/* * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for * licensing and copyright details */ #include #include #include #include #include #include #include #include #include #include /* the 32 bit compat definitions with int argument */ #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int) #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION struct reiserfs_journal_list; /* bitmasks for i_flags field in reiserfs-specific part of inode */ typedef enum { /* * this says what format of key do all items (but stat data) of * an object have. If this is set, that format is 3.6 otherwise - 3.5 */ i_item_key_version_mask = 0x0001, /* * If this is unset, object has 3.5 stat data, otherwise, * it has 3.6 stat data with 64bit size, 32bit nlink etc. */ i_stat_data_version_mask = 0x0002, /* file might need tail packing on close */ i_pack_on_close_mask = 0x0004, /* don't pack tail of file */ i_nopack_mask = 0x0008, /* * If either of these are set, "safe link" was created for this * file during truncate or unlink. Safe link is used to avoid * leakage of disk space on crash with some files open, but unlinked. */ i_link_saved_unlink_mask = 0x0010, i_link_saved_truncate_mask = 0x0020, i_has_xattr_dir = 0x0040, i_data_log = 0x0080, } reiserfs_inode_flags; struct reiserfs_inode_info { __u32 i_key[4]; /* key is still 4 32 bit integers */ /* * transient inode flags that are never stored on disk. Bitmasks * for this field are defined above. */ __u32 i_flags; /* offset of first byte stored in direct item. */ __u32 i_first_direct_byte; /* copy of persistent inode flags read from sd_attrs. */ __u32 i_attrs; /* first unused block of a sequence of unused blocks */ int i_prealloc_block; int i_prealloc_count; /* length of that sequence */ /* per-transaction list of inodes which have preallocated blocks */ struct list_head i_prealloc_list; /* * new_packing_locality is created; new blocks for the contents * of this directory should be displaced */ unsigned new_packing_locality:1; /* * we use these for fsync or O_SYNC to decide which transaction * needs to be committed in order for this inode to be properly * flushed */ unsigned int i_trans_id; struct reiserfs_journal_list *i_jl; atomic_t openers; struct mutex tailpack; #ifdef CONFIG_REISERFS_FS_XATTR struct rw_semaphore i_xattr_sem; #endif struct inode vfs_inode; }; typedef enum { reiserfs_attrs_cleared = 0x00000001, } reiserfs_super_block_flags; /* * struct reiserfs_super_block accessors/mutators since this is a disk * structure, it will always be in little endian format. */ #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count)) #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v)) #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks)) #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v)) #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block)) #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v)) #define sb_jp_journal_1st_block(sbp) \ (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block)) #define set_sb_jp_journal_1st_block(sbp,v) \ ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v)) #define sb_jp_journal_dev(sbp) \ (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev)) #define set_sb_jp_journal_dev(sbp,v) \ ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v)) #define sb_jp_journal_size(sbp) \ (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size)) #define set_sb_jp_journal_size(sbp,v) \ ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v)) #define sb_jp_journal_trans_max(sbp) \ (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max)) #define set_sb_jp_journal_trans_max(sbp,v) \ ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v)) #define sb_jp_journal_magic(sbp) \ (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic)) #define set_sb_jp_journal_magic(sbp,v) \ ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v)) #define sb_jp_journal_max_batch(sbp) \ (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch)) #define set_sb_jp_journal_max_batch(sbp,v) \ ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v)) #define sb_jp_jourmal_max_commit_age(sbp) \ (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age)) #define set_sb_jp_journal_max_commit_age(sbp,v) \ ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v)) #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize)) #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v)) #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize)) #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v)) #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize)) #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v)) #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state)) #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v)) #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state)) #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v)) #define sb_hash_function_code(sbp) \ (le32_to_cpu((sbp)->s_v1.s_hash_function_code)) #define set_sb_hash_function_code(sbp,v) \ ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v)) #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height)) #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v)) #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr)) #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v)) #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version)) #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v)) #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count)) #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v)) #define sb_reserved_for_journal(sbp) \ (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal)) #define set_sb_reserved_for_journal(sbp,v) \ ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v)) /* LOGGING -- */ /* * These all interelate for performance. * * If the journal block count is smaller than n transactions, you lose speed. * I don't know what n is yet, I'm guessing 8-16. * * typical transaction size depends on the application, how often fsync is * called, and how many metadata blocks you dirty in a 30 second period. * The more small files (<16k) you use, the larger your transactions will * be. * * If your journal fills faster than dirty buffers get flushed to disk, it * must flush them before allowing the journal to wrap, which slows things * down. If you need high speed meta data updates, the journal should be * big enough to prevent wrapping before dirty meta blocks get to disk. * * If the batch max is smaller than the transaction max, you'll waste space * at the end of the journal because journal_end sets the next transaction * to start at 0 if the next transaction has any chance of wrapping. * * The large the batch max age, the better the speed, and the more meta * data changes you'll lose after a crash. */ /* don't mess with these for a while */ /* we have a node size define somewhere in reiserfs_fs.h. -Hans */ #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */ #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */ #define JOURNAL_HASH_SIZE 8192 /* number of copies of the bitmaps to have floating. Must be >= 2 */ #define JOURNAL_NUM_BITMAPS 5 /* * One of these for every block in every transaction * Each one is in two hash tables. First, a hash of the current transaction, * and after journal_end, a hash of all the in memory transactions. * next and prev are used by the current transaction (journal_hash). * hnext and hprev are used by journal_list_hash. If a block is in more * than one transaction, the journal_list_hash links it in multiple times. * This allows flush_journal_list to remove just the cnode belonging to a * given transaction. */ struct reiserfs_journal_cnode { struct buffer_head *bh; /* real buffer head */ struct super_block *sb; /* dev of real buffer head */ /* block number of real buffer head, == 0 when buffer on disk */ __u32 blocknr; unsigned long state; /* journal list this cnode lives in */ struct reiserfs_journal_list *jlist; struct reiserfs_journal_cnode *next; /* next in transaction list */ struct reiserfs_journal_cnode *prev; /* prev in transaction list */ struct reiserfs_journal_cnode *hprev; /* prev in hash list */ struct reiserfs_journal_cnode *hnext; /* next in hash list */ }; struct reiserfs_bitmap_node { int id; char *data; struct list_head list; }; struct reiserfs_list_bitmap { struct reiserfs_journal_list *journal_list; struct reiserfs_bitmap_node **bitmaps; }; /* * one of these for each transaction. The most important part here is the * j_realblock. this list of cnodes is used to hash all the blocks in all * the commits, to mark all the real buffer heads dirty once all the commits * hit the disk, and to make sure every real block in a transaction is on * disk before allowing the log area to be overwritten */ struct reiserfs_journal_list { unsigned long j_start; unsigned long j_state; unsigned long j_len; atomic_t j_nonzerolen; atomic_t j_commit_left; /* all commits older than this on disk */ atomic_t j_older_commits_done; struct mutex j_commit_mutex; unsigned int j_trans_id; time_t j_timestamp; struct reiserfs_list_bitmap *j_list_bitmap; struct buffer_head *j_commit_bh; /* commit buffer head */ struct reiserfs_journal_cnode *j_realblock; struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */ /* time ordered list of all active transactions */ struct list_head j_list; /* * time ordered list of all transactions we haven't tried * to flush yet */ struct list_head j_working_list; /* list of tail conversion targets in need of flush before commit */ struct list_head j_tail_bh_list; /* list of data=ordered buffers in need of flush before commit */ struct list_head j_bh_list; int j_refcount; }; struct reiserfs_journal { struct buffer_head **j_ap_blocks; /* journal blocks on disk */ /* newest journal block */ struct reiserfs_journal_cnode *j_last; /* oldest journal block. start here for traverse */ struct reiserfs_journal_cnode *j_first; struct block_device *j_dev_bd; fmode_t j_dev_mode; /* first block on s_dev of reserved area journal */ int j_1st_reserved_block; unsigned long j_state; unsigned int j_trans_id; unsigned long j_mount_id; /* start of current waiting commit (index into j_ap_blocks) */ unsigned long j_start; unsigned long j_len; /* length of current waiting commit */ /* number of buffers requested by journal_begin() */ unsigned long j_len_alloc; atomic_t j_wcount; /* count of writers for current commit */ /* batch count. allows turning X transactions into 1 */ unsigned long j_bcount; /* first unflushed transactions offset */ unsigned long j_first_unflushed_offset; /* last fully flushed journal timestamp */ unsigned j_last_flush_trans_id; struct buffer_head *j_header_bh; time_t j_trans_start_time; /* time this transaction started */ struct mutex j_mutex; struct mutex j_flush_mutex; /* wait for current transaction to finish before starting new one */ wait_queue_head_t j_join_wait; atomic_t j_jlock; /* lock for j_join_wait */ int j_list_bitmap_index; /* number of next list bitmap to use */ /* no more journal begins allowed. MUST sleep on j_join_wait */ int j_must_wait; /* next journal_end will flush all journal list */ int j_next_full_flush; /* next journal_end will flush all async commits */ int j_next_async_flush; int j_cnode_used; /* number of cnodes on the used list */ int j_cnode_free; /* number of cnodes on the free list */ /* max number of blocks in a transaction. */ unsigned int j_trans_max; /* max number of blocks to batch into a trans */ unsigned int j_max_batch; /* in seconds, how old can an async commit be */ unsigned int j_max_commit_age; /* in seconds, how old can a transaction be */ unsigned int j_max_trans_age; /* the default for the max commit age */ unsigned int j_default_max_commit_age; struct reiserfs_journal_cnode *j_cnode_free_list; /* orig pointer returned from vmalloc */ struct reiserfs_journal_cnode *j_cnode_free_orig; struct reiserfs_journal_list *j_current_jl; int j_free_bitmap_nodes; int j_used_bitmap_nodes; int j_num_lists; /* total number of active transactions */ int j_num_work_lists; /* number that need attention from kreiserfsd */ /* debugging to make sure things are flushed in order */ unsigned int