// SPDX-License-Identifier: GPL-2.0-only /* * fs/libfs.c * Library for filesystems writers. */ #include <linux/blkdev.h> #include <linux/export.h> #include <linux/pagemap.h> #include <linux/slab.h> #include <linux/cred.h> #include <linux/mount.h> #include <linux/vfs.h> #include <linux/quotaops.h> #include <linux/mutex.h> #include <linux/namei.h> #include <linux/exportfs.h> #include <linux/writeback.h> #include <linux/buffer_head.h> /* sync_mapping_buffers */ #include <linux/fs_context.h> #include <linux/pseudo_fs.h> #include <linux/fsnotify.h> #include <linux/uaccess.h> #include "internal.h" int simple_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); generic_fillattr(inode, stat); stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); return 0; } EXPORT_SYMBOL(simple_getattr); int simple_statfs(struct dentry *dentry, struct kstatfs *buf) { buf->f_type = dentry->d_sb->s_magic; buf->f_bsize = PAGE_SIZE; buf->f_namelen = NAME_MAX; return 0; } EXPORT_SYMBOL(simple_statfs); /* * Retaining negative dentries for an in-memory filesystem just wastes * memory and lookup time: arrange for them to be deleted immediately. */ int always_delete_dentry(const struct dentry *dentry) { return 1; } EXPORT_SYMBOL(always_delete_dentry); const struct dentry_operations simple_dentry_operations = { .d_delete = always_delete_dentry, }; EXPORT_SYMBOL(simple_dentry_operations); /* * Lookup the data. This is trivial - if the dentry didn't already * exist, we know it is negative. Set d_op to delete negative dentries. */ struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { if (dentry->d_name.len > NAME_MAX) return ERR_PTR(-ENAMETOOLONG); if (!dentry->d_sb->s_d_op) d_set_d_op(dentry, &simple_dentry_operations); d_add(dentry, NULL); return NULL; } EXPORT_SYMBOL(simple_lookup); int dcache_dir_open(struct inode *inode, struct file *file) { file->private_data = d_alloc_cursor(file->f_path.dentry); return file->private_data ? 0 : -ENOMEM; } EXPORT_SYMBOL(dcache_dir_open); int dcache_dir_close(struct inode *inode, struct file *file) { dput(file->private_data); return 0; } EXPORT_SYMBOL(dcache_dir_close); /* parent is locked at least shared */ /* * Returns an element of siblings' list. * We are looking for <count>th positive after <p>; if * found, dentry is grabbed and returned to caller. * If no such element exists, NULL is returned. */ static struct dentry *scan_positives(struct dentry *cursor, struct list_head *p, loff_t count, struct dentry *last) { struct dentry *dentry = cursor->d_parent, *found = NULL; spin_lock(&dentry->d_lock); while ((p = p->next) != &dentry->d_subdirs) { struct dentry *d = list_entry(p, struct dentry, d_child); // we must at least skip cursors, to avoid livelocks if (d->d_flags & DCACHE_DENTRY_CURSOR) continue; if (simple_positive(d) && !--count) { spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); if (simple_positive(d)) found = dget_dlock(d); spin_unlock(&d->d_lock); if (likely(found)) break; count = 1; } if (need_resched()) { list_move(&cursor->d_child, p); p = &cursor->d_child; spin_unlock(&dentry->d_lock); cond_resched(); spin_lock(&dentry->d_lock); } } spin_unlock(&dentry->d_lock); dput(last); return found; } loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) { struct dentry *dentry = file->f_path.dentry; switch (whence) { case 1: offset += file->f_pos; /* fall through */ case 0: if (offset >= 0) break; /* fall through */ default: return -EINVAL; } if (offset != file->f_pos) { struct dentry *cursor = file->private_data; struct dentry *to = NULL; inode_lock_shared(dentry->d_inode); if (offset > 2) to = scan_positives(cursor, &dentry->d_subdirs, offset - 2, NULL); spin_lock(&dentry->d_lock); if (to) list_move(&cursor->d_child, &to->d_child); else list_del_init(&cursor->d_child); spin_unlock(&dentry->d_lock); dput(to); file->f_pos = offset; inode_unlock_shared(dentry->d_inode); } return offset; } EXPORT_SYMBOL(dcache_dir_lseek); /* Relationship between i_mode and the DT_xxx types */ static inline unsigned char dt_type(struct inode *inode) { return (inode->i_mode >> 12) & 15; } /* * Directory