/* * f2fs extent cache support * * Copyright (c) 2015 Motorola Mobility * Copyright (c) 2015 Samsung Electronics * Authors: Jaegeuk Kim * Chao Yu * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include "f2fs.h" #include "node.h" #include static struct kmem_cache *extent_tree_slab; static struct kmem_cache *extent_node_slab; static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, struct extent_tree *et, struct extent_info *ei, struct rb_node *parent, struct rb_node **p) { struct extent_node *en; en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC); if (!en) return NULL; en->ei = *ei; INIT_LIST_HEAD(&en->list); rb_link_node(&en->rb_node, parent, p); rb_insert_color(&en->rb_node, &et->root); et->count++; atomic_inc(&sbi->total_ext_node); return en; } static void __detach_extent_node(struct f2fs_sb_info *sbi, struct extent_tree *et, struct extent_node *en) { rb_erase(&en->rb_node, &et->root); et->count--; atomic_dec(&sbi->total_ext_node); if (et->cached_en == en) et->cached_en = NULL; } static struct extent_tree *__grab_extent_tree(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_tree *et; nid_t ino = inode->i_ino; down_write(&sbi->extent_tree_lock); et = radix_tree_lookup(&sbi->extent_tree_root, ino); if (!et) { et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS); f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et); memset(et, 0, sizeof(struct extent_tree)); et->ino = ino; et->root = RB_ROOT; et->cached_en = NULL; rwlock_init(&et->lock); atomic_set(&et->refcount, 0); et->count = 0; sbi->total_ext_tree++; } atomic_inc(&et->refcount); up_write(&sbi->extent_tree_lock); /* never died until evict_inode */ F2FS_I(inode)->extent_tree = et; return et; } static struct extent_node *__lookup_extent_tree(struct extent_tree *et, unsigned int fofs) { struct rb_node *node = et->root.rb_node; struct extent_node *en = et->cached_en; if (en) { struct extent_info *cei = &en->ei; if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) return en; } while (node) { en = rb_entry(node, struct extent_node, rb_node); if (fofs < en->ei.fofs) node = node->rb_left; else if (fofs >= en->ei.fofs + en->ei.len) node = node->rb_right; else return en; } return NULL; } static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi, struct extent_tree *et, struct extent_node *en) { struct extent_node *prev; struct rb_node *node; node = rb_prev(&en->rb_node); if (!node) return NULL; prev = rb_entry(node, struct extent_node, rb_node); if (__is_back_mergeable(&en->ei, &prev->ei)) { en->ei.fofs = prev->ei.fofs; en->ei.blk = prev->ei.blk; en->ei.len += prev->ei.len; __detach_extent_node(sbi, et, prev); return prev; } return NULL; } static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi, struct extent_tree *et, struct extent_node *en) { struct extent_node *next; struct rb_node *node; node = rb_next(&en->rb_node); if (!node) return NULL; next = rb_entry(node, struct extent_node, rb_node); if (__is_front_mergeable(&en->ei, &next->ei)) { en->ei.len += next->ei.len; __detach_extent_node(sbi, et, next); return next; } return NULL; } static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi, struct extent_tree *et, struct extent_info *ei, struct extent_node **den) { struct rb_node **p = &et->root.rb_node; struct rb_node *parent = NULL; struct extent_node *en; while (*p) { parent = *p; en = rb_entry(parent, struct extent_node, rb_node); if (ei->fofs < en->ei.fofs) { if (__is_front_mergeable(ei, &en->ei)) { f2fs_bug_on(sbi, !den); en->ei.fofs = ei->fofs; en->ei.blk = ei->blk; en->ei.len += ei->len; *den = __try_back_merge(sbi, et, en); goto update_out; } p = &(*p)->rb_left; } else if (ei->fofs >= en->ei.fofs + en->ei.len) { if (__is_back_mergeable(ei, &en->ei)) { f2fs_bug_on(sbi, !den); en->ei.len += ei->len; *den = __try_front_merge(sbi, et, en); goto update_out; } p = &(*p)->rb_right; } else { f2fs_bug_on(sbi, 1); } } en = __attach_extent_node(sbi, et, ei, parent, p); if (!en) return NULL; update_out: if (en->ei.len > et->largest.len) et->largest = en->ei; et->cached_en = en; return