j_last_flush_id; /* debugging to make sure things are committed in order */ unsigned int j_last_commit_id; struct list_head j_bitmap_nodes; struct list_head j_dirty_buffers; spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */ /* list of all active transactions */ struct list_head j_journal_list; /* lists that haven't been touched by writeback attempts */ struct list_head j_working_list; /* hash table for real buffer heads in current trans */ struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; /* hash table for all the real buffer heads in all the transactions */ struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; /* array of bitmaps to record the deleted blocks */ struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; /* list of inodes which have preallocated blocks */ struct list_head j_prealloc_list; int j_persistent_trans; unsigned long j_max_trans_size; unsigned long j_max_batch_size; int j_errno; /* when flushing ordered buffers, throttle new ordered writers */ struct delayed_work j_work; struct super_block *j_work_sb; atomic_t j_async_throttle; }; enum journal_state_bits { J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */ J_WRITERS_QUEUED, /* set when log is full due to too many writers */ J_ABORTED, /* set when log is aborted */ }; /* ick. magic string to find desc blocks in the journal */ #define JOURNAL_DESC_MAGIC "ReIsErLB" typedef __u32(*hashf_t) (const signed char *, int); struct reiserfs_bitmap_info { __u32 free_count; }; struct proc_dir_entry; #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) typedef unsigned long int stat_cnt_t; typedef struct reiserfs_proc_info_data { spinlock_t lock; int exiting; int max_hash_collisions; stat_cnt_t breads; stat_cnt_t bread_miss; stat_cnt_t search_by_key; stat_cnt_t search_by_key_fs_changed; stat_cnt_t search_by_key_restarted; stat_cnt_t insert_item_restarted; stat_cnt_t paste_into_item_restarted; stat_cnt_t cut_from_item_restarted; stat_cnt_t delete_solid_item_restarted; stat_cnt_t delete_item_restarted; stat_cnt_t leaked_oid; stat_cnt_t leaves_removable; /* * balances per level. * Use explicit 5 as MAX_HEIGHT is not visible yet. */ stat_cnt_t balance_at[5]; /* XXX */ /* sbk == search_by_key */ stat_cnt_t sbk_read_at[5]; /* XXX */ stat_cnt_t sbk_fs_changed[5]; stat_cnt_t sbk_restarted[5]; stat_cnt_t items_at[5]; /* XXX */ stat_cnt_t free_at[5]; /* XXX */ stat_cnt_t can_node_be_removed[5]; /* XXX */ long int lnum[5]; /* XXX */ long int rnum[5]; /* XXX */ long int lbytes[5]; /* XXX */ long int rbytes[5]; /* XXX */ stat_cnt_t get_neighbors[5]; stat_cnt_t get_neighbors_restart[5]; stat_cnt_t need_l_neighbor[5]; stat_cnt_t need_r_neighbor[5]; stat_cnt_t free_block; struct __scan_bitmap_stats { stat_cnt_t call; stat_cnt_t wait; stat_cnt_t bmap; stat_cnt_t retry; stat_cnt_t in_journal_hint; stat_cnt_t in_journal_nohint; stat_cnt_t stolen; } scan_bitmap; struct __journal_stats { stat_cnt_t in_journal; stat_cnt_t in_journal_bitmap; stat_cnt_t in_journal_reusable; stat_cnt_t lock_journal; stat_cnt_t lock_journal_wait; stat_cnt_t journal_being; stat_cnt_t journal_relock_writers; stat_cnt_t journal_relock_wcount; stat_cnt_t mark_dirty; stat_cnt_t mark_dirty_already; stat_cnt_t mark_dirty_notjournal; stat_cnt_t restore_prepared; stat_cnt_t prepare; stat_cnt_t prepare_retry; } journal; } reiserfs_proc_info_data_t; #else typedef struct reiserfs_proc_info_data { } reiserfs_proc_info_data_t; #endif /* reiserfs union of in-core super block data */ struct reiserfs_sb_info { /* Buffer containing the super block */ struct buffer_head *s_sbh; /* Pointer to the on-disk super block in the buffer */ struct reiserfs_super_block *s_rs; struct reiserfs_bitmap_info *s_ap_bitmap; /* pointer to journal information */ struct reiserfs_journal *s_journal; unsigned short s_mount_state; /* reiserfs state (valid, invalid) */ /* Serialize writers access, replace the old bkl */ struct mutex lock; /* Owner of the lock (can be recursive) */ struct task_struct *lock_owner; /* Depth of the lock, start from -1 like the bkl */ int lock_depth; struct workqueue_struct *commit_wq; /* Comment? -Hans */ void (*end_io_handler) (struct buffer_head *, int); /* * pointer to function which is used to sort names in directory. * Set on mount */ hashf_t s_hash_function; /* reiserfs's mount options are set here */ unsigned long s_mount_opt; /* This is a structure that describes block allocator options */ struct { /* Bitfield for enable/disable kind of options */ unsigned long bits; /* * size started from which we consider file * to be a large one (in blocks) */ unsigned long large_file_size; int border; /* percentage of disk, border takes */ /* * Minimal file size (in blocks) starting * from which we do preallocations */ int preallocmin; /* * Number of blocks we try to prealloc when file * reaches preallocmin size (in blocks) or prealloc_list is empty. */ int preallocsize; } s_alloc_options; /* Comment? -Hans */ wait_queue_head_t s_wait; /* increased by one every time the tree gets re-balanced */ atomic_t s_generation_counter; /* File system properties. Currently holds on-disk FS format */ unsigned long s_properties; /* session statistics */ int s_disk_reads; int s_disk_writes; int s_fix_nodes; int s_do_balance; int s_unneeded_left_neighbor; int s_good_search_by_key_reada; int s_bmaps; int s_bmaps_without_search; int s_direct2indirect; int s_indirect2direct; /* * set up when it's ok for reiserfs_read_inode2() to read from * disk inode with nlink==0. Currently this is only used during * finish_unfinished() processing at mount time */ int s_is_unlinked_ok; reiserfs_proc_info_data_t s_proc_info_data; struct proc_dir_entry *procdir; /* amount of blocks reserved for further allocations */ int reserved_blocks; /* this lock on now only used to protect reserved_blocks variable */ spinlock_t bitmap_lock; struct dentry *priv_root; /* root of /.reiserfs_priv */ struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */ int j_errno; int work_queued; /* non-zero delayed work is queued */ struct delayed_work old_work; /* old transactions flush delayed work */ spinlock_t old_work_lock; /* protects old_work and work_queued */ #ifdef CONFIG_QUOTA char *s_qf_names[MAXQUOTAS]; int s_jquota_fmt; #endif char *s_jdev; /* Stored jdev for mount option showing */ #ifdef CONFIG_REISERFS_CHECK /* * Detects whether more than one copy of tb exists per superblock * as a means of checking whether do_balance is executing * concurrently against another tree reader/writer on a same * mount point. */ struct tree_balance *cur_tb; #endif }; /* Definitions of reiserfs on-disk properties: */ #define REISERFS_3_5 0 #define REISERFS_3_6 1 #define REISERFS_OLD_FORMAT 2 /* Mount options */ enum reiserfs_mount_options { /* large tails will be created in a session */ REISERFS_LARGETAIL, /* * small (for files less than block size) tails will * be created in a session */ REISERFS_SMALLTAIL, /* replay journal and return 0. Use by fsck */ REPLAYONLY, /* * -o conv: causes conversion of old format super block to the * new format. If not specified - old partition will be dealt * with in a manner of 3.5.x */ REISERFS_CONVERT, /* * -o hash={tea, rupasov, r5, detect} is meant for properly mounting * reiserfs disks from 3.5.19 or earlier. 99% of the time, this * option is not required. If the normal autodection code can't * determine which hash to use (because both hashes had the same * value for a file) use this option to force a specific hash. * It won't allow you to override the existing hash on the FS, so * if you have a tea hash disk, and mount with -o hash=rupasov, * the mount will fail. */ FORCE_TEA_HASH, /* try to force tea hash on mount */ FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */ FORCE_R5_HASH, /* try to force rupasov hash on mount */ FORCE_HASH_DETECT, /* try to detect hash function on mount */ REISERFS_DATA_LOG, REISERFS_DATA_ORDERED, REISERFS_DATA_WRITEBACK, /* * used for testing experimental features, makes benchmarking new * features with and without more convenient, should never be used by * users in any code shipped to users (ideally) */ REISERFS_NO_BORDER, REISERFS_NO_UNHASHED_RELOCATION, REISERFS_HASHED_RELOCATION, REISERFS_ATTRS, REISERFS_XATTRS_USER, REISERFS_POSIXACL, REISERFS_EXPOSE_PRIVROOT, REISERFS_BARRIER_NONE, REISERFS_BARRIER_FLUSH, /* Actions on error */ REISERFS_ERROR_PANIC, REISERFS_ERROR_RO, REISERFS_ERROR_CONTINUE, REISERFS_USRQUOTA, /* User quota option specified */ REISERFS_GRPQUOTA, /* Group quota option specified */ REISERFS_TEST1, REISERFS_TEST2, REISERFS_TEST3, REISERFS_TEST4, REISERFS_UNSUPPORTED_OPT, }; #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH)) #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH)) #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH)) #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT)) #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER)) #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION)) #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION)) #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4)) #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL)) #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL)) #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY)) #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS)) #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5)) #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT)) #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG)) #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED)) #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK)) #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER)) #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL)) #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT)) #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s)) #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE)) #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH)) #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC)) #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO)) void reiserfs_file_buffer(struct buffer_head *bh, int list); extern struct file_system_type reiserfs_fs_type; int reiserfs_resize(struct super_block *, unsigned long); #define CARRY_ON 0 #define SCHEDULE_OCCURRED 1 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh) #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal) #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block) #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free) #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap) #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->) #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal))) static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal *journal) { return test_bit(J_ABORTED, &journal->j_state); } /* * Locking primitives. The write lock is a per superblock * special mutex that has properties close to the Big Kernel Lock * which was used in the previous locking scheme. */ void reiserfs_write_lock(struct super_block *s); void reiserfs_write_unlock(struct super_block *s); int __must_check reiserfs_write_unlock_nested(struct super_block *s); void reiserfs_write_lock_nested(struct super_block *s, int depth); #ifdef CONFIG_REISERFS_CHECK void reiserfs_lock_check_recursive(struct super_block *s); #else static inline void reiserfs_lock_check_recursive(struct super_block *s) { } #endif /* * Several mutexes depend on the write lock. * However sometimes we want to relax the write lock while we hold * these mutexes, according to the release/reacquire on schedule() * properties of the Bkl that were used. * Reiserfs performances and locking were based on this scheme. * Now that the write lock is a mutex and not the bkl anymore, doing so * may result in a deadlock: * * A acquire write_lock * A acquire j_commit_mutex * A release write_lock and wait for something * B acquire write_lock * B can't acquire j_commit_mutex and sleep * A can't acquire write lock anymore * deadlock * * What we do here is avoiding such deadlock by playing the same game * than the Bkl: if we can't acquire a mutex that depends on the write lock, * we release the write lock, wait a bit and then retry. * * The