/* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir2.h" #include "xfs_alloc.h" #include "xfs_dmapi.h" #include "xfs_quota.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dir2_sf.h" #include "xfs_attr_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_btree_trace.h" #include "xfs_ialloc.h" #include "xfs_bmap.h" #include "xfs_rtalloc.h" #include "xfs_error.h" #include "xfs_itable.h" #include "xfs_fsops.h" #include "xfs_rw.h" #include "xfs_attr.h" #include "xfs_buf_item.h" #include "xfs_utils.h" #include "xfs_vnodeops.h" #include "xfs_version.h" #include "xfs_log_priv.h" #include "xfs_trans_priv.h" #include "xfs_filestream.h" #include "xfs_da_btree.h" #include "xfs_extfree_item.h" #include "xfs_mru_cache.h" #include "xfs_inode_item.h" #include "xfs_sync.h" #include "xfs_trace.h" #include <linux/namei.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/mount.h> #include <linux/mempool.h> #include <linux/writeback.h> #include <linux/kthread.h> #include <linux/freezer.h> #include <linux/parser.h> static const struct super_operations xfs_super_operations; static kmem_zone_t *xfs_ioend_zone; mempool_t *xfs_ioend_pool; #define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */ #define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */ #define MNTOPT_LOGDEV "logdev" /* log device */ #define MNTOPT_RTDEV "rtdev" /* realtime I/O device */ #define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */ #define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */ #define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */ #define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */ #define MNTOPT_SUNIT "sunit" /* data volume stripe unit */ #define MNTOPT_SWIDTH "swidth" /* data volume stripe width */ #define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */ #define MNTOPT_MTPT "mtpt" /* filesystem mount point */ #define MNTOPT_GRPID "grpid" /* group-ID from parent directory */ #define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */ #define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */ #define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */ #define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */ #define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */ #define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and * unwritten extent conversion */ #define MNTOPT_NOBARRIER "nobarrier" /* .. disable */ #define MNTOPT_OSYNCISOSYNC "osyncisosync" /* o_sync is REALLY o_sync */ #define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */ #define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */ #define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */ #define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */ #define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes * in stat(). */ #define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */ #define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */ #define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */ #define MNTOPT_QUOTA "quota" /* disk quotas (user) */ #define MNTOPT_NOQUOTA "noquota" /* no quotas */ #define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */ #define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */ #define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */ #define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */ #define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */ #define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */ #define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */ #define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */ #define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */ #define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */ #define MNTOPT_DMAPI "dmapi" /* DMI enabled (DMAPI / XDSM) */ #define MNTOPT_XDSM "xdsm" /* DMI enabled (DMAPI / XDSM) */ #define MNTOPT_DMI "dmi" /* DMI enabled (DMAPI / XDSM) */ /* * Table driven mount option parser. * * Currently only used for remount, but it will be used for mount * in the future, too. */ enum { Opt_barrier, Opt_nobarrier, Opt_err }; static const match_table_t tokens = { {Opt_barrier, "barrier"}, {Opt_nobarrier, "nobarrier"}, {Opt_err, NULL} }; STATIC unsigned long suffix_strtoul(char *s, char **endp, unsigned int base) { int last, shift_left_factor = 0; char *value = s; last = strlen(value) - 1; if (value[last] == 'K' || value[last] == 'k') { shift_left_factor = 10; value[last] = '\0'; } if (value[last] == 'M' || value[last] == 'm') { shift_left_factor = 20; value[last] = '\0'; } if (value[last] == 'G' || value[last] == 'g') { shift_left_factor = 30; value[last] = '\0'; } return simple_strtoul((const char *)s, endp, base) << shift_left_factor; } /* * This function fills in xfs_mount_t fields based on mount args. * Note: the superblock has _not_ yet been read in. * * Note that this function leaks the various device name allocations on * failure. The caller takes care of them. */ STATIC int xfs_parseargs( struct xfs_mount *mp, char *options, char **mtpt) { struct super_block *sb = mp->m_super; char *this_char, *value, *eov; int dsunit = 0; int dswidth = 0; int iosize = 0; int dmapi_implies_ikeep = 1; __uint8_t iosizelog = 0; /* * Copy binary VFS mount flags we are interested in. */ if (sb->s_flags & MS_RDONLY) mp->m_flags |= XFS_MOUNT_RDONLY; if (sb->s_flags & MS_DIRSYNC) mp->m_flags |= XFS_MOUNT_DIRSYNC; if (sb->s_flags & MS_SYNCHRONOUS) mp->m_flags |= XFS_MOUNT_WSYNC; /* * Set some default flags that could be cleared by the mount option * parsing. */ mp->m_flags |= XFS_MOUNT_BARRIER; mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE; mp->m_flags |= XFS_MOUNT_SMALL_INUMS; /* * These can be overridden by the mount option parsing. */ mp->m_logbufs = -1; mp->m_logbsize = -1; if (!options) goto done; while ((this_char = strsep(&options, ",")) != NULL) { if (!