en; } static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, struct extent_tree *et, bool free_all) { struct rb_node *node, *next; struct extent_node *en; unsigned int count = et->count; node = rb_first(&et->root); while (node) { next = rb_next(node); en = rb_entry(node, struct extent_node, rb_node); if (free_all) { spin_lock(&sbi->extent_lock); if (!list_empty(&en->list)) list_del_init(&en->list); spin_unlock(&sbi->extent_lock); } if (free_all || list_empty(&en->list)) { __detach_extent_node(sbi, et, en); kmem_cache_free(extent_node_slab, en); } node = next; } return count - et->count; } void f2fs_drop_largest_extent(struct inode *inode, pgoff_t fofs) { struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest; if (largest->fofs <= fofs && largest->fofs + largest->len > fofs) largest->len = 0; } void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_tree *et; struct extent_node *en; struct extent_info ei; if (!f2fs_may_extent_tree(inode)) return; et = __grab_extent_tree(inode); if (!i_ext || le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN) return; set_extent_info(&ei, le32_to_cpu(i_ext->fofs), le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len)); write_lock(&et->lock); if (et->count) goto out; en = __insert_extent_tree(sbi, et, &ei, NULL); if (en) { spin_lock(&sbi->extent_lock); list_add_tail(&en->list, &sbi->extent_list); spin_unlock(&sbi->extent_lock); } out: write_unlock(&et->lock); } static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs, struct extent_info *ei) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_tree *et = F2FS_I(inode)->extent_tree; struct extent_node *en; bool ret = false; f2fs_bug_on(sbi, !et); trace_f2fs_lookup_extent_tree_start(inode, pgofs); read_lock(&et->lock); if (et->largest.fofs <= pgofs && et->largest.fofs + et->largest.len > pgofs) { *ei = et->largest; ret = true; stat_inc_read_hit(sbi); goto out; } en = __lookup_extent_tree(et, pgofs); if (en) { *ei = en->ei; spin_lock(&sbi->extent_lock); if (!list_empty(&en->list)) list_move_tail(&en->list, &sbi->extent_list); et->cached_en = en; spin_unlock(&sbi->extent_lock); ret = true; stat_inc_read_hit(sbi); } out: stat_inc_total_hit(sbi); read_unlock(&et->lock); trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei); return ret; } /* * lookup extent at @fofs, if hit, return the extent * if not, return NULL and * @prev_ex: extent before fofs * @next_ex: extent after fofs * @insert_p: insert point for new extent at fofs * in order to simpfy the insertion after. * tree must stay unchanged between lookup and insertion. */ static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et, unsigned int fofs, struct extent_node **prev_ex, struct extent_node **next_ex, struct rb_node ***insert_p, struct rb_node **insert_parent) { struct rb_node **pnode = &et->root.rb_node; struct rb_node *parent = NULL, *tmp_node; struct extent_node *en; if (et->cached_en) { struct extent_info *cei = &et->cached_en->ei; if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) return et->cached_en; } while (*pnode) { parent = *pnode; en = rb_entry(*pnode, struct extent_node, rb_node); if (fofs < en->ei.fofs) pnode = &(*pnode)->rb_left; else if (fofs >= en->ei.fofs + en->ei.len) pnode = &(*pnode)->rb_right; else return en; } *insert_p = pnode; *insert_parent = parent; en = rb_entry(parent, struct extent_node, rb_node); tmp_node = parent; if (parent && fofs > en->ei.fofs) tmp_node = rb_next(parent); *next_ex = tmp_node ? rb_entry(tmp_node, struct extent_node, rb_node) : NULL; tmp_node = parent; if (parent && fofs < en->ei.fofs) tmp_node = rb_prev(parent); *prev_ex = tmp_node ? rb_entry(tmp_node, struct extent_node, rb_node) : NULL; return NULL; } static struct extent_node *__insert_extent_tree_ret(struct f2fs_sb_info *sbi, struct extent_tree *et, struct extent_info *ei, struct extent_node **den, struct extent_node *prev_ex, struct extent_node *next_ex, struct rb_node **insert_p, struct rb_node *insert_parent) { struct rb_node **p = &et->root.rb_node; struct rb_node *parent = NULL; struct extent_node *en = NULL; int merged = 