mutexes concerned by this hack are: * - The commit mutex of a journal list * - The flush mutex * - The journal lock * - The inode mutex */ static inline void reiserfs_mutex_lock_safe(struct mutex *m, struct super_block *s) { int depth; depth = reiserfs_write_unlock_nested(s); mutex_lock(m); reiserfs_write_lock_nested(s, depth); } static inline void reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, struct super_block *s) { int depth; depth = reiserfs_write_unlock_nested(s); mutex_lock_nested(m, subclass); reiserfs_write_lock_nested(s, depth); } static inline void reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) { int depth; depth = reiserfs_write_unlock_nested(s); down_read(sem); reiserfs_write_lock_nested(s, depth); } /* * When we schedule, we usually want to also release the write lock, * according to the previous bkl based locking scheme of reiserfs. */ static inline void reiserfs_cond_resched(struct super_block *s) { if (need_resched()) { int depth; depth = reiserfs_write_unlock_nested(s); schedule(); reiserfs_write_lock_nested(s, depth); } } struct fid; /* * in reading the #defines, it may help to understand that they employ * the following abbreviations: * * B = Buffer * I = Item header * H = Height within the tree (should be changed to LEV) * N = Number of the item in the node * STAT = stat data * DEH = Directory Entry Header * EC = Entry Count * E = Entry number * UL = Unsigned Long * BLKH = BLocK Header * UNFM = UNForMatted node * DC = Disk Child * P = Path * * These #defines are named by concatenating these abbreviations, * where first comes the arguments, and last comes the return value, * of the macro. */ #define USE_INODE_GENERATION_COUNTER #define REISERFS_PREALLOCATE #define DISPLACE_NEW_PACKING_LOCALITIES #define PREALLOCATION_SIZE 9 /* n must be power of 2 */ #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) /* * to be ok for alpha and others we have to align structures to 8 byte * boundary. * FIXME: do not change 4 by anything else: there is code which relies on that */ #define ROUND_UP(x) _ROUND_UP(x,8LL) /* * debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug * messages. */ #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ void __reiserfs_warning(struct super_block *s, const char *id, const char *func, const char *fmt, ...); #define reiserfs_warning(s, id, fmt, args...) \ __reiserfs_warning(s, id, __func__, fmt, ##args) /* assertions handling */ /* always check a condition and panic if it's false. */ #define __RASSERT(cond, scond, format, args...) \ do { \ if (!(cond)) \ reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ __FILE__ ":%i:%s: " format "\n", \ in_interrupt() ? -1 : task_pid_nr(current), \ __LINE__, __func__ , ##args); \ } while (0) #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) #if defined( CONFIG_REISERFS_CHECK ) #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) #else #define RFALSE( cond, format, args... ) do {;} while( 0 ) #endif #define CONSTF __attribute_const__ /* * Disk Data Structures */ /*************************************************************************** * SUPER BLOCK * ***************************************************************************/ /* * Structure of super block on disk, a version of which in RAM is often * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger * structure containing fields never written to disk. */ #define UNSET_HASH 0 /* Detect hash on disk */ #define TEA_HASH 1 #define YURA_HASH 2 #define R5_HASH 3 #define DEFAULT_HASH R5_HASH struct journal_params { /* where does journal start from on its * device */ __le32 jp_journal_1st_block; /* journal device st_rdev */ __le32 jp_journal_dev; /* size of the journal */ __le32 jp_journal_size; /* max number of blocks in a transaction. */ __le32 jp_journal_trans_max; /* * random value made on fs creation * (this was sb_journal_block_count) */ __le32 jp_journal_magic; /* max number of blocks to batch into a trans */ __le32 jp_journal_max_batch; /* in seconds, how old can an async commit be */ __le32 jp_journal_max_commit_age; /* in seconds, how old can a transaction be */ __le32 jp_journal_max_trans_age; }; /* this is the super from 3.5.X, where X >= 10 */ struct reiserfs_super_block_v1 { __le32 s_block_count; /* blocks count */ __le32 s_free_blocks; /* free blocks count */ __le32 s_root_block; /* root block number */ struct journal_params s_journal; __le16 s_blocksize; /* block size */ /* max size of object id array, see get_objectid() commentary */ __le16 s_oid_maxsize; __le16 s_oid_cursize; /* current size of object id array */ /* this is set to 1 when filesystem was umounted, to 2 - when not */ __le16 s_umount_state; /* * reiserfs magic string indicates that file system is reiserfs: * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */ char s_magic[10]; /* * it is set to used by fsck to mark which * phase of rebuilding is done */ __le16 s_fs_state; /* * indicate, what hash function is being use * to sort names in a directory */ __le32 s_hash_function_code; __le16 s_tree_height; /* height of disk tree */ /* * amount of bitmap blocks needed to address * each block of file system */ __le16 s_bmap_nr; /* * this field is only reliable on filesystem with non-standard journal */ __le16 s_version; /* * size in blocks of journal area on main device, we need to * keep after making fs with non-standard journal */ __le16 s_reserved_for_journal; } __attribute__ ((__packed__)); #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) /* this is the on disk super block */ struct reiserfs_super_block { struct reiserfs_super_block_v1 s_v1; __le32 s_inode_generation; /* Right now used only by inode-attributes, if enabled */ __le32 s_flags; unsigned char s_uuid[16]; /* filesystem unique identifier */ unsigned char s_label[16]; /* filesystem volume label */ __le16 s_mnt_count; /* Count of mounts since last fsck */ __le16 s_max_mnt_count; /* Maximum mounts before check */ __le32 s_lastcheck; /* Timestamp of last fsck */ __le32 s_check_interval; /* Interval between checks */ /* * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1() * so any additions must be updated there as well. */ char s_unused[76]; } __attribute__ ((__packed__)); #define SB_SIZE (sizeof(struct reiserfs_super_block)) #define REISERFS_VERSION_1 0 #define REISERFS_VERSION_2 2 /* on-disk super block fields converted to cpu form */ #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) #define SB_BLOCKSIZE(s) \ le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) #define SB_BLOCK_COUNT(s) \ le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) #define SB_FREE_BLOCKS(s) \ le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) #define SB_REISERFS_MAGIC(s) \ (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) #define SB_ROOT_BLOCK(s) \ le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) #define SB_TREE_HEIGHT(s) \ le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) #define SB_REISERFS_STATE(s) \ le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) #define PUT_SB_BLOCK_COUNT(s, val) \ do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) #define PUT_SB_FREE_BLOCKS(s, val) \ do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) #define PUT_SB_ROOT_BLOCK(s, val) \ do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) #define PUT_SB_TREE_HEIGHT(s, val) \ do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) #define PUT_SB_REISERFS_STATE(s, val) \ do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) #define PUT_SB_VERSION(s, val) \ do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) #define PUT_SB_BMAP_NR(s, val) \ do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) #define SB_ONDISK_JOURNAL_SIZE(s) \ le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) #define SB_ONDISK_JOURNAL_DEVICE(s) \ le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) #define is_block_in_log_or_reserved_area(s, block) \ block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) int is_reiserfs_3_5(struct reiserfs_super_block *rs); int is_reiserfs_3_6(struct reiserfs_super_block *rs); int is_reiserfs_jr(struct reiserfs_super_block *rs); /* * ReiserFS leaves the first 64k unused, so that partition labels have * enough space. If someone wants to write a fancy bootloader that * needs more than 64k, let us know, and this will be increased in size. * This number must be larger than than the largest block size on any * platform, or code will break. -Hans */ #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) #define REISERFS_FIRST_BLOCK unused_define #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) /* reiserfs internal error code (used by search_by_key and fix_nodes)) */ #define CARRY_ON 0 #define REPEAT_SEARCH -1 #define IO_ERROR -2 #define NO_DISK_SPACE -3 #define NO_BALANCING_NEEDED (-4) #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) #define QUOTA_EXCEEDED -6 typedef __u32 b_blocknr_t; typedef __le32 unp_t; struct unfm_nodeinfo { unp_t unfm_nodenum; unsigned short unfm_freespace; }; /* there are two formats of keys: 3.5 and 3.6 */ #define KEY_FORMAT_3_5 0 #define KEY_FORMAT_3_6 1 /* there are two stat datas */ #define STAT_DATA_V1 0 #define STAT_DATA_V2 1 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) { return container_of(inode, struct reiserfs_inode_info, vfs_inode); } static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) { return sb->s_fs_info; } /* * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 * which overflows on large file systems. */ static inline __u32 reiserfs_bmap_count(struct super_block *sb) { return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; } static inline int bmap_would_wrap(unsigned bmap_nr) { return bmap_nr > ((1LL << 16) - 1); } /* * this says about version of key of all items (but stat data) the * object consists of */ #define get_inode_item_key_version( inode ) \ ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) #define set_inode_item_key_version( inode, version ) \ ({ if((version)==KEY_FORMAT_3_6) \ REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ else \ REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) #define get_inode_sd_version(inode) \ ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) #define set_inode_sd_version(inode, version) \ ({ if((version)==STAT_DATA_V2) \ REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ else \ REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) /* * This is an aggressive tail suppression policy, I am hoping it * improves our benchmarks. The principle behind it is that percentage * space saving is what matters, not absolute space saving. This is * non-intuitive, but it helps to understand it if you consider that the * cost to access 4 blocks is not much more than the cost to access 1 * block, if you have to do a seek and rotate. A tail risks a * non-linear disk access that is significant as a percentage of total * time cost for a 4 block file and saves an amount of space that is * less significant as a percentage of space, or so goes the hypothesis. * -Hans */ #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ (\ (!(n_tail_size)) || \ (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ ( (n_file_size) >= (n_block_size) * 4 ) || \ ( ( (n_file_size) >= (n_block_size) * 3 ) && \ ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ ( ( (n_file_size) >= (n_block_size) * 2 ) && \ ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ ( ( (n_file_size) >= (n_block_size) ) && \ ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ ) /* * Another strategy for tails, this one means only create a tail if all the * file would fit into one DIRECT item. * Primary intention for this one is to increase performance by decreasing * seeking. */ #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ (\ (!