*this_char) continue; if ((value = strchr(this_char, '=')) != NULL) *value++ = 0; if (!strcmp(this_char, MNTOPT_LOGBUFS)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } mp->m_logbufs = simple_strtoul(value, &eov, 10); } else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } mp->m_logbsize = suffix_strtoul(value, &eov, 10); } else if (!strcmp(this_char, MNTOPT_LOGDEV)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } mp->m_logname = kstrndup(value, MAXNAMELEN, GFP_KERNEL); if (!mp->m_logname) return ENOMEM; } else if (!strcmp(this_char, MNTOPT_MTPT)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } *mtpt = kstrndup(value, MAXNAMELEN, GFP_KERNEL); if (!*mtpt) return ENOMEM; } else if (!strcmp(this_char, MNTOPT_RTDEV)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } mp->m_rtname = kstrndup(value, MAXNAMELEN, GFP_KERNEL); if (!mp->m_rtname) return ENOMEM; } else if (!strcmp(this_char, MNTOPT_BIOSIZE)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } iosize = simple_strtoul(value, &eov, 10); iosizelog = ffs(iosize) - 1; } else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } iosize = suffix_strtoul(value, &eov, 10); iosizelog = ffs(iosize) - 1; } else if (!strcmp(this_char, MNTOPT_GRPID) || !strcmp(this_char, MNTOPT_BSDGROUPS)) { mp->m_flags |= XFS_MOUNT_GRPID; } else if (!strcmp(this_char, MNTOPT_NOGRPID) || !strcmp(this_char, MNTOPT_SYSVGROUPS)) { mp->m_flags &= ~XFS_MOUNT_GRPID; } else if (!strcmp(this_char, MNTOPT_WSYNC)) { mp->m_flags |= XFS_MOUNT_WSYNC; } else if (!strcmp(this_char, MNTOPT_OSYNCISOSYNC)) { mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC; } else if (!strcmp(this_char, MNTOPT_NORECOVERY)) { mp->m_flags |= XFS_MOUNT_NORECOVERY; } else if (!strcmp(this_char, MNTOPT_NOALIGN)) { mp->m_flags |= XFS_MOUNT_NOALIGN; } else if (!strcmp(this_char, MNTOPT_SWALLOC)) { mp->m_flags |= XFS_MOUNT_SWALLOC; } else if (!strcmp(this_char, MNTOPT_SUNIT)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } dsunit = simple_strtoul(value, &eov, 10); } else if (!strcmp(this_char, MNTOPT_SWIDTH)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } dswidth = simple_strtoul(value, &eov, 10); } else if (!strcmp(this_char, MNTOPT_64BITINODE)) { mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; #if !XFS_BIG_INUMS cmn_err(CE_WARN, "XFS: %s option not allowed on this system", this_char); return EINVAL; #endif } else if (!strcmp(this_char, MNTOPT_NOUUID)) { mp->m_flags |= XFS_MOUNT_NOUUID; } else if (!strcmp(this_char, MNTOPT_BARRIER)) { mp->m_flags |= XFS_MOUNT_BARRIER; } else if (!strcmp(this_char, MNTOPT_NOBARRIER)) { mp->m_flags &= ~XFS_MOUNT_BARRIER; } else if (!strcmp(this_char, MNTOPT_IKEEP)) { mp->m_flags |= XFS_MOUNT_IKEEP; } else if (!strcmp(this_char, MNTOPT_NOIKEEP)) { dmapi_implies_ikeep = 0; mp->m_flags &= ~XFS_MOUNT_IKEEP; } else if (!strcmp(this_char, MNTOPT_LARGEIO)) { mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE; } else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) { mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE; } else if (!strcmp(this_char, MNTOPT_ATTR2)) { mp->m_flags |= XFS_MOUNT_ATTR2; } else if (!strcmp(this_char, MNTOPT_NOATTR2)) { mp->m_flags &= ~XFS_MOUNT_ATTR2; mp->m_flags |= XFS_MOUNT_NOATTR2; } else if (!strcmp(this_char, MNTOPT_FILESTREAM)) { mp->m_flags |= XFS_MOUNT_FILESTREAMS; } else if (!strcmp(this_char, MNTOPT_NOQUOTA)) { mp->m_qflags &= ~(XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE | XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE | XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE | XFS_UQUOTA_ENFD | XFS_OQUOTA_ENFD); } else if (!strcmp(this_char, MNTOPT_QUOTA) || !strcmp(this_char, MNTOPT_UQUOTA) || !strcmp(this_char, MNTOPT_USRQUOTA)) { mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE | XFS_UQUOTA_ENFD); } else if (!strcmp(this_char, MNTOPT_QUOTANOENF) || !strcmp(this_char, MNTOPT_UQUOTANOENF)) { mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); mp->m_qflags &= ~XFS_UQUOTA_ENFD; } else if (!strcmp(this_char, MNTOPT_PQUOTA) || !strcmp(this_char, MNTOPT_PRJQUOTA)) { mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE | XFS_OQUOTA_ENFD); } else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) { mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); mp->m_qflags &= ~XFS_OQUOTA_ENFD; } else if (!strcmp(this_char, MNTOPT_GQUOTA) || !strcmp(this_char, MNTOPT_GRPQUOTA)) { mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE | XFS_OQUOTA_ENFD); } else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) { mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); mp->m_qflags &= ~XFS_OQUOTA_ENFD; } else if (!strcmp(this_char, MNTOPT_DMAPI)) { mp->m_flags |= XFS_MOUNT_DMAPI; } else if (!strcmp(this_char, MNTOPT_XDSM)) { mp->m_flags |= XFS_MOUNT_DMAPI; } else if (!strcmp(this_char, MNTOPT_DMI)) { mp->m_flags |= XFS_MOUNT_DMAPI; } else if (!strcmp(this_char, "ihashsize")) { cmn_err(CE_WARN, "XFS: ihashsize no longer used, option is deprecated."); } else if (!strcmp(this_char, "osyncisdsync")) { /* no-op, this is now the default */ cmn_err(CE_WARN, "XFS: osyncisdsync is now the default, option is deprecated."); } else if (!strcmp(this_char, "irixsgid")) { cmn_err(CE_WARN, "XFS: irixsgid is now a sysctl(2) variable, option is deprecated."); } else { cmn_err(CE_WARN, "XFS: unknown mount option [%s].", this_char); return EINVAL; } } /* * no recovery flag requires a read-only mount */ if ((mp->m_flags & XFS_MOUNT_NORECOVERY) && !