0; if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) { f2fs_bug_on(sbi, !den); merged = 1; prev_ex->ei.len += ei->len; ei = &prev_ex->ei; en = prev_ex; } if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) { f2fs_bug_on(sbi, !den); if (merged++) { __detach_extent_node(sbi, et, prev_ex); *den = prev_ex; } next_ex->ei.fofs = ei->fofs; next_ex->ei.blk = ei->blk; next_ex->ei.len += ei->len; en = next_ex; } if (merged) goto update_out; if (insert_p && insert_parent) { parent = insert_parent; p = insert_p; goto do_insert; } while (*p) { parent = *p; en = rb_entry(parent, struct extent_node, rb_node); if (ei->fofs < en->ei.fofs) p = &(*p)->rb_left; else if (ei->fofs >= en->ei.fofs + en->ei.len) p = &(*p)->rb_right; else f2fs_bug_on(sbi, 1); } do_insert: en = __attach_extent_node(sbi, et, ei, parent, p); if (!en) return NULL; update_out: if (en->ei.len > et->largest.len) et->largest = en->ei; et->cached_en = en; return en; } /* return true, if on-disk extent should be updated */ static bool f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs, block_t blkaddr) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_tree *et = F2FS_I(inode)->extent_tree; struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL; struct extent_node *den = NULL, *prev_ex = NULL, *next_ex = NULL; struct extent_info ei, dei, prev; struct rb_node **insert_p = NULL, *insert_parent = NULL; unsigned int endofs; if (!et) return false; trace_f2fs_update_extent_tree(inode, fofs, blkaddr); write_lock(&et->lock); if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) { write_unlock(&et->lock); return false; } prev = et->largest; dei.len = 0; /* we do not guarantee that the largest extent is cached all the time */ f2fs_drop_largest_extent(inode, fofs); /* 1. lookup and remove existing extent info in cache */ en = __lookup_extent_tree_ret(et, fofs, &prev_ex, &next_ex, &insert_p, &insert_parent); if (!en) goto update_extent; dei = en->ei; __detach_extent_node(sbi, et, en); /* 2. if extent can be split, try to split it */ if (dei.len > F2FS_MIN_EXTENT_LEN) { /* insert left part of split extent into cache */ if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) { set_extent_info(&ei, dei.fofs, dei.blk, fofs - dei.fofs); en1 = __insert_extent_tree_ret(sbi, et, &ei, NULL, NULL, NULL, NULL, NULL); } /* insert right part of split extent into cache */ endofs = dei.fofs + dei.len - 1; if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) { set_extent_info(&ei, fofs + 1, fofs - dei.fofs + dei.blk + 1, endofs - fofs); en2 = __insert_extent_tree_ret(sbi, et, &ei, NULL, NULL, NULL, NULL, NULL); } } update_extent: /* 3. update extent in extent cache */ if (blkaddr) { set_extent_info(&ei, fofs, blkaddr, 1); en3 = __insert_extent_tree_ret(sbi, et, &ei, &den, prev_ex, next_ex, insert_p, insert_parent); /* give up extent_cache, if split and small updates happen */ if (dei.len >= 1 && prev.len < F2FS_MIN_EXTENT_LEN && et->largest.len < F2FS_MIN_EXTENT_LEN) { et->largest.len = 0; set_inode_flag(F2FS_I(inode), FI_NO_EXTENT); } } /* 4. update in global extent list */ spin_lock(&sbi->extent_lock); if (en && !list_empty(&en->list)) list_del(&en->list); /* * en1 and en2 split from en, they will become more and more smaller * fragments after splitting several times. So if the length is smaller * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree. */ if (en1) list_add_tail(&en1->list, &sbi->extent_list); if (en2) list_add_tail(&en2->list, &sbi->extent_list); if (en3) { if (list_empty(&en3->list)) list_add_tail(&en3->list, &sbi->extent_list); else list_move_tail(&en3->list, &sbi->extent_list); } if (den && !list_empty(&den->list)) list_del(&den->list); spin_unlock(&sbi->extent_lock); /* 5. release extent node */ if (en) kmem_cache_free(extent_node_slab, en); if (den) kmem_cache_free(extent_node_slab, den); if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) __free_extent_tree(sbi, et, true); write_unlock(&et->lock); return !