is locked and all positive dentries in it are safe, since * for ramfs-type trees they can't go away without unlink() or rmdir(), * both impossible due to the lock on directory. */ int dcache_readdir(struct file *file, struct dir_context *ctx) { struct dentry *dentry = file->f_path.dentry; struct dentry *cursor = file->private_data; struct list_head *anchor = &dentry->d_subdirs; struct dentry *next = NULL; struct list_head *p; if (!dir_emit_dots(file, ctx)) return 0; if (ctx->pos == 2) p = anchor; else if (!list_empty(&cursor->d_child)) p = &cursor->d_child; else return 0; while ((next = scan_positives(cursor, p, 1, next)) != NULL) { if (!dir_emit(ctx, next->d_name.name, next->d_name.len, d_inode(next)->i_ino, dt_type(d_inode(next)))) break; ctx->pos++; p = &next->d_child; } spin_lock(&dentry->d_lock); if (next) list_move_tail(&cursor->d_child, &next->d_child); else list_del_init(&cursor->d_child); spin_unlock(&dentry->d_lock); dput(next); return 0; } EXPORT_SYMBOL(dcache_readdir); ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) { return -EISDIR; } EXPORT_SYMBOL(generic_read_dir); const struct file_operations simple_dir_operations = { .open = dcache_dir_open, .release = dcache_dir_close, .llseek = dcache_dir_lseek, .read = generic_read_dir, .iterate_shared = dcache_readdir, .fsync = noop_fsync, }; EXPORT_SYMBOL(simple_dir_operations); const struct inode_operations simple_dir_inode_operations = { .lookup = simple_lookup, }; EXPORT_SYMBOL(simple_dir_inode_operations); static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) { struct dentry *child = NULL; struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs; spin_lock(&parent->d_lock); while ((p = p->next) != &parent->d_subdirs) { struct dentry *d = container_of(p, struct dentry, d_child); if (simple_positive(d)) { spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); if (simple_positive(d)) child = dget_dlock(d); spin_unlock(&d->d_lock); if (likely(child)) break; } } spin_unlock(&parent->d_lock); dput(prev); return child; } void simple_recursive_removal(struct dentry *dentry, void (*callback)(struct dentry *)) { struct dentry *this = dget(dentry); while (true) { struct dentry *victim = NULL, *child; struct inode *inode = this->d_inode; inode_lock(inode); if (d_is_dir(this)) inode->i_flags |= S_DEAD; while ((child = find_next_child(this, victim)) == NULL) { // kill and ascend // update metadata while it's still locked inode->i_ctime = current_time(inode); clear_nlink(inode); inode_unlock(inode); victim = this; this = this->d_parent; inode = this->d_inode; inode_lock(inode); if (simple_positive(victim)) { d_invalidate(victim); // avoid lost mounts if (d_is_dir(victim)) fsnotify_rmdir(inode, victim); else fsnotify_unlink(inode, victim); if (callback) callback(victim); dput(victim); // unpin it } if (victim == dentry) { inode->i_ctime = inode->i_mtime = current_time(inode); if (d_is_dir(dentry)) drop_nlink(inode); inode_unlock(inode); dput(dentry); return; } } inode_unlock(inode); this = child; } } EXPORT_SYMBOL(simple_recursive_removal); static const struct super_operations simple_super_operations = { .statfs = simple_statfs, }; static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) { struct pseudo_fs_context *ctx = fc->fs_private; struct inode *root; s->s_maxbytes = MAX_LFS_FILESIZE; s->s_blocksize = PAGE_SIZE; s->s_blocksize_bits = PAGE_SHIFT; s->s_magic = ctx->magic; s->s_op = ctx->ops ?: &simple_super_operations; s->s_xattr = ctx->xattr; s->s_time_gran = 1; root = new_inode(s); if (!root) return -ENOMEM; /* * since this is the first inode, make it number 1. New inodes created * after this must take care not to collide with it (by passing * max_reserved of 1 to iunique). */ root->i_ino = 1; root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; root->i_atime = root->i_mtime = root->i_ctime = current_time(root); s->s_root = d_make_root(root); if (!s->s_root) return -ENOMEM; s->s_d_op = ctx->dops; return 0; } static int pseudo_fs_get_tree(struct fs_context *fc) { return get_tree_nodev(fc, pseudo_fs_fill_super); } static void