(n_tail_size)) || \ (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ ) /* * values for s_umount_state field */ #define REISERFS_VALID_FS 1 #define REISERFS_ERROR_FS 2 /* * there are 5 item types currently */ #define TYPE_STAT_DATA 0 #define TYPE_INDIRECT 1 #define TYPE_DIRECT 2 #define TYPE_DIRENTRY 3 #define TYPE_MAXTYPE 3 #define TYPE_ANY 15 /* FIXME: comment is required */ /*************************************************************************** * KEY & ITEM HEAD * ***************************************************************************/ /* * directories use this key as well as old files */ struct offset_v1 { __le32 k_offset; __le32 k_uniqueness; } __attribute__ ((__packed__)); struct offset_v2 { __le64 v; } __attribute__ ((__packed__)); static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) { __u8 type = le64_to_cpu(v2->v) >> 60; return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; } static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) { v2->v = (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); } static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) { return le64_to_cpu(v2->v) & (~0ULL >> 4); } static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) { offset &= (~0ULL >> 4); v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); } /* * Key of an item determines its location in the S+tree, and * is composed of 4 components */ struct reiserfs_key { /* packing locality: by default parent directory object id */ __le32 k_dir_id; __le32 k_objectid; /* object identifier */ union { struct offset_v1 k_offset_v1; struct offset_v2 k_offset_v2; } __attribute__ ((__packed__)) u; } __attribute__ ((__packed__)); struct in_core_key { /* packing locality: by default parent directory object id */ __u32 k_dir_id; __u32 k_objectid; /* object identifier */ __u64 k_offset; __u8 k_type; }; struct cpu_key { struct in_core_key on_disk_key; int version; /* 3 in all cases but direct2indirect and indirect2direct conversion */ int key_length; }; /* * Our function for comparing keys can compare keys of different * lengths. It takes as a parameter the length of the keys it is to * compare. These defines are used in determining what is to be passed * to it as that parameter. */ #define REISERFS_FULL_KEY_LEN 4 #define REISERFS_SHORT_KEY_LEN 2 /* The result of the key compare */ #define FIRST_GREATER 1 #define SECOND_GREATER -1 #define KEYS_IDENTICAL 0 #define KEY_FOUND 1 #define KEY_NOT_FOUND 0 #define KEY_SIZE (sizeof(struct reiserfs_key)) #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) /* return values for search_by_key and clones */ #define ITEM_FOUND 1 #define ITEM_NOT_FOUND 0 #define ENTRY_FOUND 1 #define ENTRY_NOT_FOUND 0 #define DIRECTORY_NOT_FOUND -1 #define REGULAR_FILE_FOUND -2 #define DIRECTORY_FOUND -3 #define BYTE_FOUND 1 #define BYTE_NOT_FOUND 0 #define FILE_NOT_FOUND -1 #define POSITION_FOUND 1 #define POSITION_NOT_FOUND 0 /* return values for reiserfs_find_entry and search_by_entry_key */ #define NAME_FOUND 1 #define NAME_NOT_FOUND 0 #define GOTO_PREVIOUS_ITEM 2 #define NAME_FOUND_INVISIBLE 3 /* * Everything in the filesystem is stored as a set of items. The * item head contains the key of the item, its free space (for * indirect items) and specifies the location of the item itself * within the block. */ struct item_head { /* * Everything in the tree is found by searching for it based on * its key. */ struct reiserfs_key ih_key; union { /* * The free space in the last unformatted node of an * indirect item if this is an indirect item. This * equals 0xFFFF iff this is a direct item or stat data * item. Note that the key, not this field, is used to * determine the item type, and thus which field this * union contains. */ __le16 ih_free_space_reserved; /* * Iff this is a directory item, this field equals the * number of directory entries in the directory item. */ __le16 ih_entry_count; } __attribute__ ((__packed__)) u; __le16 ih_item_len; /* total size of the item body */ /* an offset to the item body within the block */ __le16 ih_item_location; /* * 0 for all old items, 2 for new ones. Highest bit is set by fsck * temporary, cleaned after all done */ __le16 ih_version; } __attribute__ ((__packed__)); /* size of item header */ #define IH_SIZE (sizeof(struct item_head)) #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) #define ih_version(ih) le16_to_cpu((ih)->ih_version) #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) #define ih_location(ih) le16_to_cpu((ih)->ih_item_location) #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) /* * these operate on indirect items, where you've got an array of ints * at a possibly unaligned location. These are a noop on ia32 * * p is the array of __u32, i is the index into the array, v is the value * to store there. */ #define get_block_num(p, i) get_unaligned_le32((p) + (i)) #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) /* * in old version uniqueness field shows key type */ #define V1_SD_UNIQUENESS 0 #define V1_INDIRECT_UNIQUENESS 0xfffffffe #define V1_DIRECT_UNIQUENESS 0xffffffff #define V1_DIRENTRY_UNIQUENESS 500 #define V1_ANY_UNIQUENESS 555 /* FIXME: comment is required */ /* here are conversion routines */ static inline int uniqueness2type(__u32 uniqueness) CONSTF; static inline int uniqueness2type(__u32 uniqueness) { switch ((int)uniqueness) { case V1_SD_UNIQUENESS: return TYPE_STAT_DATA; case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT; case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT; case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY; case V1_ANY_UNIQUENESS: default: return TYPE_ANY; } } static inline __u32 type2uniqueness(int type) CONSTF; static inline __u32 type2uniqueness(int type) { switch (type) { case TYPE_STAT_DATA: return V1_SD_UNIQUENESS; case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS; case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS; case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS; case TYPE_ANY: default: return V1_ANY_UNIQUENESS; } } /* * key is pointer to on disk key which is stored in le, result is cpu, * there is no way to get version of object from key, so, provide * version to these defines */ static inline loff_t le_key_k_offset(int version, const struct reiserfs_key *key) { return (version == KEY_FORMAT_3_5) ? le32_to_cpu(key->u.k_offset_v1.k_offset) : offset_v2_k_offset(&(key->u.k_offset_v2)); } static inline loff_t le_ih_k_offset(const struct item_head *ih) { return le_key_k_offset(ih_version(ih), &(ih->ih_key)); } static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) { if (version == KEY_FORMAT_3_5) { loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness); return uniqueness2type(val); } else return offset_v2_k_type(&(key->u.k_offset_v2)); } static inline loff_t le_ih_k_type(const struct item_head *ih) { return le_key_k_type(ih_version(ih), &(ih->ih_key)); } static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, loff_t offset) { if (version == KEY_FORMAT_3_5) key->u.k_offset_v1.k_offset = cpu_to_le32(offset); else set_offset_v2_k_offset(&key->u.k_offset_v2, offset); } static inline void add_le_key_k_offset(int version, struct reiserfs_key *key, loff_t offset) { set_le_key_k_offset(version, key, le_key_k_offset(version, key) + offset); } static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset) { add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); } static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) { set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); } static inline void set_le_key_k_type(int version, struct reiserfs_key *key, int type) { if (version == KEY_FORMAT_3_5) { type = type2uniqueness(type); key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type); } else set_offset_v2_k_type(&key->u.k_offset_v2, type); } static inline void set_le_ih_k_type(struct item_head *ih, int type) { set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); } static inline int is_direntry_le_key(int version, struct reiserfs_key *key) { return le_key_k_type(version, key) == TYPE_DIRENTRY; } static inline int is_direct_le_key(int version, struct reiserfs_key *key) { return le_key_k_type(version, key) == TYPE_DIRECT; } static inline int is_indirect_le_key(int version, struct reiserfs_key *key) { return le_key_k_type(version, key) == TYPE_INDIRECT; } static inline int is_statdata_le_key(int version, struct reiserfs_key *key) { return le_key_k_type(version, key) == TYPE_STAT_DATA; } /* item header has version. */ static inline int is_direntry_le_ih(struct item_head *ih) { return is_direntry_le_key(ih_version(ih), &ih->ih_key); } static inline int is_direct_le_ih(struct item_head *ih) { return is_direct_le_key(ih_version(ih), &ih->ih_key); } static inline int is_indirect_le_ih(struct item_head *ih) { return is_indirect_le_key(ih_version(ih), &ih->ih_key); } static inline int is_statdata_le_ih(struct item_head *ih) { return is_statdata_le_key(ih_version(ih), &ih->ih_key); } /* key is pointer to cpu key, result is cpu */ static inline loff_t cpu_key_k_offset(const struct cpu_key *key) { return key->on_disk_key.k_offset; } static inline loff_t cpu_key_k_type(const struct cpu_key *key) { return key->on_disk_key.k_type; } static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) { key->on_disk_key.k_offset = offset; } static inline void set_cpu_key_k_type(struct cpu_key *key, int type) { key->on_disk_key.k_type = type; } static inline void cpu_key_k_offset_dec(struct cpu_key *key) { key->on_disk_key.k_offset--; } #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) /* are these used ? */ #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ (!COMP_SHORT_KEYS(ih, key) && \ I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) /* maximal length of item */ #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) #define MIN_ITEM_LEN 1 /* object identifier for root dir */ #define REISERFS_ROOT_OBJECTID 2 #define REISERFS_ROOT_PARENT_OBJECTID 1 extern struct reiserfs_key root_key; /* * Picture represents a leaf of the S+tree * ______________________________________________________ * | | Array of | | | * |Block | Object-Item | F r e e | Objects- | * | head | Headers | S p a c e | Items | * |______|_______________|___________________|___________| */ /* * Header of a disk block. More precisely, header of a formatted leaf * or internal node, and not the header of an unformatted node. */ struct block_head { __le16 blk_level; /* Level of a block in the tree. */ __le16 blk_nr_item; /* Number of keys/items in a block. */ __le16 blk_free_space; /* Block free space in bytes. */ __le16 blk_reserved; /* dump this in v4/planA */ /* kept only for compatibility */ struct reiserfs_key blk_right_delim_key; }; #define BLKH_SIZE (sizeof(struct block_head)) #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) /* values for blk_level field of the struct block_head */ /* * When node gets removed from the tree its blk_level is set to FREE_LEVEL. * It is then used to see whether the node is still in the tree */ #define FREE_LEVEL 0 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ /* * Given the buffer head of a formatted node, resolve to the * block head of that node. */ #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data)) /* Number of items that are in buffer. */ #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh))) #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh))) #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh))) #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) /* Get right delimiting key. -- little endian */ #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh)))) /* Does the buffer contain a disk leaf. */ #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) /* Does the buffer contain a disk internal node */ #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ && B_LEVEL(bh) <= MAX_HEIGHT) /*************************************************************************** * STAT DATA * ***************************************************************************/ /* * old stat data is 32 bytes long. We are going to distinguish new one by * different size */ struct stat_data_v1 { __le16 sd_mode; /* file type, permissions */ __le16 sd_nlink; /* number of hard links */ __le16 sd_uid; /* owner */ __le16 sd_gid; /* group */ __le32 sd_size; /* file size */ __le32 sd_atime; /* time of last access */ __le32 sd_mtime; /* time file was last modified */ /* * time inode (stat data) was last changed * (except changes to sd_atime and sd_mtime) */ __le32 sd_ctime; union { __le32 sd_rdev; __le32 