs_trans_unlocked_item( struct xfs_ail *ailp, xfs_log_item_t *lip) { xfs_log_item_t *min_lip; /* * If we're forcibly shutting down, we may have * unlocked log items arbitrarily. The last thing * we want to do is to move the tail of the log * over some potentially valid data. */ if (!(lip->li_flags & XFS_LI_IN_AIL) || XFS_FORCED_SHUTDOWN(ailp->xa_mount)) { return; } /* * This is the one case where we can call into xfs_ail_min() * without holding the AIL lock because we only care about the * case where we are at the tail of the AIL. If the object isn't * at the tail, it doesn't matter what result we get back. This * is slightly racy because since we were just unlocked, we could * go to sleep between the call to xfs_ail_min and the call to * xfs_log_move_tail, have someone else lock us, commit to us disk, * move us out of the tail of the AIL, and then we wake up. However, * the call to xfs_log_move_tail() doesn't do anything if there's * not enough free space to wake people up so we're safe calling it. */ min_lip = xfs_ail_min(ailp); if (min_lip == lip) xfs_log_move_tail(ailp->xa_mount, 1); } /* xfs_trans_unlocked_item */ /* * Update the position of the item in the AIL with the new * lsn. If it is not yet in the AIL, add it. Otherwise, move * it to its new position by removing it and re-adding it. * * Wakeup anyone with an lsn less than the item's lsn. If the item * we move in the AIL is the minimum one, update the tail lsn in the * log manager. * * This function must be called with the AIL lock held. The lock * is dropped before returning. */ void xfs_trans_ail_update( struct xfs_ail *ailp, xfs_log_item_t *lip, xfs_lsn_t lsn) __releases(ailp->xa_lock) { xfs_log_item_t *mlip; /* ptr to minimum lip */ xfs_lsn_t tail_lsn; mlip = xfs_ail_min(ailp); if (lip->li_flags & XFS_LI_IN_AIL) { xfs_ail_delete(ailp, lip); } else { lip->li_flags |= XFS_LI_IN_AIL; } lip->li_lsn = lsn; xfs_ail_insert(ailp, lip); if (mlip == lip) { mlip = xfs_ail_min(ailp); /* * It is not safe to access mlip after the AIL lock is * dropped, so we must get a copy of li_lsn before we do * so. This is especially important on 32-bit platforms * where accessing and updating 64-bit values like li_lsn * is not atomic. */ tail_lsn = mlip->li_lsn; spin_unlock(&ailp->xa_lock); xfs_log_move_tail(ailp->xa_mount, tail_lsn); } else { spin_unlock(&ailp->xa_lock); } } /* xfs_trans_update_ail */ /* * Delete the given item from the AIL. It must already be in * the AIL. * * Wakeup anyone with an lsn less than item's lsn. If the item * we delete in the AIL is the minimum one, update the tail lsn in the * log manager. * * Clear the IN_AIL flag from the item, reset its lsn to 0, and * bump the AIL's generation count to indicate that the tree * has changed. * * This function must be called with the AIL lock held. The lock * is dropped before returning. */ void xfs_trans_ail_delete( struct xfs_ail *ailp, xfs_log_item_t *lip) __releases(ailp->xa_lock) { xfs_log_item_t *mlip; xfs_lsn_t tail_lsn; if (lip->li_flags & XFS_LI_IN_AIL) { mlip = xfs_ail_min(ailp); xfs_ail_delete(ailp, lip); lip->li_flags &= ~XFS_LI_IN_AIL; lip->li_lsn = 0; if (mlip == lip) { mlip = xfs_ail_min(ailp); /* * It is not safe to access mlip after the AIL lock * is dropped, so we must get a copy of li_lsn * before we do so. This is especially important * on 32-bit platforms where accessing and updating * 64-bit values like li_lsn is not atomic. */ tail_lsn = mlip ? mlip->li_lsn : 0; spin_unlock(&ailp->xa_lock); xfs_log_move_tail(ailp->xa_mount, tail_lsn); } else { spin_unlock(&ailp->xa_lock); } } else { /* * If the file system is not being shutdown, we are in * serious trouble if we get to this stage. */ struct xfs_mount *mp = ailp->xa_mount; spin_unlock(&ailp->xa_lock); if (!XFS_FORCED_SHUTDOWN(mp)) { xfs_cmn_err(XFS_PTAG_AILDELETE, CE_ALERT, mp, "%s: attempting to delete a log item that is not in the