pseudo_fs_free(struct fs_context *fc) { kfree(fc->fs_private); } static const struct fs_context_operations pseudo_fs_context_ops = { .free = pseudo_fs_free, .get_tree = pseudo_fs_get_tree, }; /* * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that * will never be mountable) */ struct pseudo_fs_context *init_pseudo(struct fs_context *fc, unsigned long magic) { struct pseudo_fs_context *ctx; ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); if (likely(ctx)) { ctx->magic = magic; fc->fs_private = ctx; fc->ops = &pseudo_fs_context_ops; fc->sb_flags |= SB_NOUSER; fc->global = true; } return ctx; } EXPORT_SYMBOL(init_pseudo); int simple_open(struct inode *inode, struct file *file) { if (inode->i_private) file->private_data = inode->i_private; return 0; } EXPORT_SYMBOL(simple_open); int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(old_dentry); inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); inc_nlink(inode); ihold(inode); dget(dentry); d_instantiate(dentry, inode); return 0; } EXPORT_SYMBOL(simple_link); int simple_empty(struct dentry *dentry) { struct dentry *child; int ret = 0; spin_lock(&dentry->d_lock); list_for_each_entry(child, &dentry->d_subdirs, d_child) { spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); if (simple_positive(child)) { spin_unlock(&child->d_lock); goto out; } spin_unlock(&child->d_lock); } ret = 1; out: spin_unlock(&dentry->d_lock); return ret; } EXPORT_SYMBOL(simple_empty); int simple_unlink(struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(dentry); inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); drop_nlink(inode); dput(dentry); return 0; } EXPORT_SYMBOL(simple_unlink); int simple_rmdir(struct inode *dir, struct dentry *dentry) { if (!simple_empty(dentry)) return -ENOTEMPTY; drop_nlink(d_inode(dentry)); simple_unlink(dir, dentry); drop_nlink(dir); return 0; } EXPORT_SYMBOL(simple_rmdir); int simple_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { struct inode *inode = d_inode(old_dentry); int they_are_dirs = d_is_dir(old_dentry); if (flags & ~RENAME_NOREPLACE) return -EINVAL; if (!simple_empty(new_dentry)) return -ENOTEMPTY; if (d_really_is_positive(new_dentry)) { simple_unlink(new_dir, new_dentry); if (they_are_dirs) { drop_nlink(d_inode(new_dentry)); drop_nlink(old_dir); } } else if (they_are_dirs) { drop_nlink(old_dir); inc_nlink(new_dir); } old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = new_dir->i_mtime = inode->i_ctime = current_time(old_dir); return 0; } EXPORT_SYMBOL(simple_rename); /** * simple_setattr - setattr for simple filesystem * @dentry: dentry * @iattr: iattr structure * * Returns 0 on success, -error on failure. * * simple_setattr is a simple ->setattr implementation without a proper * implementation of size changes. * * It can either be used for in-memory filesystems or special files * on simple regular filesystems. Anything that needs to change on-disk * or wire state on size changes needs its own setattr method. */ int simple_setattr(struct dentry *dentry, struct iattr *iattr) { struct inode *inode = d_inode(dentry); int error; error = setattr_prepare(dentry, iattr); if (error) return error; if (iattr->ia_valid & ATTR_SIZE) truncate_setsize(inode, iattr->ia_size); setattr_copy(inode, iattr); mark_inode_dirty(inode); return 0; } EXPORT_SYMBOL(simple_setattr); int simple_readpage(struct file *file, struct page *page) { clear_highpage(page); flush_dcache_page(page); SetPageUptodate(page); unlock_page(page); return 0; } EXPORT_SYMBOL(simple_readpage); int simple_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { struct page *page; pgoff_t index; index = pos >> PAGE_SHIFT; page = grab_cache_page_write_begin(mapping, index, flags); if (!page) return -ENOMEM; *pagep = page; if (!PageUptodate(page) && (len != PAGE_SIZE)) { unsigned from = pos & (PAGE_SIZE - 1); zero_user_segments(page, 0, from, from + len, PAGE_SIZE); } return 0; } EXPORT_SYMBOL(simple_write_begin); /** * simple_write_end - .write_end helper for non-block-device FSes * @file: See .write_end of address_space_operations * @mapping: " * @pos: " * @len: " * @copied: " * @page: " * @fsdata: " * * simple_write_end does the minimum needed for updating a page after writing is * done. It has the same API signature as the .write_end of * address_space_operations vector. So it can just be set onto .write_end for * FSes that don't need any other processing. i_mutex is assumed to be held. * Block based filesystems should use generic_write_end(). * NOTE: Even though i_size might get updated by this function, mark_inode_dirty * is not called, so a filesystem that actually does store data in .write_inode * should extend on what's done here with a call to mark_inode_dirty() in the * case that i_size has changed. * * Use *ONLY* with simple_readpage() */ int simple_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = page->mapping->host; loff_t last_pos = pos + copied; /* zero the stale part of the page if we did a short copy */ if (!PageUptodate(page)) { if (copied < len) { unsigned from = pos & (PAGE_SIZE - 1); zero_user(page, from + copied, len - copied); } SetPageUptodate(page); } /* * No need to use i_size_read() here, the i_size * cannot change under us because we hold the i_mutex. */ if (last_pos > inode->i_size) i_size_write(inode, last_pos); set_page_dirty(page); unlock_page(page); put_page(page); return copied; } EXPORT_SYMBOL(simple_write_end); /* * the inodes created here are not hashed. If you use iunique to generate * unique inode values later for this filesystem, then you must take care * to pass it an appropriate max_reserved value to avoid collisions. */ int simple_fill_super(struct super_block *s, unsigned long magic, const struct tree_descr *files) { struct inode *inode; struct dentry *root; struct dentry *dentry; int i; s->s_blocksize = PAGE_SIZE; s->s_blocksize_bits = PAGE_SHIFT; s->s_magic = magic; s->s_op = &simple_super_operations; s->s_time_gran = 1; inode = new_inode(s); if (!inode) return -ENOMEM; /* * because the root inode is 1, the files array must not contain an * entry at index 1 */ inode->i_ino = 1; inode->i_mode = S_IFDIR | 0755; inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); inode->i_op = &simple_dir_inode_operations; inode->i_fop = &simple_dir_operations; set_nlink(inode, 2); root = d_make_root(inode); if (!root) return -ENOMEM; for (i = 0; !files->name || files->name[0]; i++, files++) { if (!files->name) continue; /* warn if it tries to conflict with the root inode */ if (unlikely(i == 1)) printk(KERN_WARNING "%s: %s passed in a files array" "with an index of 1!\n", __func__, s->s_type->name); dentry = d_alloc_name(root, files->name); if (!dentry) goto out; inode = new_inode(s); if (!inode) { dput(dentry); goto out; } inode->i_mode = S_IFREG | files->mode; inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); inode->i_fop = files->ops; inode->i_ino = i; d_add(dentry, inode); } s->s_root = root; return 0; out: d_genocide(root); shrink_dcache_parent(root); dput(root); return -ENOMEM; } EXPORT_SYMBOL(simple_fill_super); static DEFINE_SPINLOCK(pin_fs_lock); int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) { struct vfsmount *mnt = NULL; spin_lock(&pin_fs_lock); if (unlikely(!*mount)) { spin_unlock(&pin_fs_lock); mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); if (IS_ERR(mnt)) return PTR_ERR(mnt); spin_lock(&pin_fs_lock); if (!*mount) *mount = mnt; } mntget(*mount); ++*count; spin_unlock(&pin_fs_lock); mntput(mnt); return 0; } EXPORT_SYMBOL(simple_pin_fs); void simple_release_fs(struct vfsmount **mount, int *count) { struct vfsmount *mnt; spin_lock(&pin_fs_lock); mnt = *mount; if (!