sd_blocks; /* number of blocks file uses */ } __attribute__ ((__packed__)) u; /* * first byte of file which is stored in a direct item: except that if * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no * direct item. The existence of this field really grates on me. * Let's replace it with a macro based on sd_size and our tail * suppression policy. Someday. -Hans */ __le32 sd_first_direct_byte; } __attribute__ ((__packed__)); #define SD_V1_SIZE (sizeof(struct stat_data_v1)) #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) #define sd_v1_first_direct_byte(sdp) \ (le32_to_cpu((sdp)->sd_first_direct_byte)) #define set_sd_v1_first_direct_byte(sdp,v) \ ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) /* inode flags stored in sd_attrs (nee sd_reserved) */ /* * we want common flags to have the same values as in ext2, * so chattr(1) will work without problems */ #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL #define REISERFS_APPEND_FL FS_APPEND_FL #define REISERFS_SYNC_FL FS_SYNC_FL #define REISERFS_NOATIME_FL FS_NOATIME_FL #define REISERFS_NODUMP_FL FS_NODUMP_FL #define REISERFS_SECRM_FL FS_SECRM_FL #define REISERFS_UNRM_FL FS_UNRM_FL #define REISERFS_COMPR_FL FS_COMPR_FL #define REISERFS_NOTAIL_FL FS_NOTAIL_FL /* persistent flags that file inherits from the parent directory */ #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ REISERFS_SYNC_FL | \ REISERFS_NOATIME_FL | \ REISERFS_NODUMP_FL | \ REISERFS_SECRM_FL | \ REISERFS_COMPR_FL | \ REISERFS_NOTAIL_FL ) /* * Stat Data on disk (reiserfs version of UFS disk inode minus the * address blocks) */ struct stat_data { __le16 sd_mode; /* file type, permissions */ __le16 sd_attrs; /* persistent inode flags */ __le32 sd_nlink; /* number of hard links */ __le64 sd_size; /* file size */ __le32 sd_uid; /* owner */ __le32 sd_gid; /* group */ __le32 sd_atime; /* time of last access */ __le32 sd_mtime; /* time file was last modified */ /* * time inode (stat data) was last changed * (except changes to sd_atime and sd_mtime) */ __le32 sd_ctime; __le32 sd_blocks; union { __le32 sd_rdev; __le32 sd_generation; } __attribute__ ((__packed__)) u; } __attribute__ ((__packed__)); /* this is 44 bytes long */ #define SD_SIZE (sizeof(struct stat_data)) #define SD_V2_SIZE SD_SIZE #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) /* sd_reserved */ /* set_sd_reserved */ #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) /*************************************************************************** * DIRECTORY STRUCTURE * ***************************************************************************/ /* * Picture represents the structure of directory items * ________________________________________________ * | Array of | | | | | | * | directory |N-1| N-2 | .... | 1st |0th| * | entry headers | | | | | | * |_______________|___|_____|________|_______|___| * <---- directory entries ------> * * First directory item has k_offset component 1. We store "." and ".." * in one item, always, we never split "." and ".." into differing * items. This makes, among other things, the code for removing * directories simpler. */ #define SD_OFFSET 0 #define SD_UNIQUENESS 0 #define DOT_OFFSET 1 #define DOT_DOT_OFFSET 2 #define DIRENTRY_UNIQUENESS 500 #define FIRST_ITEM_OFFSET 1 /* * Q: How to get key of object pointed to by entry from entry? * * A: Each directory entry has its header. This header has deh_dir_id * and deh_objectid fields, those are key of object, entry points to */ /* * NOT IMPLEMENTED: * Directory will someday contain stat data of object */ struct reiserfs_de_head { __le32 deh_offset; /* third component of the directory entry key */ /* * objectid of the parent directory of the object, that is referenced * by directory entry */ __le32 deh_dir_id; /* objectid of the object, that is referenced by directory entry */ __le32 deh_objectid; __le16 deh_location; /* offset of name in the whole item */ /* * whether 1) entry contains stat data (for future), and * 2) whether entry is hidden (unlinked) */ __le16 deh_state; } __attribute__ ((__packed__)); #define DEH_SIZE sizeof(struct reiserfs_de_head) #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) /* empty directory contains two entries "." and ".." and their headers */ #define EMPTY_DIR_SIZE \ (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) /* old format directories have this size when empty */ #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) #define DEH_Statdata 0 /* not used now */ #define DEH_Visible 2 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) # define ADDR_UNALIGNED_BITS (3) #endif /* * These are only used to manipulate deh_state. * Because of this, we'll use the ext2_ bit routines, * since they are little endian */ #ifdef ADDR_UNALIGNED_BITS # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) # define set_bit_unaligned(nr, addr) \ __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) # define clear_bit_unaligned(nr, addr) \ __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) # define test_bit_unaligned(nr, addr) \ test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) #else # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr) # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr) # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr) #endif #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, __le32 par_dirid, __le32 par_objid); extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, __le32 par_dirid, __le32 par_objid); /* two entries per block (at least) */ #define REISERFS_MAX_NAME(block_size) 255 /* * this structure is used for operations on directory entries. It is * not a disk structure. * * When reiserfs_find_entry or search_by_entry_key find directory * entry, they return filled reiserfs_dir_entry structure */ struct reiserfs_dir_entry { struct buffer_head *de_bh; int de_item_num; struct item_head *de_ih; int de_entry_num; struct reiserfs_de_head *de_deh; int de_entrylen; int de_namelen; char *de_name; unsigned long *de_gen_number_bit_string; __u32 de_dir_id; __u32 de_objectid; struct cpu_key de_entry_key; }; /* * these defines are useful when a particular member of * a reiserfs_dir_entry is needed */ /* pointer to file name, stored in entry */ #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \ (ih_item_body(bh, ih) + deh_location(deh)) /* length of name */ #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) /* hash value occupies bits from 7 up to 30 */ #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) /* generation number occupies 7 bits starting from 0 up to 6 */ #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) #define MAX_GENERATION_NUMBER 127 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) /* * Picture represents an internal node of the reiserfs tree * ______________________________________________________ * | | Array of | Array of | Free | * |block | keys | pointers | space | * | head | N | N+1 | | * |______|_______________|___________________|___________| */ /*************************************************************************** * DISK CHILD * ***************************************************************************/ /* * Disk child pointer: * The pointer from an internal node of the tree to a node that is on disk. */ struct disk_child { __le32 dc_block_number; /* Disk child's block number. */ __le16 dc_size; /* Disk child's used space. */ __le16 dc_reserved; }; #define DC_SIZE (sizeof(struct disk_child)) #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) /* Get disk child by buffer header and position in the tree node. */ #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\ ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) /* Get disk child number by buffer header and position in the tree node. */ #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ (put_dc_block_number(B_N_CHILD(bh, n_pos), val)) /* maximal value of field child_size in structure disk_child */ /* child size is the combined size of all items and their headers */ #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) /* amount of used space in buffer (not including block head) */ #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) /* max and min number of keys in internal node */ #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) /*************************************************************************** * PATH STRUCTURES AND DEFINES * ***************************************************************************/ /* * search_by_key fills up the path from the root to the leaf as it descends * the tree looking for the key. It uses reiserfs_bread to try to find * buffers in the cache given their block number. If it does not find * them in the cache it reads them from disk. For each node search_by_key * finds using reiserfs_bread it then uses bin_search to look through that * node. bin_search will find the position of the block_number of the next * node if it is looking through an internal node. If it is looking through * a leaf node bin_search will find the position of the item which has key * either equal to given key, or which is the maximal key less than the * given key. */ struct path_element { /* Pointer to the buffer at the path in the tree. */ struct buffer_head *pe_buffer; /* Position in the tree node which is placed in the buffer above. */ int pe_position; }; /* * maximal height of a tree. don't change this without * changing JOURNAL_PER_BALANCE_CNT */ #define MAX_HEIGHT 5 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ #define EXTENDED_MAX_HEIGHT 7 /* Must be equal to at least 2. */ #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ #define MAX_FEB_SIZE 6 /* * We need to keep track of who the ancestors of nodes are. When we * perform a search we record which nodes were visited while * descending the tree looking for the node we searched for. This list * of nodes is called the path. This information is used while * performing balancing. Note that this path information may become * invalid, and this means we must check it when using it to see if it * is still valid. You'll need to read search_by_key and the comments * in it, especially about decrement_counters_in_path(), to understand * this structure. * * Paths make the code so much harder to work with and debug.... An * enormous number of bugs are due to them, and trying to write or modify * code that uses them just makes my head hurt. They are based on an * excessive effort to avoid disturbing the precious VFS code.:-( The * gods only know how we are going to SMP the code that uses them. * znodes are the way! */ #define PATH_READA 0x1 /* do read ahead */ #define PATH_READA_BACK 0x2 /* read backwards */ struct treepath { int path_length; /* Length of the array above. */ int reada; /* Array of the path elements. */ struct path_element path_elements[EXTENDED_MAX_HEIGHT]; int pos_in_item; }; #define pos_in_item(path) ((path)->pos_in_item) #define INITIALIZE_PATH(var) \ struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} /* Get path element by path and path position. */ #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset)) /* Get buffer header at the path by path and path position. */ #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) /* Get position in the element at the path by path and path position. */ #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) /* * you know, to the person who didn't write this the macro name does not * at first suggest what it does. Maybe POSITION_FROM_PATH_END? Or * maybe we should just focus on dumping paths... -Hans */ #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) /* * in do_balance leaf has h == 0 in contrast with path structure, * where root has level == 0. That is why we need these defines */ /* tb->S[h] */ #define PATH_H_PBUFFER(path, h) \ PATH_OFFSET_PBUFFER(path, path->path_length - (h)) /* tb->F[h] or tb->S[0]->b_parent */ #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1) #define PATH_H_POSITION(path, h) \ PATH_OFFSET_POSITION(path, path->path_length - (h)) /* tb->S[h]->b_item_order */ #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) static inline void *reiserfs_node_data(const struct buffer_head *bh) { return