/* * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com * Written by Alex Tomas * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public Licens * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- */ /* * mballoc.c contains the multiblocks allocation routines */ #include "mballoc.h" /* * MUSTDO: * - test ext4_ext_search_left() and ext4_ext_search_right() * - search for metadata in few groups * * TODO v4: * - normalization should take into account whether file is still open * - discard preallocations if no free space left (policy?) * - don't normalize tails * - quota * - reservation for superuser * * TODO v3: * - bitmap read-ahead (proposed by Oleg Drokin aka green) * - track min/max extents in each group for better group selection * - mb_mark_used() may allocate chunk right after splitting buddy * - tree of groups sorted by number of free blocks * - error handling */ /* * The allocation request involve request for multiple number of blocks * near to the goal(block) value specified. * * During initialization phase of the allocator we decide to use the group * preallocation or inode preallocation depending on the size file. The * size of the file could be the resulting file size we would have after * allocation or the current file size which ever is larger. If the size is * less that sbi->s_mb_stream_request we select the group * preallocation. The default value of s_mb_stream_request is 16 * blocks. This can also be tuned via * /proc/fs/ext4//stream_req. The value is represented in terms * of number of blocks. * * The main motivation for having small file use group preallocation is to * ensure that we have small file closer in the disk. * * First stage the allocator looks at the inode prealloc list * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for * this particular inode. The inode prealloc space is represented as: * * pa_lstart -> the logical start block for this prealloc space * pa_pstart -> the physical start block for this prealloc space * pa_len -> lenght for this prealloc space * pa_free -> free space available in this prealloc space * * The inode preallocation space is used looking at the _logical_ start * block. If only the logical file block falls within the range of prealloc * space we will consume the particular prealloc space. This make sure that * that the we have contiguous physical blocks representing the file blocks * * The important thing to be noted in case of inode prealloc space is that * we don't modify the values associated to inode prealloc space except * pa_free. * * If we are not able to find blocks in the inode prealloc space and if we * have the group allocation flag set then we look at the locality group * prealloc space. These are per CPU prealloc list repreasented as * * ext4_sb_info.s_locality_groups[smp_processor_id()] * * The reason for having a per cpu locality group is to reduce the contention * between CPUs. It is possible to get scheduled at this point. * * The locality group prealloc space is used looking at whether we have * enough free space (pa_free) withing the prealloc space. * * If we can't allocate blocks via inode prealloc or/and locality group * prealloc then we look at the buddy cache. The buddy cache is represented * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets * mapped to the buddy and bitmap information regarding different * groups. The buddy information is attached to buddy cache inode so that * we can access them through the page cache. The information regarding * each group is loaded via ext4_mb_load_buddy. The information involve * block bitmap and buddy information. The information are stored in the * inode as: * * { page } * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... * * * one block each for bitmap and buddy information. So for each group we * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / * blocksize) blocks. So it can have information regarding groups_per_page * which is blocks_per_page/2 * * The buddy cache inode is not stored on disk. The inode is thrown * away when the filesystem is unmounted. * * We look for count number of blocks in the buddy cache. If we were able * to locate that many free blocks we return with additional information * regarding rest of the contiguous physical block available * * Before allocating blocks via buddy cache we normalize the request * blocks. This ensure we ask for more blocks that we needed. The extra * blocks that we get after allocation is added to the respective prealloc * list. In case of inode preallocation we follow a list of heuristics * based on file size. This can be found in ext4_mb_normalize_request. If * we are doing a group prealloc we try to normalize the request to * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to * 512 blocks. This can be tuned via * /proc/fs/ext4/ option the group prealloc request is normalized to the * stripe value (sbi->s_stripe) * * The regular allocator(using the buddy cache) support few tunables. * * /proc/fs/ext4//min_to_scan * /proc/fs/ext4//max_to_scan * /proc/fs/ext4//order2_req * * The regular allocator use buddy scan only if the request len is power of * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The * value of s_mb_order2_reqs can be tuned via * /proc/fs/ext4//order2_req. If the request len is equal to * stripe size (sbi->s_stripe), we try to search for contigous block in * stripe size. This should result in better allocation on RAID setup. If * not we search in the specific group using bitmap for best extents. The * tunable min_to_scan and max_to_scan controll the behaviour here. * min_to_scan indicate how long the mballoc __must__ look for a best * extent and max_to_scanindicate how long the mballoc __can__ look for a * best extent in the found extents. Searching for the blocks