(mp->m_flags & XFS_MOUNT_RDONLY)) { cmn_err(CE_WARN, "XFS: no-recovery mounts must be read-only."); return EINVAL; } if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) { cmn_err(CE_WARN, "XFS: sunit and swidth options incompatible with the noalign option"); return EINVAL; } #ifndef CONFIG_XFS_QUOTA if (XFS_IS_QUOTA_RUNNING(mp)) { cmn_err(CE_WARN, "XFS: quota support not available in this kernel."); return EINVAL; } #endif if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) && (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE))) { cmn_err(CE_WARN, "XFS: cannot mount with both project and group quota"); return EINVAL; } if ((mp->m_flags & XFS_MOUNT_DMAPI) && (!*mtpt || *mtpt[0] == '\0')) { printk("XFS: %s option needs the mount point option as well\n", MNTOPT_DMAPI); return EINVAL; } if ((dsunit && !dswidth) || (!dsunit && dswidth)) { cmn_err(CE_WARN, "XFS: sunit and swidth must be specified together"); return EINVAL; } if (dsunit && (dswidth % dsunit != 0)) { cmn_err(CE_WARN, "XFS: stripe width (%d) must be a multiple of the stripe unit (%d)", dswidth, dsunit); return EINVAL; } /* * Applications using DMI filesystems often expect the * inode generation number to be monotonically increasing. * If we delete inode chunks we break this assumption, so * keep unused inode chunks on disk for DMI filesystems * until we come up with a better solution. * Note that if "ikeep" or "noikeep" mount options are * supplied, then they are honored. */ if ((mp->m_flags & XFS_MOUNT_DMAPI) && dmapi_implies_ikeep) mp->m_flags |= XFS_MOUNT_IKEEP; done: if (!(mp->m_flags & XFS_MOUNT_NOALIGN)) { /* * At this point the superblock has not been read * in, therefore we do not know the block size. * Before the mount call ends we will convert * these to FSBs. */ if (dsunit) { mp->m_dalign = dsunit; mp->m_flags |= XFS_MOUNT_RETERR; } if (dswidth) mp->m_swidth = dswidth; } if (mp->m_logbufs != -1 && mp->m_logbufs != 0 && (mp->m_logbufs < XLOG_MIN_ICLOGS || mp->m_logbufs > XLOG_MAX_ICLOGS)) { cmn_err(CE_WARN, "XFS: invalid logbufs value: %d [not %d-%d]", mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); return XFS_ERROR(EINVAL); } if (mp->m_logbsize != -1 && mp->m_logbsize != 0 && (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || !is_power_of_2(mp->m_logbsize))) { cmn_err(CE_WARN, "XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", mp->m_logbsize); return XFS_ERROR(EINVAL); } mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL); if (!mp->m_fsname) return ENOMEM; mp->m_fsname_len = strlen(mp->m_fsname) + 1; if (iosizelog) { if (iosizelog > XFS_MAX_IO_LOG || iosizelog < XFS_MIN_IO_LOG) { cmn_err(CE_WARN, "XFS: invalid log iosize: %d [not %d-%d]", iosizelog, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); return XFS_ERROR(EINVAL); } mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE; mp->m_readio_log = iosizelog; mp->m_writeio_log = iosizelog; } return 0; } struct proc_xfs_info { int flag; char *str; }; STATIC int xfs_showargs( struct xfs_mount *mp, struct seq_file *m) { static struct proc_xfs_info xfs_info_set[] = { /* the few simple ones we can get from the mount struct */ { XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP }, { XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC }, { XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN }, { XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC }, { XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID }, { XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY }, { XFS_MOUNT_OSYNCISOSYNC, "," MNTOPT_OSYNCISOSYNC }, { XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 }, { XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM }, { XFS_MOUNT_DMAPI, "," MNTOPT_DMAPI }, { XFS_MOUNT_GRPID, "," MNTOPT_GRPID }, { 0, NULL } }; static struct proc_xfs_info xfs_info_unset[] = { /* the few simple ones we can get from the mount struct */ { XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO }, { XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER }, { XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE }, { 0, NULL } }; struct proc_xfs_info *xfs_infop; for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { if (mp->m_flags & xfs_infop->flag) seq_puts(m, xfs_infop->str); } for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) { if (!(mp->m_flags & xfs_infop->flag)) seq_puts(m, xfs_infop->str); } if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk", (int)(1 << mp->m_writeio_log) >> 10); if (mp->m_logbufs > 0) seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs); if (mp->m_logbsize > 0) seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10); if (mp->m_logname) seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname); if (mp->m_rtname) seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname); if (mp->m_dalign > 0) seq_printf(m, "," MNTOPT_SUNIT "=%d", (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); if (mp->m_swidth > 0) seq_printf(m, "," MNTOPT_SWIDTH "=%d", (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD)) seq_puts(m, "," MNTOPT_USRQUOTA); else if (mp->m_qflags & XFS_UQUOTA_ACCT) seq_puts(m, "," MNTOPT_UQUOTANOENF); /* Either project or group quotas can be active, not both */ if (mp->m_qflags & XFS_PQUOTA_ACCT) { if (mp->m_qflags & XFS_OQUOTA_ENFD) seq_puts(m, "," MNTOPT_PRJQUOTA); else seq_puts(m, "," MNTOPT_PQUOTANOENF); } else if (mp->m_qflags & XFS_GQUOTA_ACCT) { if (mp->m_qflags & XFS_OQUOTA_ENFD) seq_puts(m, "," MNTOPT_GRPQUOTA); else seq_puts(m, "," MNTOPT_GQUOTANOENF); } if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) seq_puts(m, "," MNTOPT_NOQUOTA); return 0; } __uint64_t xfs_max_file_offset( unsigned int blockshift) { unsigned int pagefactor = 1; unsigned int bitshift = BITS_PER_LONG - 1; /* Figure out maximum filesize, on Linux this can depend on * the filesystem blocksize (on 32 bit platforms). * __block_prepare_write does this in an [unsigned] long... * page->index << (PAGE_CACHE_SHIFT - bbits) * So, for page sized blocks (4K on 32 bit platforms), * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1) * but for smaller blocksizes it is less (bbits = log2 