--*count) *mount = NULL; spin_unlock(&pin_fs_lock); mntput(mnt); } EXPORT_SYMBOL(simple_release_fs); /** * simple_read_from_buffer - copy data from the buffer to user space * @to: the user space buffer to read to * @count: the maximum number of bytes to read * @ppos: the current position in the buffer * @from: the buffer to read from * @available: the size of the buffer * * The simple_read_from_buffer() function reads up to @count bytes from the * buffer @from at offset @ppos into the user space address starting at @to. * * On success, the number of bytes read is returned and the offset @ppos is * advanced by this number, or negative value is returned on error. **/ ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, const void *from, size_t available) { loff_t pos = *ppos; size_t ret; if (pos < 0) return -EINVAL; if (pos >= available || !count) return 0; if (count > available - pos) count = available - pos; ret = copy_to_user(to, from + pos, count); if (ret == count) return -EFAULT; count -= ret; *ppos = pos + count; return count; } EXPORT_SYMBOL(simple_read_from_buffer); /** * simple_write_to_buffer - copy data from user space to the buffer * @to: the buffer to write to * @available: the size of the buffer * @ppos: the current position in the buffer * @from: the user space buffer to read from * @count: the maximum number of bytes to read * * The simple_write_to_buffer() function reads up to @count bytes from the user * space address starting at @from into the buffer @to at offset @ppos. * * On success, the number of bytes written is returned and the offset @ppos is * advanced by this number, or negative value is returned on error. **/ ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, const void __user *from, size_t count) { loff_t pos = *ppos; size_t res; if (pos < 0) return -EINVAL; if (pos >= available || !count) return 0; if (count > available - pos) count = available - pos; res = copy_from_user(to + pos, from, count); if (res == count) return -EFAULT; count -= res; *ppos = pos + count; return count; } EXPORT_SYMBOL(simple_write_to_buffer); /** * memory_read_from_buffer - copy data from the buffer * @to: the kernel space buffer to read to * @count: the maximum number of bytes to read * @ppos: the current position in the buffer * @from: the buffer to read from * @available: the size of the buffer * * The memory_read_from_buffer() function reads up to @count bytes from the * buffer @from at offset @ppos into the kernel space address starting at @to. * * On success, the number of bytes read is returned and the offset @ppos is * advanced by this number, or negative value is returned on error. **/ ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, const void *from, size_t available) { loff_t pos = *ppos; if (pos < 0) return -EINVAL; if (pos >= available) return 0; if (count > available - pos) count = available - pos; memcpy(to, from + pos, count); *ppos = pos + count; return count; } EXPORT_SYMBOL(memory_read_from_buffer); /* * Transaction based IO. * The file expects a single write which triggers the transaction, and then * possibly a read which collects the result - which is stored in a * file-local buffer. */ void simple_transaction_set(struct file *file, size_t n) { struct simple_transaction_argresp *ar = file->private_data; BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); /* * The barrier ensures that ar->size will really remain zero until * ar->data is ready for reading. */ smp_mb(); ar->size = n; } EXPORT_SYMBOL(simple_transaction_set); char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) { struct simple_transaction_argresp *ar; static DEFINE_SPINLOCK(simple_transaction_lock); if (size > SIMPLE_TRANSACTION_LIMIT - 1) return ERR_PTR(-EFBIG); ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); if (!ar) return ERR_PTR(-ENOMEM); spin_lock(&simple_transaction_lock); /* only one write allowed per open */ if (file->private_data) { spin_unlock(&simple_transaction_lock); free_page((unsigned long)ar); return ERR_PTR(-EBUSY); } file->private_data = ar; spin_unlock(&simple_transaction_lock); if (copy_from_user(ar->data, buf, size)) return ERR_PTR(-EFAULT); return ar->data; } EXPORT_SYMBOL(simple_transaction_get); ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) { struct simple_transaction_argresp *ar = file->private_data; if (!ar) return 0; return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); } EXPORT_SYMBOL(simple_transaction_read); int simple_transaction_release(struct inode *inode, struct file *file) { free_page((unsigned long)file->private_data); return 