starts with * the group specified as the goal value in allocation context via * ac_g_ex. Each group is first checked based on the criteria whether it * can used for allocation. ext4_mb_good_group explains how the groups are * checked. * * Both the prealloc space are getting populated as above. So for the first * request we will hit the buddy cache which will result in this prealloc * space getting filled. The prealloc space is then later used for the * subsequent request. */ /* * mballoc operates on the following data: * - on-disk bitmap * - in-core buddy (actually includes buddy and bitmap) * - preallocation descriptors (PAs) * * there are two types of preallocations: * - inode * assiged to specific inode and can be used for this inode only. * it describes part of inode's space preallocated to specific * physical blocks. any block from that preallocated can be used * independent. the descriptor just tracks number of blocks left * unused. so, before taking some block from descriptor, one must * make sure corresponded logical block isn't allocated yet. this * also means that freeing any block within descriptor's range * must discard all preallocated blocks. * - locality group * assigned to specific locality group which does not translate to * permanent set of inodes: inode can join and leave group. space * from this type of preallocation can be used for any inode. thus * it's consumed from the beginning to the end. * * relation between them can be expressed as: * in-core buddy = on-disk bitmap + preallocation descriptors * * this mean blocks mballoc considers used are: * - allocated blocks (persistent) * - preallocated blocks (non-persistent) * * consistency in mballoc world means that at any time a block is either * free or used in ALL structures. notice: "any time" should not be read * literally -- time is discrete and delimited by locks. * * to keep it simple, we don't use block numbers, instead we count number of * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. * * all operations can be expressed as: * - init buddy: buddy = on-disk + PAs * - new PA: buddy += N; PA = N * - use inode PA: on-disk += N; PA -= N * - discard inode PA buddy -= on-disk - PA; PA = 0 * - use locality group PA on-disk += N; PA -= N * - discard locality group PA buddy -= PA; PA = 0 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap * is used in real operation because we can't know actual used * bits from PA, only from on-disk bitmap * * if we follow this strict logic, then all operations above should be atomic. * given some of them can block, we'd have to use something like semaphores * killing performance on high-end SMP hardware. let's try to relax it using * the following knowledge: * 1) if buddy is referenced, it's already initialized * 2) while block is used in buddy and the buddy is referenced, * nobody can re-allocate that block * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has * bit set and PA claims same block, it's OK. IOW, one can set bit in * on-disk bitmap if buddy has same bit set or/and PA covers corresponded * block * * so, now we're building a concurrency table: * - init buddy vs. * - new PA * blocks for PA are allocated in the buddy, buddy must be referenced * until PA is linked to allocation group to avoid concurrent buddy init * - use inode PA * we need to make sure that either on-disk bitmap or PA has uptodate data * given (3) we care that PA-=N operation doesn't interfere with init * - discard inode PA * the simplest way would be to have buddy initialized by the discard * - use locality group PA * again PA-=N must be serialized with init * - discard locality group PA * the simplest way would be to have buddy initialized by the discard * - new PA vs. * - use inode PA * i_data_sem serializes them * - discard inode PA * discard process must wait until PA isn't used by another process * - use locality group PA * some mutex should serialize them * - discard locality group PA * discard process must wait until PA isn't used by another process * - use inode PA * - use inode PA * i_data_sem or another mutex should serializes them * - discard inode PA * discard process must wait until PA isn't used by another process * - use locality group PA * nothing wrong here -- they're different PAs covering different blocks * - discard locality group PA * discard process must wait until PA isn't used by another process * * now we're ready to make few consequences: * - PA is referenced and while it is no discard is possible * - PA is referenced until block isn't marked in on-disk bitmap * - PA changes only after on-disk bitmap * - discard must not compete with init. either init is done before * any discard or they're serialized somehow * - buddy init as sum of on-disk bitmap and PAs is done atomically * * a special case when we've used PA to emptiness. no need to modify buddy * in this case, but we should care about concurrent init * */ /* * Logic in few words: * * - allocation: * load group * find blocks * mark bits in on-disk bitmap * release group * * - use preallocation: * find proper PA (per-inode or group) * load group * mark bits in on-disk bitmap * release group * release PA * * - free: * load group * mark bits in on-disk bitmap * release group * * - discard preallocations in group: * mark PAs deleted * move them onto local list * load on-disk bitmap * load group * remove PA from object (inode or locality group) * mark free blocks in-core * * - discard inode's preallocations: */ /* * Locking rules * * Locks: * - bitlock on a group (group) * - object (inode/locality) (object) * - per-pa lock (pa) * * Paths: * - new pa * object * group * * - find and use pa: * pa * * - release consumed pa: * pa * group * object * * - generate in-core bitmap: * group * pa * * - discard all for given