__is_extent_same(&prev, &et->largest); } unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) { struct extent_tree *treevec[EXT_TREE_VEC_SIZE]; struct extent_node *en, *tmp; unsigned long ino = F2FS_ROOT_INO(sbi); struct radix_tree_root *root = &sbi->extent_tree_root; unsigned int found; unsigned int node_cnt = 0, tree_cnt = 0; int remained; if (!test_opt(sbi, EXTENT_CACHE)) return 0; if (!down_write_trylock(&sbi->extent_tree_lock)) goto out; /* 1. remove unreferenced extent tree */ while ((found = radix_tree_gang_lookup(root, (void **)treevec, ino, EXT_TREE_VEC_SIZE))) { unsigned i; ino = treevec[found - 1]->ino + 1; for (i = 0; i < found; i++) { struct extent_tree *et = treevec[i]; if (!atomic_read(&et->refcount)) { write_lock(&et->lock); node_cnt += __free_extent_tree(sbi, et, true); write_unlock(&et->lock); radix_tree_delete(root, et->ino); kmem_cache_free(extent_tree_slab, et); sbi->total_ext_tree--; tree_cnt++; if (node_cnt + tree_cnt >= nr_shrink) goto unlock_out; } } } up_write(&sbi->extent_tree_lock); /* 2. remove LRU extent entries */ if (!down_write_trylock(&sbi->extent_tree_lock)) goto out; remained = nr_shrink - (node_cnt + tree_cnt); spin_lock(&sbi->extent_lock); list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) { if (!remained--) break; list_del_init(&en->list); } spin_unlock(&sbi->extent_lock); while ((found = radix_tree_gang_lookup(root, (void **)treevec, ino, EXT_TREE_VEC_SIZE))) { unsigned i; ino = treevec[found - 1]->ino + 1; for (i = 0; i < found; i++) { struct extent_tree *et = treevec[i]; write_lock(&et->lock); node_cnt += __free_extent_tree(sbi, et, false); write_unlock(&et->lock); if (node_cnt + tree_cnt >= nr_shrink) break; } } unlock_out: up_write(&sbi->extent_tree_lock); out: trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt); return node_cnt + tree_cnt; } unsigned int f2fs_destroy_extent_node(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_tree *et = F2FS_I(inode)->extent_tree; unsigned int node_cnt = 0; if (!et) return 0; write_lock(&et->lock); node_cnt = __free_extent_tree(sbi, et, true); write_unlock(&et->lock); return node_cnt; } void f2fs_destroy_extent_tree(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_tree *et = F2FS_I(inode)->extent_tree; unsigned int node_cnt = 0; if (!et) return; if (inode->i_nlink && !is_bad_inode(inode) && et->count) { atomic_dec(&et->refcount); return; } /* free all extent info belong to this extent tree */ node_cnt = f2fs_destroy_extent_node(inode); /* delete extent tree entry in radix tree */ down_write(&sbi->extent_tree_lock); atomic_dec(&et->refcount); f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count); radix_tree_delete(&sbi->extent_tree_root, inode->i_ino); kmem_cache_free(extent_tree_slab, et); sbi->total_ext_tree--; up_write(&sbi->extent_tree_lock); F2FS_I(inode)->extent_tree = NULL; trace_f2fs_destroy_extent_tree(inode, node_cnt); } bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, struct extent_info *ei) { if (!f2fs_may_extent_tree(inode)) return false; return f2fs_lookup_extent_tree(inode, pgofs, ei); } void f2fs_update_extent_cache(struct dnode_of_data *dn) { struct f2fs_inode_info *fi = F2FS_I(dn->inode); pgoff_t fofs; if (!f2fs_may_extent_tree(dn->inode)) return; f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR); fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) + dn->ofs_in_node; if (f2fs_update_extent_tree(dn->inode, fofs, dn->data_blkaddr)) sync_inode_page(dn); } void init_extent_cache_info(struct f2fs_sb_info *sbi) { INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO); init_rwsem(&sbi->extent_tree_lock); INIT_LIST_HEAD(&sbi->extent_list); spin_lock_init(&sbi->extent_lock); sbi->total_ext_tree = 0; atomic_set(&sbi->total_ext_node, 0); } int __init create_extent_cache(void) { extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", sizeof(struct extent_tree)); if (!extent_tree_slab) return -ENOMEM; extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", sizeof(struct extent_node)); if (!extent_node_slab) { kmem_cache_destroy(extent_tree_slab); return -ENOMEM; } return 0; } void destroy_extent_cache(void) { kmem_cache_destroy(extent_node_slab); kmem_cache_destroy(extent_tree_slab); }