bh->b_data + sizeof(struct block_head); } /* get key from internal node */ static inline struct reiserfs_key *internal_key(struct buffer_head *bh, int item_num) { struct reiserfs_key *key = reiserfs_node_data(bh); return &key[item_num]; } /* get the item header from leaf node */ static inline struct item_head *item_head(const struct buffer_head *bh, int item_num) { struct item_head *ih = reiserfs_node_data(bh); return &ih[item_num]; } /* get the key from leaf node */ static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh, int item_num) { return &item_head(bh, item_num)->ih_key; } static inline void *ih_item_body(const struct buffer_head *bh, const struct item_head *ih) { return bh->b_data + ih_location(ih); } /* get item body from leaf node */ static inline void *item_body(const struct buffer_head *bh, int item_num) { return ih_item_body(bh, item_head(bh, item_num)); } static inline struct item_head *tp_item_head(const struct treepath *path) { return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); } static inline void *tp_item_body(const struct treepath *path) { return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); } #define get_last_bh(path) PATH_PLAST_BUFFER(path) #define get_item_pos(path) PATH_LAST_POSITION(path) #define item_moved(ih,path) comp_items(ih, path) #define path_changed(ih,path) comp_items (ih, path) /* array of the entry headers */ /* get item body */ #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih))) /* * length of the directory entry in directory item. This define * calculates length of i-th directory entry using directory entry * locations from dir entry head. When it calculates length of 0-th * directory entry, it uses length of whole item in place of entry * location of the non-existent following entry in the calculation. * See picture above. */ static inline int entry_length(const struct buffer_head *bh, const struct item_head *ih, int pos_in_item) { struct reiserfs_de_head *deh; deh = B_I_DEH(bh, ih) + pos_in_item; if (pos_in_item) return deh_location(deh - 1) - deh_location(deh); return ih_item_len(ih) - deh_location(deh); } /*************************************************************************** * MISC * ***************************************************************************/ /* Size of pointer to the unformatted node. */ #define UNFM_P_SIZE (sizeof(unp_t)) #define UNFM_P_SHIFT 2 /* in in-core inode key is stored on le form */ #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) #define MAX_UL_INT 0xffffffff #define MAX_INT 0x7ffffff #define MAX_US_INT 0xffff // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset static inline loff_t max_reiserfs_offset(struct inode *inode) { if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) return (loff_t) U32_MAX; return (loff_t) ((~(__u64) 0) >> 4); } #define MAX_KEY_OBJECTID MAX_UL_INT #define MAX_B_NUM MAX_UL_INT #define MAX_FC_NUM MAX_US_INT /* the purpose is to detect overflow of an unsigned short */ #define REISERFS_LINK_MAX (MAX_US_INT - 1000) /* * The following defines are used in reiserfs_insert_item * and reiserfs_append_item */ #define REISERFS_KERNEL_MEM 0 /* kernel memory mode */ #define REISERFS_USER_MEM 1 /* user memory mode */ #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) #define get_generation(s) atomic_read (&fs_generation(s)) #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) #define __fs_changed(gen,s) (gen != get_generation (s)) #define fs_changed(gen,s) \ ({ \ reiserfs_cond_resched(s); \ __fs_changed(gen, s); \ }) /*************************************************************************** * FIXATE NODES * ***************************************************************************/ #define VI_TYPE_LEFT_MERGEABLE 1 #define VI_TYPE_RIGHT_MERGEABLE 2 /* * To make any changes in the tree we always first find node, that * contains item to be changed/deleted or place to insert a new * item. We call this node S. To do balancing we need to decide what * we will shift to left/right neighbor, or to a new node, where new * item will be etc. To make this analysis simpler we build virtual * node. Virtual node is an array of items, that will replace items of * node S. (For instance if we are going to delete an item, virtual * node does not contain it). Virtual node keeps information about * item sizes and types, mergeability of first and last items, sizes * of all entries in directory item. We use this array of items when * calculating what we can shift to neighbors and how many nodes we * have to have if we do not any shiftings, if we shift to left/right * neighbor or to both. */ struct virtual_item { int vi_index; /* index in the array of item operations */ unsigned short vi_type; /* left/right mergeability */ /* length of item that it will have after balancing */ unsigned short vi_item_len; struct item_head *vi_ih; const char *vi_item; /* body of item (old or new) */ const void *vi_new_data; /* 0 always but paste mode */ void *vi_uarea; /* item specific area */ }; struct virtual_node { /* this is a pointer to the free space in the buffer */ char *vn_free_ptr; unsigned short vn_nr_item; /* number of items in virtual node */ /* * size of node , that node would have if it has * unlimited size and no balancing is performed */ short vn_size; /* mode of balancing (paste, insert, delete, cut) */ short vn_mode; short vn_affected_item_num; short vn_pos_in_item; /* item header of inserted item, 0 for other modes */ struct item_head *vn_ins_ih; const void *vn_data; /* array of items (including a new one, excluding item to be deleted) */ struct virtual_item *vn_vi; }; /* used by directory items when creating virtual nodes */ struct direntry_uarea { int flags; __u16 entry_count; __u16 entry_sizes[1]; } __attribute__ ((__packed__)); /*************************************************************************** * TREE BALANCE * ***************************************************************************/ /* * This temporary structure is used in tree balance algorithms, and * constructed as we go to the extent that its various parts are * needed. It contains arrays of nodes that can potentially be * involved in the balancing of node S, and parameters that define how * each of the nodes must be balanced. Note that in these algorithms * for balancing the worst case is to need to balance the current node * S and the left and right neighbors and all of their parents plus * create a new node. We implement S1 balancing for the leaf nodes * and S0 balancing for the internal nodes (S1 and S0 are defined in * our papers.) */ /* size of the array of buffers to free at end of do_balance */ #define MAX_FREE_BLOCK 7 /* maximum number of FEB blocknrs on a single level */ #define MAX_AMOUNT_NEEDED 2 /* someday somebody will prefix every field in this struct with tb_ */ struct tree_balance { int tb_mode; int need_balance_dirty; struct super_block *tb_sb; struct reiserfs_transaction_handle *transaction_handle; struct treepath *tb_path; /* array of left neighbors of nodes in the path */ struct buffer_head *L[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */ struct buffer_head *R[MAX_HEIGHT]; /* array of fathers of the left neighbors */ struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the right neighbors */ struct buffer_head *FR[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */ struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */ struct buffer_head *CFR[MAX_HEIGHT]; /* * array of empty buffers. Number of buffers in array equals * cur_blknum. */ struct buffer_head *FEB[MAX_FEB_SIZE]; struct buffer_head *used[MAX_FEB_SIZE]; struct buffer_head *thrown[MAX_FEB_SIZE]; /* * array of number of items which must be shifted to the left in * order to balance the current node; for leaves includes item that * will be partially shifted; for internal nodes, it is the number * of child pointers rather than items. It includes the new item * being created. The code sometimes subtracts one to get the * number of wholly shifted items for other purposes. */ int lnum[MAX_HEIGHT]; /* substitute right for left in comment above */ int rnum[MAX_HEIGHT]; /* * array indexed by height h mapping the key delimiting L[h] and * S[h] to its item number within the node CFL[h] */ int lkey[MAX_HEIGHT]; /* substitute r for l in comment above */ int rkey[MAX_HEIGHT]; /* * the number of bytes by we are trying to add or remove from * S[h]. A negative value means removing. */ int insert_size[MAX_HEIGHT]; /* * number of nodes that will replace node S[h] after balancing * on the level h of the tree. If 0 then S is being deleted, * if 1 then S is remaining and no new nodes are being created, * if 2 or 3 then 1 or 2 new nodes is being created */ int blknum[MAX_HEIGHT]; /* fields that are used only for balancing leaves of the tree */ /* number of empty blocks having been already allocated */ int cur_blknum; /* number of items that fall into left most node when S[0] splits */ int s0num; /* number of items that fall into first new node when S[0] splits */ int s1num; /* number of items that fall into second new node when S[0] splits */ int s2num; /* * number of bytes which can flow to the left neighbor from the left * most liquid item that cannot be shifted from S[0] entirely * if -1 then nothing will be partially shifted */ int lbytes; /* * number of bytes which will flow to the right neighbor from the right * most liquid item that cannot be shifted from S[0] entirely * if -1 then nothing will be partially shifted */ int rbytes; /* * number of bytes which flow to the first new node when S[0] splits * note: if S[0] splits into 3 nodes, then items do not need to be cut */ int s1bytes; int s2bytes; /* * buffers which are to be freed after do_balance finishes * by unfix_nodes */ struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* * kmalloced memory. Used to create virtual node and keep * map of dirtied bitmap blocks */ char *vn_buf; int vn_buf_size; /* size of the vn_buf */ /* VN starts after bitmap of bitmap blocks */ struct virtual_node *tb_vn; /* * saved value of `reiserfs_generation' counter see * FILESYSTEM_CHANGED() macro in reiserfs_fs.h */ int fs_gen; #ifdef DISPLACE_NEW_PACKING_LOCALITIES /* * key pointer, to pass to block allocator or * another low-level subsystem */ struct in_core_key key; #endif }; /* These are modes of balancing */ /* When inserting an item. */ #define M_INSERT 'i' /* * When inserting into (directories only) or appending onto an already * existent item. */ #define M_PASTE 'p' /* When deleting an item. */ #define M_DELETE 'd' /* When truncating an item or removing an entry from a (directory) item. */ #define M_CUT 'c' /* used when balancing on leaf level skipped (in reiserfsck) */ #define M_INTERNAL 'n' /* * When further balancing is not needed, then do_balance does not need * to be called. */ #define M_SKIP_BALANCING 's' #define M_CONVERT 'v' /* modes of leaf_move_items */ #define LEAF_FROM_S_TO_L 0 #define LEAF_FROM_S_TO_R 1 #define LEAF_FROM_R_TO_L 2 #define LEAF_FROM_L_TO_R 3 #define LEAF_FROM_S_TO_SNEW 4 #define FIRST_TO_LAST 0 #define LAST_TO_FIRST 1 /* * used in do_balance for passing parent of node information that has * been gotten from tb struct */ struct buffer_info { struct tree_balance *tb; struct buffer_head *bi_bh; struct buffer_head *bi_parent; int bi_position; }; static inline struct super_block *sb_from_tb(struct tree_balance *tb) { return tb ? tb->tb_sb : NULL; } static inline struct super_block *sb_from_bi(struct buffer_info *bi) { return bi ? sb_from_tb(bi->tb) : NULL; } /* * there are 4 types of items: stat data, directory item, indirect, direct. * +-------------------+------------+--------------+------------+ * | | k_offset | k_uniqueness | mergeable? | * +-------------------+------------+--------------+------------+ * | stat data | 0 | 0 | no | * +-------------------+------------+--------------+------------+ * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. | no | * | non 1st directory | hash value | UNIQUENESS | yes | * | item | | | | * +-------------------+------------+--------------+------------+ * | indirect item | offset + 1 |TYPE_INDIRECT | [1] | * +-------------------+------------+--------------+------------+ * | direct item | offset + 1 |TYPE_DIRECT | [2] | * +-------------------+------------+--------------+------------+ * * [1] if this is not the first indirect item of the object * [2] if this is not the first direct item of the object */ struct item_operations { int (*bytes_number) (struct item_head * ih, int block_size); void (*decrement_key) (struct cpu_key *); int (*is_left_mergeable) (struct reiserfs_key * ih, unsigned long bsize); void (*print_item) (struct item_head *, char *item); void (*check_item) (struct item_head *, char *item); int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, int is_affected, int insert_size); int (*check_left) (struct virtual_item * vi, int free, int start_skip, int end_skip); int (*check_right) (struct virtual_item * vi, int free); int (*part_size) (struct virtual_item * vi, int from, int to); int (*unit_num) (struct virtual_item * vi); void (*print_vi) (struct virtual_item * vi); }; extern struct item_operations *item_ops[TYPE_ANY + 1]; #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) #define COMP_SHORT_KEYS comp_short_keys /* number of blocks pointed to by the indirect item */ #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE) /* * the used space within the unformatted node corresponding * to pos within the item pointed to by ih */ #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) /* * number of bytes contained by the direct item or the * unformatted nodes the indirect item points to */ /* following defines use reiserfs buffer header and item header */ /* get stat-data */ #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) /* this is 3976 for size==4096 */ #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) /* * indirect items consist of entries which contain blocknrs, pos * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the * blocknr contained by the entry pos points to */ #define B_I_POS_UNFM_POINTER(bh, ih, pos) \ le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos))) #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val) \ (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val)) struct reiserfs_iget_args { __u32 objectid; __u32 dirid; }; /*************************************************************************** * FUNCTION DECLARATIONS * ***************************************************************************/ #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) #define journal_trans_half(blocksize) \ ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) /* journal.c see journal.c for all the comments here */ /* first block written in a commit. */ struct reiserfs_journal_desc { __le32 j_trans_id; /* id of commit */ /* length of commit. len +1 is the commit block */ __le32 j_len; __le32 j_mount_id; /* mount id of this trans */ __le32 j_realblock[1]; /* real locations for each block */ }; #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) #define get_desc_trans_len(d) le32_to_cpu((d)->j_len) #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) /* last block written in a commit */ struct reiserfs_journal_commit { __le32 j_trans_id; /* must match j_trans_id from the desc block */ __le32 j_len; /* ditto */ __le32 j_realblock[1]; /* real locations for each block */ }; #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) #define get_commit_trans_len(c) le32_to_cpu((c)->j_len) #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) /* * this header block gets written whenever a transaction is considered * fully flushed, and is more recent than the last fully flushed transaction. * fully flushed means all the log blocks and all the real blocks are on * disk, and this transaction does not need to be replayed. */ struct reiserfs_journal_header { /* id of last fully flushed transaction */ __le32 j_last_flush_trans_id; /* offset in the log of where to start replay after a crash */ __le32 j_first_unflushed_offset; __le32 j_mount_id; /* 12 */ struct journal_params jh_journal; }; /* biggest tunable defines are right here */ #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ /* biggest possible single transaction, don't change for now (8/3/99) */ #define JOURNAL_TRANS_MAX_DEFAULT 1024 #define JOURNAL_TRANS_MIN_DEFAULT 256 /* * max blocks to batch into one transaction, * don't make this any bigger than 900 */ #define JOURNAL_MAX_BATCH_DEFAULT 900 #define JOURNAL_MIN_RATIO 2 #define JOURNAL_MAX_COMMIT_AGE 30 #define JOURNAL_MAX_TRANS_AGE 30 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \ 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ REISERFS_QUOTA_TRANS_BLOCKS(sb))) #ifdef CONFIG_QUOTA #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA)) /* We need to update data and inode (atime) */ #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0) /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) /* same as with INIT */ #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) #else #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 #endif /* * both of these can be as low as 1, or as high as you want. The min is the * number of 4k bitmap nodes preallocated on mount. New nodes are allocated * as needed, and released when transactions are committed. On release, if * the current number of nodes is > max, the node is freed, otherwise, * it is put on a free list for faster use later. */ #define REISERFS_MIN_BITMAP_NODES 10 #define REISERFS_MAX_BITMAP_NODES 100 /* these are based on journal hash size of 8192 */ #define JBH_HASH_SHIFT 13 #define JBH_HASH_MASK 8191 #define _jhashfn(sb,block) \ (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) /* We need these to make journal.c code more readable */ #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) enum reiserfs_bh_state_bits { BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ BH_JDirty_wait, /* * disk block was taken off free list before being in a * finished transaction, or written to disk. Can be reused immed. */ BH_JNew, BH_JPrepared, BH_JRestore_dirty, BH_JTest, /* debugging only will go away */ }; BUFFER_FNS(JDirty, journaled); TAS_BUFFER_FNS(JDirty, journaled); BUFFER_FNS(JDirty_wait, journal_dirty); TAS_BUFFER_FNS(JDirty_wait, journal_dirty); BUFFER_FNS(JNew, journal_new); TAS_BUFFER_FNS(JNew, journal_new); BUFFER_FNS(JPrepared, journal_prepared); TAS_BUFFER_FNS(JPrepared, journal_prepared); BUFFER_FNS(JRestore_dirty, journal_restore_dirty); TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); BUFFER_FNS(JTest, journal_test); TAS_BUFFER_FNS(JTest, journal_test); /* transaction handle which is passed around for all journal calls */ struct reiserfs_transaction_handle { /* * super for this FS when journal_begin was called. saves calls to * reiserfs_get_super also used by nested transactions to make * sure they are nesting on the right FS _must_ be first * in the handle */ struct super_block *t_super; int t_refcount; int t_blocks_logged; /* number of blocks this writer has logged */ int t_blocks_allocated; /* number of blocks this writer allocated */ /* sanity check, equals the current trans id */ unsigned int t_trans_id; void *t_handle_save; /* save existing current->journal_info */ /* * if new block allocation occurres, that block * should be displaced from others */ unsigned displace_new_blocks:1; struct list_head t_list; }; /* * used to keep track of ordered and tail writes, attached to the buffer * head through b_journal_head. */ struct reiserfs_jh { struct reiserfs_journal_list *jl; struct buffer_head *bh; struct list_head list; }; void reiserfs_free_jh(struct buffer_head *bh); int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); int journal_mark_dirty(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh); static inline int reiserfs_file_data_log(struct inode *inode) { if (reiserfs_data_log(inode->i_sb) || (REISERFS_I(inode)->i_flags & i_data_log)) return 1; return 0; } static inline int reiserfs_transaction_running(struct super_block *s) { struct reiserfs_transaction_handle *th = current->journal_info; if (th && th->t_super == s) return 1; if (th && th->t_super == NULL) BUG(); return 0; } static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) { return th->t_blocks_allocated - th->t_blocks_logged; } struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct super_block *, int count); int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); void reiserfs_vfs_truncate_file(struct inode *inode); int reiserfs_commit_page(struct inode *inode, struct page *page, unsigned from, unsigned to); void reiserfs_flush_old_commits(struct super_block *); int reiserfs_commit_for_inode(struct inode *); int reiserfs_inode_needs_commit(struct inode *); void reiserfs_update_inode_transaction(struct inode *); void reiserfs_wait_on_write_block(struct super_block *s); void reiserfs_block_writes(struct reiserfs_transaction_handle *th); void reiserfs_allow_writes(struct super_block *s); void reiserfs_check_lock_depth(struct super_block *s, char *caller); int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait); void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh); int journal_init(struct super_block *, const char *j_dev_name, int old_format, unsigned int); int journal_release(struct reiserfs_transaction_handle *, struct super_block *); int journal_release_error(struct reiserfs_transaction_handle *, struct super_block *); int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long); int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long); int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr); int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, int bit_nr, int searchall, b_blocknr_t *next); int journal_begin(struct reiserfs_transaction_handle *, struct super_block *sb, unsigned long); int journal_join_abort(struct reiserfs_transaction_handle *, struct super_block *sb, unsigned long); void reiserfs_abort_journal(struct super_block *sb, int errno); void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, unsigned int); void reiserfs_schedule_old_flush(struct super_block *s); void add_save_link(struct reiserfs_transaction_handle *th, struct inode *inode, int truncate); int remove_save_link(struct inode *inode, int truncate); /* objectid.c */ __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, __u32 objectid_to_release); int reiserfs_convert_objectid_map_v1(struct super_block *); /* stree.c */ int B_IS_IN_TREE(const struct buffer_head *); extern void copy_item_head(struct item_head *to, const struct item_head *from); /* first key is in cpu form, second - le */ extern int comp_short_keys(const struct reiserfs_key *le_key, const struct cpu_key *cpu_key); extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); /* both are in le form */ extern int comp_le_keys(const struct reiserfs_key *, const struct reiserfs_key *); extern int comp_short_le_keys(const struct reiserfs_key *, const struct reiserfs_key *); /* * get key version from on disk key - kludge */ static inline int le_key_version(const struct reiserfs_key *key) { int type; type = offset_v2_k_type(&(key->u.k_offset_v2)); if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY) return KEY_FORMAT_3_5; return KEY_FORMAT_3_6; } static inline void copy_key(struct reiserfs_key *to, const struct reiserfs_key *from) { memcpy(to, from, KEY_SIZE); } int comp_items(const struct item_head *stored_ih, const struct treepath *path); const struct reiserfs_key *get_rkey(const struct treepath *chk_path, const struct super_block *sb); int search_by_key(struct super_block *, const struct cpu_key *, struct treepath *, int); #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) int search_for_position_by_key(struct super_block *sb, const struct cpu_key *cpu_key, struct treepath *search_path); extern void decrement_bcount(struct buffer_head *bh); void decrement_counters_in_path(struct treepath *search_path); void pathrelse(struct treepath *search_path); int reiserfs_check_path(struct treepath *p); void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); int reiserfs_insert_item(struct reiserfs_transaction_handle *th, struct treepath *path, const struct cpu_key *key, struct item_head *ih, struct inode *inode, const char *body); int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *path, const struct