0; } EXPORT_SYMBOL(simple_transaction_release); /* Simple attribute files */ struct simple_attr { int (*get)(void *, u64 *); int (*set)(void *, u64); char get_buf[24]; /* enough to store a u64 and "\n\0" */ char set_buf[24]; void *data; const char *fmt; /* format for read operation */ struct mutex mutex; /* protects access to these buffers */ }; /* simple_attr_open is called by an actual attribute open file operation * to set the attribute specific access operations. */ int simple_attr_open(struct inode *inode, struct file *file, int (*get)(void *, u64 *), int (*set)(void *, u64), const char *fmt) { struct simple_attr *attr; attr = kzalloc(sizeof(*attr), GFP_KERNEL); if (!attr) return -ENOMEM; attr->get = get; attr->set = set; attr->data = inode->i_private; attr->fmt = fmt; mutex_init(&attr->mutex); file->private_data = attr; return nonseekable_open(inode, file); } EXPORT_SYMBOL_GPL(simple_attr_open); int simple_attr_release(struct inode *inode, struct file *file) { kfree(file->private_data); return 0; } EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ /* read from the buffer that is filled with the get function */ ssize_t simple_attr_read(struct file *file, char __user *buf, size_t len, loff_t *ppos) { struct simple_attr *attr; size_t size; ssize_t ret; attr = file->private_data; if (!attr->get) return -EACCES; ret = mutex_lock_interruptible(&attr->mutex); if (ret) return ret; if (*ppos && attr->get_buf[0]) { /* continued read */ size = strlen(attr->get_buf); } else { /* first read */ u64 val; ret = attr->get(attr->data, &val); if (ret) goto out; size = scnprintf(attr->get_buf, sizeof(attr->get_buf), attr->fmt, (unsigned long long)val); } ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); out: mutex_unlock(&attr->mutex); return ret; } EXPORT_SYMBOL_GPL(simple_attr_read); /* interpret the buffer as a number to call the set function with */ ssize_t simple_attr_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos) { struct simple_attr *attr; u64 val; size_t size; ssize_t ret; attr = file->private_data; if (!attr->set) return -EACCES; ret = mutex_lock_interruptible(&attr->mutex); if (ret) return ret; ret = -EFAULT; size = min(sizeof(attr->set_buf) - 1, len); if (copy_from_user(attr->set_buf, buf, size)) goto out; attr->set_buf[size] = '\0'; val = simple_strtoll(attr->set_buf, NULL, 0); ret = attr->set(attr->data, val); if (ret == 0) ret = len; /* on success, claim we got the whole input */ out: mutex_unlock(&attr->mutex); return ret; } EXPORT_SYMBOL_GPL(simple_attr_write); /** * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation * @sb: filesystem to do the file handle conversion on * @fid: file handle to convert * @fh_len: length of the file handle in bytes * @fh_type: type of file handle * @get_inode: filesystem callback to retrieve inode * * This function decodes @fid as long as it has one of the well-known * Linux filehandle types and calls @get_inode on it to retrieve the * inode for the object specified in the file handle. */ struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type, struct inode *(*get_inode) (struct super_block *sb, u64 ino, u32 gen)) { struct inode *inode = NULL; if (fh_len < 2) return NULL; switch (fh_type) { case FILEID_INO32_GEN: case FILEID_INO32_GEN_PARENT: inode = get_inode(sb, fid->i32.ino, fid->i32.gen); break; } return d_obtain_alias(inode); } EXPORT_SYMBOL_GPL(generic_fh_to_dentry); /** * generic_fh_to_parent - generic helper for the fh_to_parent export operation * @sb: filesystem to do the file handle conversion on * @fid: file handle to convert * @fh_len: length of the file handle in bytes * @fh_type: type of file handle * @get_inode: filesystem callback to retrieve inode * * This function decodes @fid as long as it has one of the well-known * Linux filehandle types and calls @get_inode on it to retrieve the * inode for the _parent_ object specified in the file handle if it * is specified in the file handle, or NULL otherwise. */ struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type, struct inode *(*get_inode) (struct super_block *sb, u64 ino, u32 gen)) { struct