#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" void task_mem(struct seq_file *m, struct mm_struct *mm) { unsigned long data, text, lib, swap; unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; /* * Note: to minimize their overhead, mm maintains hiwater_vm and * hiwater_rss only when about to *lower* total_vm or rss. Any * collector of these hiwater stats must therefore get total_vm * and rss too, which will usually be the higher. Barriers? not * worth the effort, such snapshots can always be inconsistent. */ hiwater_vm = total_vm = mm->total_vm; if (hiwater_vm < mm->hiwater_vm) hiwater_vm = mm->hiwater_vm; hiwater_rss = total_rss = get_mm_rss(mm); if (hiwater_rss < mm->hiwater_rss) hiwater_rss = mm->hiwater_rss; data = mm->total_vm - mm->shared_vm - mm->stack_vm; text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; swap = get_mm_counter(mm, MM_SWAPENTS); seq_printf(m, "VmPeak:\t%8lu kB\n" "VmSize:\t%8lu kB\n" "VmLck:\t%8lu kB\n" "VmHWM:\t%8lu kB\n" "VmRSS:\t%8lu kB\n" "VmData:\t%8lu kB\n" "VmStk:\t%8lu kB\n" "VmExe:\t%8lu kB\n" "VmLib:\t%8lu kB\n" "VmPTE:\t%8lu kB\n" "VmSwap:\t%8lu kB\n", hiwater_vm << (PAGE_SHIFT-10), (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10), mm->locked_vm << (PAGE_SHIFT-10), hiwater_rss << (PAGE_SHIFT-10), total_rss << (PAGE_SHIFT-10), data << (PAGE_SHIFT-10), mm->stack_vm << (PAGE_SHIFT-10), text, lib, (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10, swap << (PAGE_SHIFT-10)); } unsigned long task_vsize(struct mm_struct *mm) { return PAGE_SIZE * mm->total_vm; } unsigned long task_statm(struct mm_struct *mm, unsigned long *shared, unsigned long *text, unsigned long *data, unsigned long *resident) { *shared = get_mm_counter(mm, MM_FILEPAGES); *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> PAGE_SHIFT; *data = mm->total_vm - mm->shared_vm; *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); return mm->total_vm; } static void pad_len_spaces(struct seq_file *m, int len) { len = 25 + sizeof(void*) * 6 - len; if (len < 1) len = 1; seq_printf(m, "%*c", len, ' '); } static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma) { if (vma && vma != priv->tail_vma) { struct mm_struct *mm = vma->vm_mm; up_read(&mm->mmap_sem); mmput(mm); } } static void *m_start(struct seq_file *m, loff_t *pos) { struct proc_maps_private *priv = m->private; unsigned long last_addr = m->version; struct mm_struct *mm; struct vm_area_struct *vma, *tail_vma = NULL; loff_t l = *pos; /* Clear the per syscall fields in priv */ priv->task = NULL; priv->tail_vma = NULL; /* * We remember last_addr rather than next_addr to hit with * mmap_cache most of the time. We have zero last_addr at * the beginning and also after lseek. We will have -1 last_addr * after the end of the vmas. */ if (last_addr == -1UL) return NULL; priv->task = get_pid_task(priv->pid, PIDTYPE_PID); if (!priv->task) return ERR_PTR(-ESRCH); mm = mm_for_maps(priv->task); if (!mm || IS_ERR(mm)) return mm; down_read(&mm->mmap_sem); tail_vma = get_gate_vma(priv->task->mm); priv->tail_vma = tail_vma; /* Start with last addr hint */ vma = find_vma(mm, last_addr); if (last_addr && vma) { vma = vma->vm_next; goto out; } /* * Check the vma index is within the range and do * sequential scan until m_index. */ vma = NULL; if ((unsigned long)l < mm->map_count) { vma = mm->mmap; while (l-- && vma) vma = vma->vm_next; goto out; } if (l != mm->map_count) tail_vma = NULL; /* After gate vma */ out: if (vma) return vma; /* End of vmas has been reached */ m->version = (tail_vma != NULL)? 