bsize). * Note1: get_block_t takes a long (implicit cast from above) * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch * can optionally convert the [unsigned] long from above into * an [unsigned] long long. */ #if BITS_PER_LONG == 32 # if defined(CONFIG_LBDAF) ASSERT(sizeof(sector_t) == 8); pagefactor = PAGE_CACHE_SIZE; bitshift = BITS_PER_LONG; # else pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift); # endif #endif return (((__uint64_t)pagefactor) << bitshift) - 1; } STATIC int xfs_blkdev_get( xfs_mount_t *mp, const char *name, struct block_device **bdevp) { int error = 0; *bdevp = open_bdev_exclusive(name, FMODE_READ|FMODE_WRITE, mp); if (IS_ERR(*bdevp)) { error = PTR_ERR(*bdevp); printk("XFS: Invalid device [%s], error=%d\n", name, error); } return -error; } STATIC void xfs_blkdev_put( struct block_device *bdev) { if (bdev) close_bdev_exclusive(bdev, FMODE_READ|FMODE_WRITE); } /* * Try to write out the superblock using barriers. */ STATIC int xfs_barrier_test( xfs_mount_t *mp) { xfs_buf_t *sbp = xfs_getsb(mp, 0); int error; XFS_BUF_UNDONE(sbp); XFS_BUF_UNREAD(sbp); XFS_BUF_UNDELAYWRITE(sbp); XFS_BUF_WRITE(sbp); XFS_BUF_UNASYNC(sbp); XFS_BUF_ORDERED(sbp); xfsbdstrat(mp, sbp); error = xfs_iowait(sbp); /* * Clear all the flags we set and possible error state in the * buffer. We only did the write to try out whether barriers * worked and shouldn't leave any traces in the superblock * buffer. */ XFS_BUF_DONE(sbp); XFS_BUF_ERROR(sbp, 0); XFS_BUF_UNORDERED(sbp); xfs_buf_relse(sbp); return error; } STATIC void xfs_mountfs_check_barriers(xfs_mount_t *mp) { int error; if (mp->m_logdev_targp != mp->m_ddev_targp) { xfs_fs_cmn_err(CE_NOTE, mp, "Disabling barriers, not supported with external log device"); mp->m_flags &= ~XFS_MOUNT_BARRIER; return; } if (xfs_readonly_buftarg(mp->m_ddev_targp)) { xfs_fs_cmn_err(CE_NOTE, mp, "Disabling barriers, underlying device is readonly"); mp->m_flags &= ~XFS_MOUNT_BARRIER; return; } error = xfs_barrier_test(mp); if (error) { xfs_fs_cmn_err(CE_NOTE, mp, "Disabling barriers, trial barrier write failed"); mp->m_flags &= ~XFS_MOUNT_BARRIER; return; } } void xfs_blkdev_issue_flush( xfs_buftarg_t *buftarg) { blkdev_issue_flush(buftarg->bt_bdev, NULL); } STATIC void xfs_close_devices( struct xfs_mount *mp) { if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { struct block_device *logdev = mp->m_logdev_targp->bt_bdev; xfs_free_buftarg(mp, mp->m_logdev_targp); xfs_blkdev_put(logdev); } if (mp->m_rtdev_targp) { struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev; xfs_free_buftarg(mp, mp->m_rtdev_targp); xfs_blkdev_put(rtdev); } xfs_free_buftarg(mp, mp->m_ddev_targp); } /* * The file system configurations are: * (1) device (partition) with data and internal log * (2) logical volume with data and log subvolumes. * (3) logical volume with data, log, and realtime subvolumes. * * We only have to handle opening the log and realtime volumes here if * they are present. The data subvolume has already been opened by * get_sb_bdev() and is stored in sb->s_bdev. */ STATIC int xfs_open_devices( struct xfs_mount *mp) { struct block_device *ddev = mp->m_super->s_bdev; struct block_device *logdev = NULL, *rtdev = NULL; int error; /* * Open real time and log devices - order is important. */ if (mp->m_logname) { error = xfs_blkdev_get(mp, mp->m_logname, &logdev); if (error) goto out; } if (mp->m_rtname) { error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev); if (error) goto out_close_logdev; if (rtdev == ddev || rtdev == logdev) { cmn_err(CE_WARN, "XFS: Cannot mount filesystem with identical rtdev and ddev/logdev."); error = EINVAL; goto out_close_rtdev; } } /* * Setup xfs_mount buffer target pointers */ error = ENOMEM; mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0, mp->m_fsname); if (!mp->m_ddev_targp) goto out_close_rtdev; if (rtdev) { mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1, mp->m_fsname); if (!mp->m_rtdev_targp) goto out_free_ddev_targ; } if (logdev && logdev != ddev) { mp->m_logdev_targp = xfs_alloc_buftarg(logdev, 1, mp->m_fsname); if (!mp->m_logdev_targp) goto out_free_rtdev_targ; } else { mp->m_logdev_targp = mp->m_ddev_targp; } return 0; out_free_rtdev_targ: if (mp->m_rtdev_targp) xfs_free_buftarg(mp, mp->m_rtdev_targp); out_free_ddev_targ: xfs_free_buftarg(mp, mp->m_ddev_targp); out_close_rtdev: if (rtdev) xfs_blkdev_put(rtdev); out_close_logdev: if (logdev && logdev != ddev) xfs_blkdev_put(logdev); out: return error; } /* * Setup xfs_mount buffer target pointers based on superblock */ STATIC int xfs_setup_devices( struct xfs_mount *mp) { int error; error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize, mp->m_sb.sb_sectsize); if (error) return error; if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { unsigned int log_sector_size = BBSIZE; if (xfs_sb_version_hassector(&mp->m_sb)) log_sector_size = mp->m_sb.sb_logsectsize; error = xfs_setsize_buftarg(mp->m_logdev_targp, mp->m_sb.sb_blocksize, log_sector_size); if (error) return error; } if (mp->m_rtdev_targp) { error = xfs_setsize_buftarg(mp->m_rtdev_targp, mp->m_sb.sb_blocksize, mp->m_sb.sb_sectsize); if (error) return error; } return 0; } /* * XFS AIL push thread support */ void xfsaild_wakeup( struct xfs_ail *ailp, xfs_lsn_t threshold_lsn) { ailp->xa_target = threshold_lsn; wake_up_process(ailp->xa_task); } STATIC int xfsaild( void *data) { struct xfs_ail *ailp = data; xfs_lsn_t last_pushed_lsn = 0; long tout = 0; /* milliseconds */ while (!kthread_should_stop()) { schedule_timeout_interruptible(tout ? msecs_to_jiffies(tout) : MAX_SCHEDULE_TIMEOUT); /* swsusp */ try_to_freeze(); ASSERT(ailp->xa_mount->m_log); if (XFS_FORCED_SHUTDOWN(ailp->xa_mount)) continue; tout = xfsaild_push(ailp, &last_pushed_lsn); } return 0; } /* xfsaild */ int xfsaild_start( struct xfs_ail *ailp) { ailp->xa_target = 0; ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s", ailp->xa_mount->m_fsname); if (IS_ERR(ailp->xa_task)) return -PTR_ERR(ailp->xa_task); return 0; } void xfsaild_stop( struct xfs_ail *ailp) { kthread_stop(ailp->xa_task); } /* Catch misguided souls that try to use this interface on XFS */ STATIC struct inode * xfs_fs_alloc_inode( struct super_block *sb) { BUG(); return NULL; } /* * Now that the generic code is guaranteed not to be accessing * the linux inode, we can reclaim the inode. */ STATIC void xfs_fs_destroy_inode( struct inode *inode) { struct xfs_inode *ip = XFS_I(inode); xfs_itrace_entry(ip); XFS_STATS_INC(vn_reclaim); /* bad inode, get out here ASAP */ if (is_bad_inode(inode)) goto out_reclaim; xfs_ioend_wait(ip); ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0); /* * We should never get here with one of the reclaim flags already set. */ ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); /* * We always use background reclaim here because even if the * inode is clean, it still may be under IO and hence we have * to take the flush lock. The background reclaim path handles * this more efficiently than we can here, so simply let background * reclaim tear down all inodes. */ out_reclaim: xfs_inode_set_reclaim_tag(ip); } /* * Slab object creation initialisation for the XFS inode. * This covers only the idempotent fields in the XFS inode; * all other fields need to be initialised on allocation * from the slab. This avoids the need to repeatedly intialise * fields in the xfs inode that left in the initialise state * when freeing the inode. */ STATIC void xfs_fs_inode_init_once( void *inode) { struct xfs_inode *ip = inode; memset(ip, 0, sizeof(struct xfs_inode)); /* vfs inode */ inode_init_once(VFS_I(ip)); /* xfs inode */ atomic_set(&ip->i_iocount, 0); atomic_set(&ip->i_pincount, 0); spin_lock_init(&ip->i_flags_lock); init_waitqueue_head(&ip->i_ipin_wait); /* * Because we want to use a counting completion, complete * the flush completion once to allow a single access to * the flush completion without blocking. */ init_completion(&ip->i_flush); complete(&ip->i_flush); mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, "xfsino", ip->i_ino); } /* * Dirty the XFS inode when mark_inode_dirty_sync() is called so that * we catch unlogged VFS level updates to the inode. Care must be taken * here - the transaction code calls mark_inode_dirty_sync() to mark the * VFS inode dirty in a transaction and clears the i_update_core field; * it must clear the field after calling mark_inode_dirty_sync() to * correctly indicate that the dirty state has been propagated into the * inode log item. * * We need the barrier() to maintain correct ordering between unlogged * updates and the transaction commit code that clears the i_update_core * field. This requires all updates to be completed before marking the * inode dirty. */ STATIC void xfs_fs_dirty_inode( struct inode *inode) { barrier(); XFS_I(inode)->i_update_core = 1; } STATIC int xfs_log_inode( struct xfs_inode *ip) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error; xfs_iunlock(ip, XFS_ILOCK_SHARED); tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0); if (error) { xfs_trans_cancel(tp, 0); /* we need to return with the lock hold shared */ xfs_ilock(ip, XFS_ILOCK_SHARED); return error; } xfs_ilock(ip, XFS_ILOCK_EXCL); /* * Note - it's possible that we might have pushed ourselves out of the * way during trans_reserve which would flush the inode. But there's * no guarantee that the inode buffer has actually gone out yet (it's * delwri). Plus the buffer could be pinned anyway if it's part of * an inode in another recent transaction. So we play it safe and * fire off the transaction anyway. */ xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); xfs_trans_ihold(tp, ip); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); xfs_trans_set_sync(tp); error = xfs_trans_commit(tp, 0); xfs_ilock_demote(ip, XFS_ILOCK_EXCL); return error; } STATIC int xfs_fs_write_inode( struct inode *inode, struct writeback_control *wbc) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; int error = EAGAIN; xfs_itrace_entry(ip); if (XFS_FORCED_SHUTDOWN(mp)) return XFS_ERROR(EIO); if (wbc->sync_mode == WB_SYNC_ALL) { /* * Make sure the inode has hit stable storage. By using the * log and the fsync transactions we reduce the IOs we have * to do here from two (log and inode) to just the log. * * Note: We still need to do a delwri write of the inode after * this to flush it to the backing buffer so that bulkstat * works properly if this is the first time the inode has been * written. Because we hold the ilock atomically over the * transaction commit and the inode flush we are guaranteed * that the inode is not pinned when it returns. If the flush * lock is already held, then the inode has already been * flushed once and we don't need to flush it again. Hence * the code will only flush the inode if it isn't already * being flushed. */ xfs_ioend_wait(ip); xfs_ilock(ip, XFS_ILOCK_SHARED); if (ip->i_update_core) { error = xfs_log_inode(ip); if (error) goto out_unlock; } } else { /* * We make this non-blocking if the inode is contended, return * EAGAIN to indicate to the caller that they did not succeed. * This prevents the flush path from blocking on inodes inside * another operation right now, they get caught later by xfs_sync. */ if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) goto out; } if (xfs_ipincount(ip) || !xfs_iflock_nowait(ip)) goto out_unlock; /* * Now we have the flush lock and the inode is not pinned, we can check * if the inode is really clean as we know that there are no pending * transaction completions, it is not waiting on the delayed write * queue and there is no IO in progress. */ if (xfs_inode_clean(ip)) { xfs_ifunlock(ip); error = 0; goto out_unlock; } error = xfs_iflush(ip, 0); out_unlock: xfs_iunlock(ip, XFS_ILOCK_SHARED); out: /* * if we failed to write out the inode then mark * it dirty again so we'll try again later. */ if (error) xfs_mark_inode_dirty_sync(ip); return -error; } STATIC void xfs_fs_clear_inode( struct inode *inode) { xfs_inode_t *ip = XFS_I(inode); xfs_itrace_entry(ip); XFS_STATS_INC(vn_rele); XFS_STATS_INC(vn_remove); XFS_STATS_DEC(vn_active); /* * The iolock is used by the file system to coordinate reads, * writes, and block truncates. Up to this point the lock * protected concurrent accesses by users of the inode. But * from here forward we're doing some final processing of the * inode because we're done with it, and although we reuse the * iolock for protection it is really a distinct lock class * (in the lockdep sense) from before. To keep lockdep happy * (and basically indicate what we are doing), we explicitly * re-init the iolock here. */ ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); xfs_inactive(ip); } STATIC void xfs_free_fsname( struct xfs_mount *mp) { kfree(mp->m_fsname); kfree(mp->m_rtname); kfree(mp->m_logname); } STATIC void xfs_fs_put_super( struct super_block *sb) { struct xfs_mount *mp = XFS_M(sb); xfs_syncd_stop(mp); if (!(sb->s_flags & MS_RDONLY)) { /* * XXX(hch): this should be SYNC_WAIT. * * Or more likely not needed at all because the VFS is already * calling ->sync_fs after shutting down all filestem * operations and just before calling ->put_super. */ xfs_sync_data(mp, 0); xfs_sync_attr(mp, 0); } XFS_SEND_PREUNMOUNT(mp); /* * Blow away any referenced inode in the filestreams cache. * This can and will cause log traffic as inodes go inactive * here. */ xfs_filestream_unmount(mp); XFS_bflush(mp->m_ddev_targp); XFS_SEND_UNMOUNT(mp); xfs_unmountfs(mp); xfs_freesb(mp); xfs_inode_shrinker_unregister(mp); xfs_icsb_destroy_counters(mp); xfs_close_devices(mp); xfs_dmops_put(mp); xfs_free_fsname(mp); kfree(mp); } STATIC int xfs_fs_sync_fs( struct super_block *sb, int wait) { struct xfs_mount *mp = XFS_M(sb); int error; /* * Not much we can do for the first async pass. Writing out the * superblock would be counter-productive as we are going to redirty * when writing out other data and metadata (and writing out a single * block is quite fast anyway). * * Try to asynchronously kick off quota syncing at least. */ if (!wait) { xfs_qm_sync(mp, SYNC_TRYLOCK); return 0; } error = xfs_quiesce_data(mp); if (error) return -error; if (laptop_mode) { int prev_sync_seq = mp->m_sync_seq; /* * The disk must be active because we're syncing. * We schedule xfssyncd now (now that the disk is * active) instead of later (when it might not be). */ wake_up_process(mp->m_sync_task); /* * We have to wait for the sync iteration to complete. * If we don't, the disk activity caused by the sync * will come after the sync is completed, and that * triggers another sync from laptop mode. */ wait_event(mp->m_wait_single_sync_task, mp->m_sync_seq != prev_sync_seq); } return 0; } STATIC int xfs_fs_statfs( struct dentry *dentry, struct kstatfs *statp) { struct xfs_mount *mp = XFS_M(dentry->d_sb); xfs_sb_t *sbp = &mp->m_sb; struct xfs_inode *ip = XFS_I(dentry->d_inode); __uint64_t fakeinos, id; xfs_extlen_t lsize; statp->f_type = XFS_SB_MAGIC; statp->f_namelen = MAXNAMELEN - 1; id = huge_encode_dev(mp->m_ddev_targp->bt_dev); statp->f_fsid.val[0] = (u32)id; statp->f_fsid.val[1] = (u32)(id >> 32); xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT); spin_lock(&mp->m_sb_lock); statp->f_bsize = sbp->sb_blocksize; lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; statp->f_blocks = sbp->sb_dblocks - lsize; statp->f_bfree = statp->f_bavail = sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); fakeinos = statp->f_bfree << sbp->sb_inopblog; statp->f_files = MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER); if (mp->m_maxicount) statp->f_files = min_t(typeof(statp->f_files), statp->f_files, mp->m_maxicount); statp->f_ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree); spin_unlock(&mp->m_sb_lock); if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) || ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))) == (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD)) xfs_qm_statvfs(ip, statp); return 0; } STATIC void xfs_save_resvblks(struct xfs_mount *mp) { __uint64_t resblks = 0; mp->m_resblks_save = mp->m_resblks; xfs_reserve_blocks(mp, &resblks, NULL); } STATIC void xfs_restore_resvblks(struct xfs_mount *mp) { __uint64_t resblks; if (mp->m_resblks_save) { resblks = mp->m_resblks_save; mp->m_resblks_save = 0; } else resblks = xfs_default_resblks(mp); xfs_reserve_blocks(mp, &resblks, NULL); } STATIC int xfs_fs_remount( struct super_block *sb, int *flags, char *options) { struct xfs_mount *mp = XFS_M(sb); substring_t args[MAX_OPT_ARGS]; char *p; int error; while ((p = strsep(&options, ",")) != NULL) { int token; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_barrier: mp->m_flags |= XFS_MOUNT_BARRIER; /* * Test if barriers are actually working if we can, * else delay this check until the filesystem is * marked writeable. */ if (!