inode *inode = NULL; if (fh_len <= 2) return NULL; switch (fh_type) { case FILEID_INO32_GEN_PARENT: inode = get_inode(sb, fid->i32.parent_ino, (fh_len > 3 ? fid->i32.parent_gen : 0)); break; } return d_obtain_alias(inode); } EXPORT_SYMBOL_GPL(generic_fh_to_parent); /** * __generic_file_fsync - generic fsync implementation for simple filesystems * * @file: file to synchronize * @start: start offset in bytes * @end: end offset in bytes (inclusive) * @datasync: only synchronize essential metadata if true * * This is a generic implementation of the fsync method for simple * filesystems which track all non-inode metadata in the buffers list * hanging off the address_space structure. */ int __generic_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file->f_mapping->host; int err; int ret; err = file_write_and_wait_range(file, start, end); if (err) return err; inode_lock(inode); ret = sync_mapping_buffers(inode->i_mapping); if (!(inode->i_state & I_DIRTY_ALL)) goto out; if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) goto out; err = sync_inode_metadata(inode, 1); if (ret == 0) ret = err; out: inode_unlock(inode); /* check and advance again to catch errors after syncing out buffers */ err = file_check_and_advance_wb_err(file); if (ret == 0) ret = err; return ret; } EXPORT_SYMBOL(__generic_file_fsync); /** * generic_file_fsync - generic fsync implementation for simple filesystems * with flush * @file: file to synchronize * @start: start offset in bytes * @end: end offset in bytes (inclusive) * @datasync: only synchronize essential metadata if true * */ int generic_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file->f_mapping->host; int err; err = __generic_file_fsync(file, start, end, datasync); if (err) return err; return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); } EXPORT_SYMBOL(generic_file_fsync); /** * generic_check_addressable - Check addressability of file system * @blocksize_bits: log of file system block size * @num_blocks: number of blocks in file system * * Determine whether a file system with @num_blocks blocks (and a * block size of 2**@blocksize_bits) is addressable by the sector_t * and page cache of the system. Return 0 if so and -EFBIG otherwise. */ int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) { u64 last_fs_block = num_blocks - 1; u64 last_fs_page = last_fs_block >> (PAGE_SHIFT - blocksize_bits); if (unlikely(num_blocks == 0)) return 0; if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) return -EINVAL; if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || (last_fs_page > (pgoff_t)(~0ULL))) { return -EFBIG; } return 0; } EXPORT_SYMBOL(generic_check_addressable); /* * No-op implementation of ->fsync for in-memory filesystems. */ int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) { return 0; } EXPORT_SYMBOL(noop_fsync); int noop_set_page_dirty(struct page *page) { /* * Unlike __set_page_dirty_no_writeback that handles dirty page * tracking in the page object, dax does all dirty tracking in * the inode address_space in response to mkwrite faults. In the * dax case we only need to worry about potentially dirty CPU * caches, not dirty page cache pages to write back. * * This callback is defined to prevent fallback to * __set_page_dirty_buffers() in set_page_dirty(). */ return 0; } EXPORT_SYMBOL_GPL(noop_set_page_dirty); void noop_invalidatepage(struct page *page, unsigned int offset, unsigned int length) { /* * There is no page cache to invalidate in the dax case, however * we need this callback defined to prevent falling back to * block_invalidatepage() in do_invalidatepage(). */ } EXPORT_SYMBOL_GPL(noop_invalidatepage); ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) { /* * iomap based filesystems support direct I/O without need for * this callback. However, it still needs to be set in * inode->a_ops so that open/fcntl know that direct I/O is * generally supported. */ return -EINVAL; } EXPORT_SYMBOL_GPL(noop_direct_IO); /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ void kfree_link(void *p) { kfree(p); } EXPORT_SYMBOL(kfree_link); /* * nop .set_page_dirty method so that people can use .page_mkwrite on * anon inodes. */ static int anon_set_page_dirty(struct page *page) { return 0; }; /* * A single inode exists for all anon_inode files. Contrary to pipes, * anon_inode inodes have no associated per-instance data, so we need * only allocate one of them. */ struct inode *alloc_anon_inode(struct super_block *s) { static const struct address_space_operations anon_aops = { .set_page_dirty = anon_set_page_dirty, }; struct inode *inode = new_inode_pseudo(s); if (!inode) return ERR_PTR(-ENOMEM); inode->i_ino = get_next_ino(); inode->i_mapping->a_ops = &anon_aops; /* * Mark the inode dirty from the very beginning, * that way it will never be moved to the dirty * list because mark_inode_dirty() will think * that it already _is_ on the dirty list. */ inode->i_state = I_DIRTY; inode->i_mode = S_IRUSR | S_IWUSR; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); inode->i_flags |= S_PRIVATE; inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); return inode; } EXPORT_SYMBOL(alloc_anon_inode); /** * simple_nosetlease - generic helper for prohibiting leases * @filp: file pointer * @arg: type of lease to obtain * @flp: new lease supplied for insertion * @priv: private data for lm_setup operation * * Generic helper for filesystems that do not wish to allow leases to be set. * All arguments are ignored and it just returns -EINVAL. */ int simple_nosetlease(struct file *filp, long arg, struct file_lock **flp, void **priv) { return -EINVAL; } EXPORT_SYMBOL(simple_nosetlease); /** * simple_get_link - generic helper to get the target of "fast" symlinks * @dentry: not used here * @inode: the symlink inode * @done: not used here * * Generic helper for filesystems to use for symlink inodes where a pointer to * the symlink target is stored in ->i_link. NOTE: this isn't normally called, * since as an optimization the path lookup code uses any non-NULL ->i_link * directly, without calling ->get_link(). But ->get_link() still must be set, * to mark the inode_operations as being for a symlink. * * Return: the symlink target */ const char *simple_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done) { return inode->i_link; } EXPORT_SYMBOL(simple_get_link); const struct inode_operations simple_symlink_inode_operations = { .get_link = simple_get_link, }; EXPORT_SYMBOL(simple_symlink_inode_operations); /* * Operations for a permanently empty directory. */ static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { return ERR_PTR(-ENOENT); } static int empty_dir_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); generic_fillattr(inode, stat); return 0; } static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr) { return -EPERM; } static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) { return -EOPNOTSUPP; } static const struct inode_operations empty_dir_inode_operations = { .lookup = empty_dir_lookup, .permission = generic_permission, .setattr = empty_dir_setattr, .getattr = empty_dir_getattr, .listxattr = empty_dir_listxattr, }; static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) { /* An empty directory has two entries . and .. at offsets 0 and 1 */ return generic_file_llseek_size(file, offset, whence, 2, 2); } static int empty_dir_readdir(struct file *file, struct dir_context *ctx) { dir_emit_dots(file, ctx); return 0; } static const struct file_operations empty_dir_operations = { .llseek = empty_dir_llseek, .read = generic_read_dir, .iterate_shared = empty_dir_readdir, .fsync = noop_fsync, }; void make_empty_dir_inode(struct inode *inode) { set_nlink(inode, 2); inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; inode->i_uid = GLOBAL_ROOT_UID; inode->i_gid = GLOBAL_ROOT_GID; inode->i_rdev = 0; inode->i_size = 0; inode->i_blkbits = PAGE_SHIFT; inode->i_blocks = 0; inode->i_op = &empty_dir_inode_operations; inode->i_opflags &= ~IOP_XATTR; inode->i_fop = &empty_dir_operations; } bool is_empty_dir_inode(struct inode *inode) { return (inode->i_fop == &empty_dir_operations) && (inode->i_op == &empty_dir_inode_operations); }