0: -1UL; up_read(&mm->mmap_sem); mmput(mm); return tail_vma; } static void *m_next(struct seq_file *m, void *v, loff_t *pos) { struct proc_maps_private *priv = m->private; struct vm_area_struct *vma = v; struct vm_area_struct *tail_vma = priv->tail_vma; (*pos)++; if (vma && (vma != tail_vma) && vma->vm_next) return vma->vm_next; vma_stop(priv, vma); return (vma != tail_vma)? tail_vma: NULL; } static void m_stop(struct seq_file *m, void *v) { struct proc_maps_private *priv = m->private; struct vm_area_struct *vma = v; if (!IS_ERR(vma)) vma_stop(priv, vma); if (priv->task) put_task_struct(priv->task); } static int do_maps_open(struct inode *inode, struct file *file, const struct seq_operations *ops) { struct proc_maps_private *priv; int ret = -ENOMEM; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (priv) { priv->pid = proc_pid(inode); ret = seq_open(file, ops); if (!ret) { struct seq_file *m = file->private_data; m->private = priv; } else { kfree(priv); } } return ret; } static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma) { struct mm_struct *mm = vma->vm_mm; struct file *file = vma->vm_file; vm_flags_t flags = vma->vm_flags; unsigned long ino = 0; unsigned long long pgoff = 0; unsigned long start, end; dev_t dev = 0; int len; if (file) { struct inode *inode = vma->vm_file->f_path.dentry->d_inode; dev = inode->i_sb->s_dev; ino = inode->i_ino; pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; } /* We don't show the stack guard page in /proc/maps */ start = vma->vm_start; if (stack_guard_page_start(vma, start)) start += PAGE_SIZE; end = vma->vm_end; if (stack_guard_page_end(vma, end)) end -= PAGE_SIZE; seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n", start, end, flags & VM_READ ? 'r' : '-', flags & VM_WRITE ? 'w' : '-', flags & VM_EXEC ? 'x' : '-', flags & VM_MAYSHARE ? 's' : 'p', pgoff, MAJOR(dev), MINOR(dev), ino, &len); /* * Print the dentry name for named mappings, and a * special [heap] marker for the heap: */ if (file) { pad_len_spaces(m, len); seq_path(m, &file->f_path, "\n"); } else { const char *name = arch_vma_name(vma); if (!name) { if (mm) { if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { name = "[heap]"; } else if (vma->vm_start <= mm->start_stack && vma->vm_end >= mm->start_stack) { name = "[stack]"; } } else { name = "[vdso]"; } } if (name) { pad_len_spaces(m, len); seq_puts(m, name); } } seq_putc(m, '\n'); } static int show_map(struct seq_file *m, void *v) { struct vm_area_struct *vma = v; struct proc_maps_private *priv = m->private; struct task_struct *task = priv->task; show_map_vma(m, vma); if (m->count < m->size) /* vma is copied successfully */ m->version = (vma != get_gate_vma(task->mm)) ? vma->vm_start : 0; return 0; } static const struct seq_operations proc_pid_maps_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = show_map }; static int maps_open(struct inode *inode, struct file *file) { return do_maps_open(inode, file, &proc_pid_maps_op); } const struct file_operations proc_maps_operations = { .open = maps_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; /* * Proportional Set Size(PSS): my share of RSS. * * PSS of a process is the count of pages it has in memory, where each * page is divided by the number of processes sharing it. So if a * process has 1000 pages all to itself, and 1000 shared with one other * process, its PSS will be 1500. * * To keep (accumulated) division errors low, we adopt a 64bit * fixed-point pss counter to minimize division errors. So (pss >> * PSS_SHIFT) would be the real byte count. * * A shift of 12 before division means (assuming 4K page size): * - 1M 3-user-pages add up to 8KB errors; * - supports mapcount up to 2^24, or 16M; * - supports PSS up to 2^52 bytes, or 4PB. */ #define PSS_SHIFT 12 #ifdef CONFIG_PROC_PAGE_MONITOR struct mem_size_stats { struct vm_area_struct *vma; unsigned long resident; unsigned long shared_clean; unsigned long shared_dirty; unsigned long private_clean; unsigned long private_dirty; unsigned long referenced; unsigned long anonymous; unsigned long anonymous_thp; unsigned long swap; u64 pss; }; static void smaps_pte_entry(pte_t ptent, unsigned long addr, unsigned long ptent_size, struct mm_walk *walk) { struct mem_size_stats *mss = walk->private; struct vm_area_struct *vma = mss->vma; struct page *page; int mapcount; if (is_swap_pte(ptent)) { mss->swap += ptent_size; return; } if (!pte_present(ptent)) return; page = vm_normal_page(vma, addr, ptent); if (!page) return; if (PageAnon(page)) mss->anonymous += ptent_size; mss->resident += ptent_size; /* Accumulate the size in pages that have been accessed. */ if (pte_young(ptent) || PageReferenced(page)) mss->referenced += ptent_size; mapcount = page_mapcount(page); if (mapcount >= 2) { if (pte_dirty(ptent) || PageDirty(page)) mss->shared_dirty += ptent_size; else mss->shared_clean += ptent_size; mss->pss += (ptent_size << PSS_SHIFT) / mapcount; } else { if (pte_dirty(ptent) || PageDirty(page)) mss->private_dirty += ptent_size; else mss->private_clean += ptent_size; mss->pss += (ptent_size << PSS_SHIFT); } } static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct mem_size_stats *mss = walk->private; struct vm_area_struct *vma = mss->vma; pte_t *pte; spinlock_t *ptl; spin_lock(&walk->mm->page_table_lock); if (pmd_trans_huge(*pmd)) { if (pmd_trans_splitting(*pmd)) { spin_unlock(&walk->mm->page_table_lock); wait_split_huge_page(vma->anon_vma, pmd); } else { smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk); spin_unlock(&walk->mm->page_table_lock); mss->anonymous_thp += HPAGE_PMD_SIZE; return 0; } } else { spin_unlock(&walk->mm->page_table_lock); } /* * The mmap_sem held all the way back in m_start() is what * keeps khugepaged out of here and from collapsing things * in here. */ pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); for (; addr != end; pte++, addr += PAGE_SIZE) smaps_pte_entry(*pte, addr, PAGE_SIZE, walk); pte_unmap_unlock(pte - 1, ptl); cond_resched(); return 0; } static int show_smap(struct seq_file *m, void *v) { struct proc_maps_private *priv = m->private; struct task_struct *task = priv->task; struct vm_area_struct *vma = v; struct mem_size_stats mss; struct mm_walk smaps_walk = { .pmd_entry = smaps_pte_range, .mm = vma->vm_mm, .private = &mss, }; memset(&mss, 0, sizeof mss); mss.vma = vma; /* mmap_sem is held in m_start */ if (vma->vm_mm && !is_vm_hugetlb_page(vma)) walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk); show_map_vma(m, vma); seq_printf(m, "Size: %8lu kB\n" "Rss: %8lu kB\n" "Pss: %8lu kB\n" "Shared_Clean: %8lu kB\n" "Shared_Dirty: %8lu kB\n" "Private_Clean: %8lu kB\n" "Private_Dirty: %8lu kB\n" "Referenced: %8lu kB\n" "Anonymous: %8lu kB\n" "AnonHugePages: %8lu kB\n" "Swap: %8lu kB\n" "KernelPageSize: %8lu kB\n" "MMUPageSize: %8lu kB\n" "Locked: %8lu kB\n", (vma->vm_end - vma->vm_start) >> 10, mss.resident >> 10, (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), mss.shared_clean >> 10, mss.shared_dirty >> 10, mss.private_clean >> 10, mss.private_dirty >> 10, mss.referenced >> 10, mss.anonymous >> 10, mss.anonymous_thp >> 10, mss.swap >> 10, vma_kernel_pagesize(vma) >> 10, vma_mmu_pagesize(vma) >> 10, (vma->vm_flags & VM_LOCKED) ? (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0); if (m->count < m->size) /* vma is copied successfully */ m->version = (vma != get_gate_vma(task->mm)) ? vma->vm_start : 0; return 0; } static const struct seq_operations proc_pid_smaps_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = show_smap }; static int smaps_open(struct inode *inode, struct file *file) { return do_maps_open(inode, file, &proc_pid_smaps_op); } const struct file_operations proc_smaps_operations = { .open = smaps_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->private; pte_t *pte, ptent; spinlock_t *ptl; struct page *page; split_huge_page_pmd(walk->mm, pmd); pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); for (; addr != end; pte++, addr += PAGE_SIZE) { ptent = *pte; if (!pte_present(ptent)) continue; page = vm_normal_page(vma, addr, ptent); if (!page) continue; /* Clear accessed and referenced bits. */ ptep_test_and_clear_young(vma, addr, pte); ClearPageReferenced(page); } pte_unmap_unlock(pte - 1, ptl); cond_resched(); return 0; } #define CLEAR_REFS_ALL 1 #define CLEAR_REFS_ANON 2 #define CLEAR_REFS_MAPPED 3 static ssize_t clear_refs_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct task_struct *task; char buffer[PROC_NUMBUF]; struct mm_struct *mm; struct vm_area_struct *vma; int type; int rv; memset(buffer, 0, sizeof(buffer)); if (count > sizeof(buffer) - 1) count = sizeof(buffer) - 1; if (copy_from_user(buffer, buf, count)) return -EFAULT; rv = kstrtoint(strstrip(buffer), 10, &type); if (rv < 0) return rv; if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED) return -EINVAL; task = get_proc_task(file->f_path.dentry->d_inode); if (!task) return -ESRCH; mm = get_task_mm(task); if (mm) { struct mm_walk clear_refs_walk = { .pmd_entry = clear_refs_pte_range, .mm = mm, }; down_read(&mm->mmap_sem); for (vma = mm->mmap; vma; vma = vma->vm_next) { clear_refs_walk.private = vma; if (is_vm_hugetlb_page(vma)) continue; /* * Writing 1 to /proc/pid/clear_refs affects all pages. * * Writing 2 to /proc/pid/clear_refs only affects * Anonymous pages. * * Writing 3 to /proc/pid/clear_refs only affects file * mapped pages. */ if (type == CLEAR_REFS_ANON && vma->vm_file) continue; if (type == CLEAR_REFS_MAPPED && !vma->vm_file) continue; walk_page_range(vma->vm_start, vma->vm_end, &clear_refs_walk); } flush_tlb_mm(mm); up_read(&mm->mmap_sem); mmput(mm); } put_task_struct(task); return count; } const struct file_operations proc_clear_refs_operations = { .write = clear_refs_write, .llseek = noop_llseek, }; struct pagemapread { int pos, len; u64 *buffer; }; #define PM_ENTRY_BYTES sizeof(u64) #define PM_STATUS_BITS 3 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS) #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET) #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK) #define PM_PSHIFT_BITS 6 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS) #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET) #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK) #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1) #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK) #define PM_PRESENT PM_STATUS(4LL) #define PM_SWAP PM_STATUS(2LL) #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT) #define PM_END_OF_BUFFER 1 static int add_to_pagemap(unsigned long addr, u64 pfn, struct pagemapread *pm) { pm->buffer[pm->pos++] = pfn; if (pm->pos >= pm->len) return PM_END_OF_BUFFER; return 0; } static int pagemap_pte_hole(unsigned long start, unsigned long end, struct mm_walk *walk) { struct pagemapread *pm = walk->private; unsigned long addr; int err = 0; for (addr = start; addr < end; addr += PAGE_SIZE) { err = add_to_pagemap(addr, PM_NOT_PRESENT, pm); if (err) break; } return err; } static u64 swap_pte_to_pagemap_entry(pte_t pte) { swp_entry_t e = pte_to_swp_entry(pte); return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT); } static u64 pte_to_pagemap_entry(pte_t pte) { u64 pme = 0; if (is_swap_pte(pte)) pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte)) | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP; else if (pte_present(pte)) pme = PM_PFRAME(pte_pfn(pte)) | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT; return pme; } static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma; struct pagemapread *pm = walk->private; pte_t *pte; int err = 0; split_huge_page_pmd(walk->mm, pmd); /* find the first VMA at or above 'addr' */ vma = find_vma(walk->mm, addr); for (; addr != end; addr += PAGE_SIZE) { u64 pfn = PM_NOT_PRESENT; /* check to see if we've left 'vma' behind * and need a new, higher one */ if (vma && (addr >= vma->vm_end)) vma = find_vma(walk->mm, addr); /* check that 'vma' actually covers this address, * and that it isn't a huge page vma */ if (vma && (vma->vm_start <= addr) && !is_vm_hugetlb_page(vma)) { pte = pte_offset_map(pmd, addr); pfn = pte_to_pagemap_entry(*pte); /* unmap before userspace copy */ pte_unmap(pte); } err = add_to_pagemap(addr, pfn, pm); if (err) return err; } cond_resched(); return err; } #ifdef CONFIG_HUGETLB_PAGE static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset) { u64 pme = 0; if (pte_present(pte)) pme = PM_PFRAME(pte_pfn(pte) + offset) | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT; return pme; } /* This function walks within one hugetlb entry in the single call */ static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct pagemapread *pm = walk->private; int err = 0; u64 pfn; for (; addr != end; addr += PAGE_SIZE) { int offset = (addr & ~hmask) >> PAGE_SHIFT; pfn = huge_pte_to_pagemap_entry(*pte, offset); err = add_to_pagemap(addr, pfn, pm); if (err) return err; } cond_resched(); return err; } #endif /* HUGETLB_PAGE */ /* * /proc/pid/pagemap - an array mapping virtual pages to pfns * * For each page in the address space, this file contains one 64-bit entry * consisting of the following: * * Bits 0-55 page frame number (PFN) if present * Bits 0-4 swap type if swapped * Bits 5-55 swap offset if swapped * Bits 55-60 page shift (page size = 1<f_path.dentry->d_inode); struct mm_struct *mm; struct pagemapread pm; int ret = -ESRCH; struct mm_walk pagemap_walk = {}; unsigned long src; unsigned long svpfn; unsigned long start_vaddr; unsigned long end_vaddr; int copied = 0; if (!task) goto out; ret = -EINVAL; /* file position must be aligned */ if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) goto out_task; ret = 0; if (!count) goto out_task; pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); pm.buffer = kmalloc(pm.len, GFP_TEMPORARY); ret = -ENOMEM; if (!pm.buffer) goto out_task; mm = mm_for_maps(task); ret = PTR_ERR(mm); if (!mm || IS_ERR(mm)) goto out_free; pagemap_walk.pmd_entry = pagemap_pte_range; pagemap_walk.pte_hole = pagemap_pte_hole; #ifdef CONFIG_HUGETLB_PAGE pagemap_walk.hugetlb_entry = pagemap_hugetlb_range; #endif pagemap_walk.mm = mm; pagemap_walk.private = ± src = *ppos; svpfn = src / PM_ENTRY_BYTES; start_vaddr = svpfn << PAGE_SHIFT; end_vaddr = TASK_SIZE_OF(task); /* watch out for wraparound */ if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT) start_vaddr = end_vaddr; /* * The odds are that this will stop walking way * before end_vaddr, because the length of the * user buffer is tracked in "pm", and the walk * will stop when we hit the end of the buffer. */ ret = 0; while (count && (start_vaddr < end_vaddr)) { int len; unsigned long end; pm.pos = 0; end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; /* overflow ? */ if (end < start_vaddr || end > end_vaddr) end = end_vaddr; down_read(&mm->mmap_sem); ret = walk_page_range(start_vaddr, end, &pagemap_walk); up_read(&mm->mmap_sem); start_vaddr = end; len = min(count, PM_ENTRY_BYTES * pm.pos); if (copy_to_user(buf, pm.buffer, len)) { ret = -EFAULT; goto out_mm; } copied += len; buf += len; count -= len; } *ppos += copied; if (!ret || ret == PM_END_OF_BUFFER) ret = copied; out_mm: mmput(mm); out_free: kfree(pm.buffer); out_task: put_task_struct(task); out: return ret; } const struct file_operations proc_pagemap_operations = { .llseek = mem_lseek, /* borrow this */ .read = pagemap_read, }; #endif /* CONFIG_PROC_PAGE_MONITOR */ #ifdef CONFIG_NUMA struct numa_maps { struct vm_area_struct *vma; unsigned long pages; unsigned long anon; unsigned long active; unsigned long writeback; unsigned long mapcount_max; unsigned long dirty; unsigned long swapcache; unsigned long node[MAX_NUMNODES]; }; struct numa_maps_private { struct proc_maps_private proc_maps; struct numa_maps md; }; static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, unsigned long nr_pages) { int count = page_mapcount(page); md->pages += nr_pages; if (pte_dirty || PageDirty(page)) md->dirty += nr_pages; if (PageSwapCache(page)) md->swapcache += nr_pages; if (PageActive(page) || PageUnevictable(page)) md->active += nr_pages; if (PageWriteback(page)) md->writeback += nr_pages; if (PageAnon(page)) md->anon += nr_pages; if (count > md->mapcount_max) md->mapcount_max = count; md->node[page_to_nid(page)] += nr_pages; } static int gather_pte_stats(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct numa_maps *md; spinlock_t *ptl; pte_t *orig_pte; pte_t *pte; md = walk->private; orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); do { struct page *page; int nid; if (!pte_present(*pte)) continue; page = vm_normal_page(md->vma, addr, *pte); if (!page) continue; if (PageReserved(page)) continue; nid = page_to_nid(page); if (!node_isset(nid, node_states[N_HIGH_MEMORY])) continue; gather_stats(page, md, pte_dirty(*pte), 1); } while (pte++, addr += PAGE_SIZE, addr != end); pte_unmap_unlock(orig_pte, ptl); return 0; } #ifdef CONFIG_HUGETLB_PAGE static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct numa_maps *md; struct page *page; if (pte_none(*pte)) return 0; page = pte_page(*pte); if (!page) return 0; md = walk->private; gather_stats(page, md, pte_dirty(*pte), 1); return 0; } #else static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk) { return 0; } #endif /* * Display pages allocated per node and memory policy via /proc. */ static int show_numa_map(struct seq_file *m, void *v) { struct numa_maps_private *numa_priv = m->private; struct proc_maps_private *proc_priv = &numa_priv->proc_maps; struct vm_area_struct *vma = v; struct numa_maps *md = &numa_priv->md; struct file *file = vma->vm_file; struct mm_struct *mm = vma->vm_mm; struct mm_walk walk = {}; struct mempolicy *pol; int n; char buffer[50]; if (!mm) return 0; /* Ensure we start with an empty set of numa_maps statistics. */ memset(md, 0, sizeof(*md)); md->vma = vma; walk.hugetlb_entry = gather_hugetbl_stats; walk.pmd_entry = gather_pte_stats; walk.private = md; walk.mm = mm; pol = get_vma_policy(proc_priv->task, vma, vma->vm_start); mpol_to_str(buffer, sizeof(buffer), pol, 0); mpol_cond_put(pol); seq_printf(m, "%08lx %s", vma->vm_start, buffer); if (file) { seq_printf(m, " file="); seq_path(m, &file->f_path, "\n\t= "); } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { seq_printf(m, " heap"); } else if (vma->vm_start <= mm->start_stack && vma->vm_end >= mm->start_stack) { seq_printf(m, " stack"); } walk_page_range(vma->vm_start, vma->vm_end, &walk); if (!md->pages) goto out; if (md->anon) seq_printf(m, " anon=%lu", md->anon); if (md->dirty) seq_printf(m, " dirty=%lu", md->dirty); if (md->pages != md->anon && md->pages != md->dirty) seq_printf(m, " mapped=%lu", md->pages); if (md->mapcount_max > 1) seq_printf(m, " mapmax=%lu", md->mapcount_max); if (md->swapcache) seq_printf(m, " swapcache=%lu", md->swapcache); if (md->active < md->pages && !is_vm_hugetlb_page(vma)) seq_printf(m, " active=%lu", md->active); if (md->writeback) seq_printf(m, " writeback=%lu", md->writeback); for_each_node_state(n, N_HIGH_MEMORY) if (md->node[n]) seq_printf(m, " N%d=%lu", n, md->node[n]); out: seq_putc(m, '\n'); if (m->count < m->size) m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0; return 0; } static const struct seq_operations proc_pid_numa_maps_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = show_numa_map, }; static int numa_maps_open(struct inode *inode, struct file *file) { struct numa_maps_private *priv; int ret = -ENOMEM; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (priv) { priv->proc_maps.pid = proc_pid(inode); ret = seq_open(file, &proc_pid_numa_maps_op); if (!ret) { struct seq_file *m = file->private_data; m->private = priv; } else { kfree(priv); } } return ret; } const struct file_operations proc_numa_maps_operations = { .open = numa_maps_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; #endif /* CONFIG_NUMA */