(mp->m_flags & XFS_MOUNT_RDONLY)) xfs_mountfs_check_barriers(mp); break; case Opt_nobarrier: mp->m_flags &= ~XFS_MOUNT_BARRIER; break; default: /* * Logically we would return an error here to prevent * users from believing they might have changed * mount options using remount which can't be changed. * * But unfortunately mount(8) adds all options from * mtab and fstab to the mount arguments in some cases * so we can't blindly reject options, but have to * check for each specified option if it actually * differs from the currently set option and only * reject it if that's the case. * * Until that is implemented we return success for * every remount request, and silently ignore all * options that we can't actually change. */ #if 0 printk(KERN_INFO "XFS: mount option \"%s\" not supported for remount\n", p); return -EINVAL; #else break; #endif } } /* ro -> rw */ if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & MS_RDONLY)) { mp->m_flags &= ~XFS_MOUNT_RDONLY; if (mp->m_flags & XFS_MOUNT_BARRIER) xfs_mountfs_check_barriers(mp); /* * If this is the first remount to writeable state we * might have some superblock changes to update. */ if (mp->m_update_flags) { error = xfs_mount_log_sb(mp, mp->m_update_flags); if (error) { cmn_err(CE_WARN, "XFS: failed to write sb changes"); return error; } mp->m_update_flags = 0; } /* * Fill out the reserve pool if it is empty. Use the stashed * value if it is non-zero, otherwise go with the default. */ xfs_restore_resvblks(mp); } /* rw -> ro */ if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & MS_RDONLY)) { /* * After we have synced the data but before we sync the * metadata, we need to free up the reserve block pool so that * the used block count in the superblock on disk is correct at * the end of the remount. Stash the current reserve pool size * so that if we get remounted rw, we can return it to the same * size. */ xfs_quiesce_data(mp); xfs_save_resvblks(mp); xfs_quiesce_attr(mp); mp->m_flags |= XFS_MOUNT_RDONLY; } return 0; } /* * Second stage of a freeze. The data is already frozen so we only * need to take care of the metadata. Once that's done write a dummy * record to dirty the log in case of a crash while frozen. */ STATIC int xfs_fs_freeze( struct super_block *sb) { struct xfs_mount *mp = XFS_M(sb); xfs_save_resvblks(mp); xfs_quiesce_attr(mp); return -xfs_fs_log_dummy(mp); } STATIC int xfs_fs_unfreeze( struct super_block *sb) { struct xfs_mount *mp = XFS_M(sb); xfs_restore_resvblks(mp); return 0; } STATIC int xfs_fs_show_options( struct seq_file *m, struct vfsmount *mnt) { return -xfs_showargs(XFS_M(mnt->mnt_sb), m); } /* * This function fills in xfs_mount_t fields based on mount args. * Note: the superblock _has_ now been read in. */ STATIC int xfs_finish_flags( struct xfs_mount *mp) { int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); /* Fail a mount where the logbuf is smaller than the log stripe */ if (xfs_sb_version_haslogv2(&mp->m_sb)) { if (mp->m_logbsize <= 0 && mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { mp->m_logbsize = mp->m_sb.sb_logsunit; } else if (mp->m_logbsize > 0 && mp->m_logbsize < mp->m_sb.sb_logsunit) { cmn_err(CE_WARN, "XFS: logbuf size must be greater than or equal to log stripe size"); return XFS_ERROR(EINVAL); } } else { /* Fail a mount if the logbuf is larger than 32K */ if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { cmn_err(CE_WARN, "XFS: logbuf size for version 1 logs must be 16K or 32K"); return XFS_ERROR(EINVAL); } } /* * mkfs'ed attr2 will turn on attr2 mount unless explicitly * told by noattr2 to turn it off */ if (xfs_sb_version_hasattr2(&mp->m_sb) && !(mp->m_flags & XFS_MOUNT_NOATTR2)) mp->m_flags |= XFS_MOUNT_ATTR2; /* * prohibit r/w mounts of read-only filesystems */ if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { cmn_err(CE_WARN, "XFS: cannot mount a read-only filesystem as read-write"); return XFS_ERROR(EROFS); } return 0; } STATIC int xfs_fs_fill_super( struct super_block *sb, void *data, int silent) { struct inode *root; struct xfs_mount *mp = NULL; int flags = 0, error = ENOMEM; char *mtpt = NULL; mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL); if (!mp) goto out; spin_lock_init(&mp->m_sb_lock); mutex_init(&mp->m_growlock); atomic_set(&mp->m_active_trans, 0); INIT_LIST_HEAD(&mp->m_sync_list); spin_lock_init(&mp->m_sync_lock); init_waitqueue_head(&mp->m_wait_single_sync_task); mp->m_super = sb; sb->s_fs_info = mp; error = xfs_parseargs(mp, (char *)data, &mtpt); if (error) goto out_free_fsname; sb_min_blocksize(sb, BBSIZE); sb->s_xattr = xfs_xattr_handlers; sb->s_export_op = &xfs_export_operations; #ifdef CONFIG_XFS_QUOTA sb->s_qcop = &xfs_quotactl_operations; #endif sb->s_op = &xfs_super_operations; error = xfs_dmops_get(mp); if (error) goto out_free_fsname; if (silent) flags |= XFS_MFSI_QUIET; error = xfs_open_devices(mp); if (error) goto out_put_dmops; if (xfs_icsb_init_counters(mp)) mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB; error = xfs_readsb(mp, flags); if (error) goto out_destroy_counters; error = xfs_finish_flags(mp); if (error) goto out_free_sb; error = xfs_setup_devices(mp); if (error) goto out_free_sb; if (mp->m_flags & XFS_MOUNT_BARRIER) xfs_mountfs_check_barriers(mp); error = xfs_filestream_mount(mp); if (error) goto out_free_sb; error = xfs_mountfs(mp); if (error) goto out_filestream_unmount; XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, mtpt, mp->m_fsname); sb->s_magic = XFS_SB_MAGIC; sb->s_blocksize = mp->m_sb.sb_blocksize; sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits); sb->s_time_gran = 1; set_posix_acl_flag(sb); root = igrab(VFS_I(mp->m_rootip)); if (!root) { error = ENOENT; goto fail_unmount; } if (is_bad_inode(root)) { error = EINVAL; goto fail_vnrele; } sb->s_root = d_alloc_root(root); if (!sb->s_root) { error = ENOMEM; goto fail_vnrele; } error = xfs_syncd_init(mp); if (error) goto fail_vnrele; xfs_inode_shrinker_register(mp); kfree(mtpt); return 0; out_filestream_unmount: xfs_filestream_unmount(mp); out_free_sb: xfs_freesb(mp); out_destroy_counters: xfs_icsb_destroy_counters(mp); xfs_close_devices(mp); out_put_dmops: xfs_dmops_put(mp); out_free_fsname: xfs_free_fsname(mp); kfree(mtpt); kfree(mp); out: return -error; fail_vnrele: if (sb->s_root) { dput(sb->s_root); sb->s_root = NULL; } else { iput(root); } fail_unmount: /* * Blow away any referenced inode in the filestreams cache. * This can and will cause log traffic as inodes go inactive * here. */ xfs_filestream_unmount(mp); XFS_bflush(mp->m_ddev_targp); xfs_unmountfs(mp); goto out_free_sb; } STATIC int xfs_fs_get_sb( struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super, mnt); } static const struct super_operations xfs_super_operations = { .alloc_inode = xfs_fs_alloc_inode, .destroy_inode = xfs_fs_destroy_inode, .dirty_inode = xfs_fs_dirty_inode, .write_inode = xfs_fs_write_inode, .clear_inode = xfs_fs_clear_inode, .put_super = xfs_fs_put_super, .sync_fs = xfs_fs_sync_fs, .freeze_fs = xfs_fs_freeze, .unfreeze_fs = xfs_fs_unfreeze, .statfs = xfs_fs_statfs, .remount_fs = xfs_fs_remount, .show_options = xfs_fs_show_options, }; static struct file_system_type xfs_fs_type = { .owner = THIS_MODULE, .name = "xfs", .get_sb = xfs_fs_get_sb, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; STATIC int __init xfs_init_zones(void) { xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend"); if (!xfs_ioend_zone) goto out; xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE, xfs_ioend_zone); if (!xfs_ioend_pool) goto out_destroy_ioend_zone; xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t), "xfs_log_ticket"); if (!xfs_log_ticket_zone) goto out_destroy_ioend_pool; xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t), "xfs_bmap_free_item"); if (!xfs_bmap_free_item_zone) goto out_destroy_log_ticket_zone; xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t), "xfs_btree_cur"); if (!xfs_btree_cur_zone) goto out_destroy_bmap_free_item_zone; xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t), "xfs_da_state"); if (!xfs_da_state_zone) goto out_destroy_btree_cur_zone; xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf"); if (!xfs_dabuf_zone) goto out_destroy_da_state_zone; xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork"); if (!xfs_ifork_zone) goto out_destroy_dabuf_zone; xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans"); if (!xfs_trans_zone) goto out_destroy_ifork_zone; /* * The size of the zone allocated buf log item is the maximum * size possible under XFS. This wastes a little bit of memory, * but it is much faster. */ xfs_buf_item_zone = kmem_zone_init((sizeof(xfs_buf_log_item_t) + (((XFS_MAX_BLOCKSIZE / XFS_BLI_CHUNK) / NBWORD) * sizeof(int))), "xfs_buf_item"); if (!xfs_buf_item_zone) goto out_destroy_trans_zone; xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) + ((XFS_EFD_MAX_FAST_EXTENTS - 1) * sizeof(xfs_extent_t))), "xfs_efd_item"); if (!xfs_efd_zone) goto out_destroy_buf_item_zone; xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) + ((XFS_EFI_MAX_FAST_EXTENTS - 1) * sizeof(xfs_extent_t))), "xfs_efi_item"); if (!xfs_efi_zone) goto out_destroy_efd_zone; xfs_inode_zone = kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode", KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD, xfs_fs_inode_init_once); if (!xfs_inode_zone) goto out_destroy_efi_zone; xfs_ili_zone = kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili", KM_ZONE_SPREAD, NULL); if (!xfs_ili_zone) goto out_destroy_inode_zone; return 0; out_destroy_inode_zone: kmem_zone_destroy(xfs_inode_zone); out_destroy_efi_zone: kmem_zone_destroy(xfs_efi_zone); out_destroy_efd_zone: kmem_zone_destroy(xfs_efd_zone); out_destroy_buf_item_zone: kmem_zone_destroy(xfs_buf_item_zone); out_destroy_trans_zone: kmem_zone_destroy(xfs_trans_zone); out_destroy_ifork_zone: kmem_zone_destroy(xfs_ifork_zone); out_destroy_dabuf_zone: kmem_zone_destroy(xfs_dabuf_zone); out_destroy_da_state_zone: kmem_zone_destroy(xfs_da_state_zone); out_destroy_btree_cur_zone: kmem_zone_destroy(xfs_btree_cur_zone); out_destroy_bmap_free_item_zone: kmem_zone_destroy(xfs_bmap_free_item_zone); out_destroy_log_ticket_zone: kmem_zone_destroy(xfs_log_ticket_zone); out_destroy_ioend_pool: mempool_destroy(xfs_ioend_pool); out_destroy_ioend_zone: kmem_zone_destroy(xfs_ioend_zone); out: return -ENOMEM; } STATIC void xfs_destroy_zones(void) { kmem_zone_destroy(xfs_ili_zone); kmem_zone_destroy(xfs_inode_zone); kmem_zone_destroy(xfs_efi_zone); kmem_zone_destroy(xfs_efd_zone); kmem_zone_destroy(xfs_buf_item_zone); kmem_zone_destroy(xfs_trans_zone); kmem_zone_destroy(xfs_ifork_zone); kmem_zone_destroy(xfs_dabuf_zone); kmem_zone_destroy(xfs_da_state_zone); kmem_zone_destroy(xfs_btree_cur_zone); kmem_zone_destroy(xfs_bmap_free_item_zone); kmem_zone_destroy(xfs_log_ticket_zone); mempool_destroy(xfs_ioend_pool); kmem_zone_destroy(xfs_ioend_zone); } STATIC int __init init_xfs_fs(void) { int error; printk(KERN_INFO XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n"); xfs_ioend_init(); xfs_dir_startup(); error = xfs_init_zones(); if (error) goto out; error = xfs_mru_cache_init(); if (error) goto out_destroy_zones; error = xfs_filestream_init(); if (error) goto out_mru_cache_uninit; error = xfs_buf_init(); if (error) goto out_filestream_uninit; error = xfs_init_procfs(); if (error) goto out_buf_terminate; error = xfs_sysctl_register(); if (error) goto out_cleanup_procfs; vfs_initquota(); xfs_inode_shrinker_init(); error = register_filesystem(&xfs_fs_type); if (error) goto out_sysctl_unregister; return 0; out_sysctl_unregister: xfs_sysctl_unregister(); out_cleanup_procfs: xfs_cleanup_procfs(); out_buf_terminate: xfs_buf_terminate(); out_filestream_uninit: xfs_filestream_uninit(); out_mru_cache_uninit: xfs_mru_cache_uninit(); out_destroy_zones: xfs_destroy_zones(); out: return error; } STATIC void __exit exit_xfs_fs(void) { vfs_exitquota(); unregister_filesystem(&xfs_fs_type); xfs_inode_shrinker_destroy(); xfs_sysctl_unregister(); xfs_cleanup_procfs(); xfs_buf_terminate(); xfs_filestream_uninit(); xfs_mru_cache_uninit(); xfs_destroy_zones(); } module_init(init_xfs_fs); module_exit(exit_xfs_fs); MODULE_AUTHOR("Silicon Graphics, Inc."); MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); MODULE_LICENSE("GPL");