AIL", __func__); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); } } } /* * The active item list (AIL) is a doubly linked list of log * items sorted by ascending lsn. The base of the list is * a forw/back pointer pair embedded in the xfs mount structure. * The base is initialized with both pointers pointing to the * base. This case always needs to be distinguished, because * the base has no lsn to look at. We almost always insert * at the end of the list, so on inserts we search from the * end of the list to find where the new item belongs. */ /* * Initialize the doubly linked list to point only to itself. */ int xfs_trans_ail_init( xfs_mount_t *mp) { struct xfs_ail *ailp; int error; ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL); if (!ailp) return ENOMEM; ailp->xa_mount = mp; INIT_LIST_HEAD(&ailp->xa_ail); spin_lock_init(&ailp->xa_lock); error = xfsaild_start(ailp); if (error) goto out_free_ailp; mp->m_ail = ailp; return 0; out_free_ailp: kmem_free(ailp); return error; } void xfs_trans_ail_destroy( xfs_mount_t *mp) { struct xfs_ail *ailp = mp->m_ail; xfsaild_stop(ailp); kmem_free(ailp); } /* * Insert the given log item into the AIL. * We almost always insert at the end of the list, so on inserts * we search from the end of the list to find where the * new item belongs. */ STATIC void xfs_ail_insert( struct xfs_ail *ailp, xfs_log_item_t *lip) { xfs_log_item_t *next_lip; /* * If the list is empty, just insert the item. */ if (list_empty(&ailp->xa_ail)) { list_add(&lip->li_ail, &ailp->xa_ail); return; } list_for_each_entry_reverse(next_lip, &ailp->xa_ail, li_ail) { if (XFS_LSN_CMP(next_lip->li_lsn, lip->li_lsn) <= 0) break; } ASSERT((&next_lip->li_ail == &ailp->xa_ail) || (XFS_LSN_CMP(next_lip->li_lsn, lip->li_lsn) <= 0)); list_add(&lip->li_ail, &next_lip->li_ail); xfs_ail_check(ailp, lip); return; } /* * Delete the given item from the AIL. Return a pointer to the item. */ STATIC void xfs_ail_delete( struct xfs_ail *ailp, xfs_log_item_t *lip) { xfs_ail_check(ailp, lip); list_del(&lip->li_ail); xfs_trans_ail_cursor_clear(ailp, lip); } /* * Return a pointer to the first item in the AIL. * If the AIL is empty, then return NULL. */ STATIC xfs_log_item_t * xfs_ail_min( struct xfs_ail *ailp) { if (list_empty(&ailp->xa_ail)) return NULL; return list_first_entry(&ailp->xa_ail, xfs_log_item_t, li_ail); } /* * Return a pointer to the item which follows * the given item in the AIL. If the given item * is the last item in the list, then return NULL. */ STATIC xfs_log_item_t * xfs_ail_next( struct xfs_ail *ailp, xfs_log_item_t *lip) { if (lip->li_ail.next == &ailp->xa_ail) return NULL; return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail); } #ifdef DEBUG /* * Check that the list is sorted as it should be. */ STATIC void xfs_ail_check( struct xfs_ail *ailp, xfs_log_item_t *lip) { xfs_log_item_t *prev_lip; if (list_empty(&ailp->xa_ail)) return; /* * Check the next and previous entries are valid. */ ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0); prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail); if (&prev_lip->li_ail != &ailp->xa_ail) ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0); prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail); if (&prev_lip->li_ail != &ailp->xa_ail) ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0); #ifdef XFS_TRANS_DEBUG /* * Walk the list checking lsn ordering, and that every entry has the * XFS_LI_IN_AIL flag set. This is really expensive, so only do it * when specifically debugging the transaction subsystem. */ prev_lip = list_entry(&ailp->xa_ail, xfs_log_item_t, li_ail); list_for_each_entry(lip, &ailp->xa_ail, li_ail) { if (&prev_lip->li_ail != &ailp->xa_ail) ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0); ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0); prev_lip = lip; } #endif /* XFS_TRANS_DEBUG */ } #endif /* DEBUG */