cpu_key *key, struct inode *inode, const char *body, int paste_size); int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, struct treepath *path, struct cpu_key *key, struct inode *inode, struct page *page, loff_t new_file_size); int reiserfs_delete_item(struct reiserfs_transaction_handle *th, struct treepath *path, const struct cpu_key *key, struct inode *inode, struct buffer_head *un_bh); void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, struct inode *inode, struct reiserfs_key *key); int reiserfs_delete_object(struct reiserfs_transaction_handle *th, struct inode *inode); int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, struct inode *inode, struct page *, int update_timestamps); #define i_block_size(inode) ((inode)->i_sb->s_blocksize) #define file_size(inode) ((inode)->i_size) #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) void padd_item(char *item, int total_length, int length); /* inode.c */ /* args for the create parameter of reiserfs_get_block */ #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ #define GET_BLOCK_CREATE 1 /* add anything you need to find block */ #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ void reiserfs_read_locked_inode(struct inode *inode, struct reiserfs_iget_args *args); int reiserfs_find_actor(struct inode *inode, void *p); int reiserfs_init_locked_inode(struct inode *inode, void *p); void reiserfs_evict_inode(struct inode *inode); int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); int reiserfs_get_block(struct inode *inode, sector_t block, struct buffer_head *bh_result, int create); struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type); struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type); int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, struct inode *parent); int reiserfs_truncate_file(struct inode *, int update_timestamps); void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, int type, int key_length); void make_le_item_head(struct item_head *ih, const struct cpu_key *key, int version, loff_t offset, int type, int length, int entry_count); struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); struct reiserfs_security_handle; int reiserfs_new_inode(struct reiserfs_transaction_handle *th, struct inode *dir, umode_t mode, const char *symname, loff_t i_size, struct dentry *dentry, struct inode *inode, struct reiserfs_security_handle *security); void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t size); static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, struct inode *inode) { reiserfs_update_sd_size(th, inode, inode->i_size); } void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs); int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); /* namei.c */ void set_de_name_and_namelen(struct reiserfs_dir_entry *de); int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, struct treepath *path, struct reiserfs_dir_entry *de); struct dentry *reiserfs_get_parent(struct dentry *); #ifdef CONFIG_REISERFS_PROC_INFO int reiserfs_proc_info_init(struct super_block *sb); int reiserfs_proc_info_done(struct super_block *sb); int reiserfs_proc_info_global_init(void); int reiserfs_proc_info_global_done(void); #define PROC_EXP( e ) e #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data #define PROC_INFO_MAX( sb, field, value ) \ __PINFO( sb ).field = \ max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) #define PROC_INFO_BH_STAT( sb, bh, level ) \ PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) #else static inline int reiserfs_proc_info_init(struct super_block *sb) { return 0; } static inline int reiserfs_proc_info_done(struct super_block *sb) { return 0; } static inline int reiserfs_proc_info_global_init(void) { return 0; } static inline int reiserfs_proc_info_global_done(void) { return 0; } #define PROC_EXP( e ) #define VOID_V ( ( void ) 0 ) #define PROC_INFO_MAX( sb, field, value ) VOID_V #define PROC_INFO_INC( sb, field ) VOID_V #define PROC_INFO_ADD( sb, field, val ) VOID_V #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V #endif /* dir.c */ extern const struct inode_operations reiserfs_dir_inode_operations; extern const struct inode_operations reiserfs_symlink_inode_operations; extern const struct inode_operations reiserfs_special_inode_operations; extern const struct file_operations reiserfs_dir_operations; int reiserfs_readdir_inode(struct inode *, struct dir_context *); /* tail_conversion.c */ int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, struct treepath *, struct buffer_head *, loff_t); int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, struct page *, struct treepath *, const struct cpu_key *, loff_t, char *); void reiserfs_unmap_buffer(struct buffer_head *); /* file.c */ extern const struct inode_operations reiserfs_file_inode_operations; extern const struct file_operations reiserfs_file_operations; extern const struct address_space_operations reiserfs_address_space_operations; /* fix_nodes.c */ int fix_nodes(int n_op_mode, struct tree_balance *tb, struct item_head *ins_ih, const void *); void unfix_nodes(struct tree_balance *); /* prints.c */ void __reiserfs_panic(struct super_block *s, const char *id, const char *function, const char *fmt, ...) __attribute__ ((noreturn)); #define reiserfs_panic(s, id, fmt, args...) \ __reiserfs_panic(s, id, __func__, fmt, ##args) void __reiserfs_error(struct super_block *s, const char *id, const char *function, const char *fmt, ...); #define reiserfs_error(s, id, fmt, args...) \ __reiserfs_error(s, id, __func__, fmt, ##args) void reiserfs_info(struct super_block *s, const char *fmt, ...); void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); void print_indirect_item(struct buffer_head *bh, int item_num); void store_print_tb(struct tree_balance *tb); void print_cur_tb(char *mes); void print_de(struct reiserfs_dir_entry *de); void print_bi(struct buffer_info *bi, char *mes); #define PRINT_LEAF_ITEMS 1 /* print all items */ #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ void print_block(struct buffer_head *bh, ...); void print_bmap(struct super_block *s, int silent); void print_bmap_block(int i, char *data, int size, int silent); /*void print_super_block (struct super_block * s, char * mes);*/ void print_objectid_map(struct super_block *s); void print_block_head(struct buffer_head *bh, char *mes); void check_leaf(struct buffer_head *bh); void check_internal(struct buffer_head *bh); void print_statistics(struct super_block *s); char *reiserfs_hashname(int code); /* lbalance.c */ int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, int mov_bytes, struct buffer_head *Snew); int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, int del_num, int del_bytes); void leaf_insert_into_buf(struct buffer_info *bi, int before, struct item_head *inserted_item_ih, const char *inserted_item_body, int zeros_number); void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, int pos_in_item, int paste_size, const char *body, int zeros_number); void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, int pos_in_item, int cut_size); void leaf_paste_entries(struct buffer_info *bi, int item_num, int before, int new_entry_count, struct reiserfs_de_head *new_dehs, const char *records, int paste_size); /* ibalance.c */ int balance_internal(struct tree_balance *, int, int, struct item_head *, struct buffer_head **); /* do_balance.c */ void do_balance_mark_leaf_dirty(struct tree_balance *tb, struct buffer_head *bh, int flag); #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty void do_balance(struct tree_balance *tb, struct item_head *ih, const char *body, int flag); void reiserfs_invalidate_buffer(struct tree_balance *tb, struct buffer_head *bh); int get_left_neighbor_position(struct tree_balance *tb, int h); int get_right_neighbor_position(struct tree_balance *tb, int h); void replace_key(struct tree_balance *tb, struct buffer_head *, int, struct buffer_head *, int); void make_empty_node(struct buffer_info *); struct buffer_head *get_FEB(struct tree_balance *); /* bitmap.c */ /* * structure contains hints for block allocator, and it is a container for * arguments, such as node, search path, transaction_handle, etc. */ struct __reiserfs_blocknr_hint { /* inode passed to allocator, if we allocate unf. nodes */ struct inode *inode; sector_t block; /* file offset, in blocks */ struct in_core_key key; /* * search path, used by allocator to deternine search_start by * various ways */ struct treepath *path; /* * transaction handle is needed to log super blocks * and bitmap blocks changes */ struct reiserfs_transaction_handle *th; b_blocknr_t beg, end; /* * a field used to transfer search start value (block number) * between different block allocator procedures * (determine_search_start() and others) */ b_blocknr_t search_start; /* * is set in determine_prealloc_size() function, * used by underlayed function that do actual allocation */ int prealloc_size; /* * the allocator uses different polices for getting disk * space for formatted/unformatted blocks with/without preallocation */ unsigned formatted_node:1; unsigned preallocate:1; }; typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; int reiserfs_parse_alloc_options(struct super_block *, char *); void reiserfs_init_alloc_options(struct super_block *s); /* * given a directory, this will tell you what packing locality * to use for a new object underneat it. The locality is returned * in disk byte order (le). */ __le32 reiserfs_choose_packing(struct inode *dir); void show_alloc_options(struct seq_file *seq, struct super_block *s); int reiserfs_init_bitmap_cache(struct super_block *sb); void reiserfs_free_bitmap_cache(struct super_block *sb); void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, b_blocknr_t, int for_unformatted); int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, int); static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, b_blocknr_t * new_blocknrs, int amount_needed) { reiserfs_blocknr_hint_t hint = { .th = tb->transaction_handle, .path = tb->tb_path, .inode = NULL, .key = tb->key, .block = 0, .formatted_node = 1 }; return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0); } static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle *th, struct inode *inode, b_blocknr_t * new_blocknrs, struct treepath *path, sector_t block) { reiserfs_blocknr_hint_t hint = { .th = th, .path = path, .inode = inode, .block = block, .formatted_node = 0, .preallocate = 0 }; return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); } #ifdef REISERFS_PREALLOCATE static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th, struct inode *inode, b_blocknr_t * new_blocknrs, struct treepath *path, sector_t block) { reiserfs_blocknr_hint_t hint = { .th = th, .path = path, .inode = inode, .block = block, .formatted_node = 0, .preallocate = 1 }; return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); } void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, struct inode *inode); void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); #endif /* hashes.c */ __u32 keyed_hash(const signed char *msg, int len); __u32 yura_hash(const signed char *msg, int len); __u32 r5_hash(const signed char *msg, int len); #define reiserfs_set_le_bit __set_bit_le #define reiserfs_test_and_set_le_bit __test_and_set_bit_le #define reiserfs_clear_le_bit __clear_bit_le #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le #define reiserfs_test_le_bit test_bit_le #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le /* * sometimes reiserfs_truncate may require to allocate few new blocks * to perform indirect2direct conversion. People probably used to * think, that truncate should work without problems on a filesystem * without free disk space. They may complain that they can not * truncate due to lack of free disk space. This spare space allows us * to not worry about it. 500 is probably too much, but it should be * absolutely safe */ #define SPARE_SPACE 500 /* prototypes from ioctl.c */ long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); long reiserfs_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); int reiserfs_unpack(struct inode *inode, struct file *filp);