object (inode, locality group): * object * pa * group * * - discard all for given group: * group * pa * group * object * */ static struct kmem_cache *ext4_pspace_cachep; static struct kmem_cache *ext4_ac_cachep; static struct kmem_cache *ext4_free_ext_cachep; static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, ext4_group_t group); static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, ext4_group_t group); static int ext4_mb_init_per_dev_proc(struct super_block *sb); static int ext4_mb_destroy_per_dev_proc(struct super_block *sb); static void ext4_mb_free_committed_blocks(struct super_block *); static void ext4_mb_poll_new_transaction(struct super_block *sb, handle_t *handle); static inline void *mb_correct_addr_and_bit(int *bit, void *addr) { #if BITS_PER_LONG == 64 *bit += ((unsigned long) addr & 7UL) << 3; addr = (void *) ((unsigned long) addr & ~7UL); #elif BITS_PER_LONG == 32 *bit += ((unsigned long) addr & 3UL) << 3; addr = (void *) ((unsigned long) addr & ~3UL); #else #error "how many bits you are?!" #endif return addr; } static inline int mb_test_bit(int bit, void *addr) { /* * ext4_test_bit on architecture like powerpc * needs unsigned long aligned address */ addr = mb_correct_addr_and_bit(&bit, addr); return ext4_test_bit(bit, addr); } static inline void mb_set_bit(int bit, void *addr) { addr = mb_correct_addr_and_bit(&bit, addr); ext4_set_bit(bit, addr); } static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr) { addr = mb_correct_addr_and_bit(&bit, addr); ext4_set_bit_atomic(lock, bit, addr); } static inline void mb_clear_bit(int bit, void *addr) { addr = mb_correct_addr_and_bit(&bit, addr); ext4_clear_bit(bit, addr); } static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr) { addr = mb_correct_addr_and_bit(&bit, addr); ext4_clear_bit_atomic(lock, bit, addr); } static inline int mb_find_next_zero_bit(void *addr, int max, int start) { int fix = 0, ret, tmpmax; addr = mb_correct_addr_and_bit(&fix, addr); tmpmax = max + fix; start += fix; ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; if (ret > max) return max; return ret; } static inline int mb_find_next_bit(void *addr, int max, int start) { int fix = 0, ret, tmpmax; addr = mb_correct_addr_and_bit(&fix, addr); tmpmax = max + fix; start += fix; ret = ext4_find_next_bit(addr, tmpmax, start) - fix; if (ret > max) return max; return ret; } static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) { char *bb; BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); BUG_ON(max == NULL); if (order > e4b->bd_blkbits + 1) { *max = 0; return NULL; } /* at order 0 we see each particular block */ *max = 1 << (e4b->bd_blkbits + 3); if (order == 0) return EXT4_MB_BITMAP(e4b); bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; return bb; } #ifdef DOUBLE_CHECK static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, int first, int count) { int i; struct super_block *sb = e4b->bd_sb; if (unlikely(e4b->bd_info->bb_bitmap == NULL)) return; BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group)); for (i = 0; i < count; i++) { if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { ext4_fsblk_t blocknr; blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb); blocknr += first + i; blocknr += le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); ext4_error(sb, __func__, "double-free of inode" " %lu's block %llu(bit %u in group %lu)\n", inode ? inode->i_ino : 0, blocknr, first + i, e4b->bd_group); } mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); } } static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) { int i; if (unlikely(e4b->bd_info->bb_bitmap == NULL)) return; BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group)); for (i = 0; i < count; i++) { BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); mb_set_bit(first + i, e4b->bd_info->bb_bitmap); } } static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) { if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { unsigned char *b1, *b2; int i; b1 = (unsigned char *) e4b->bd_info->bb_bitmap; b2 = (unsigned char *) bitmap; for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { if (b1[i] != b2[i]) { printk("corruption in group %lu at byte %u(%u):" " %x in copy != %x on disk/prealloc\n", e4b->bd_group, i, i * 8, b1[i], b2[i]); BUG(); } } } } #else static inline void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, int first, int count) { return; } static inline void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) { return; } static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) { return; } #endif #ifdef AGGRESSIVE_CHECK #define MB_CHECK_ASSERT(assert) \ do { \ if (!(assert)) { \ printk(KERN_EMERG \ "Assertion failure in %s() at %s:%d: \"%s\"\n", \ function, file, line, # assert); \ BUG(); \ } \ } while (0) static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, const char *function, int line) { struct super_block *sb = e4b->bd_sb; int order = e4b->bd_blkbits + 1; int max; int max2; int i; int j; int k; int count; struct ext4_group_info *grp; int fragments = 0; int fstart; struct list_head *cur; void *buddy; void *buddy2; if (!test_opt(sb, MBALLOC)) return 0; { static int mb_check_counter; if (mb_check_counter++ % 100 != 0) return 0; } while (order > 1) { buddy = mb_find_buddy(e4b, order, &max); MB_CHECK_ASSERT(buddy); buddy2 = mb_find_buddy(e4b, order - 1, &max2); MB_CHECK_ASSERT(buddy2); MB_CHECK_ASSERT(buddy != buddy2); MB_CHECK_ASSERT(max * 2 == max2); count = 0; for (i = 0; i < max; i++) { if (mb_test_bit(i, buddy)) { /* only single bit in buddy2 may be 1 */ if (!mb_test_bit(i << 1, buddy2)) { MB_CHECK_ASSERT( mb_test_bit((i<<1)+1, buddy2)); } else if (!mb_test_bit((i << 1) + 1, buddy2)) { MB_CHECK_ASSERT( mb_test_bit(i << 1, buddy2)); } continue; } /* both bits in buddy2 must be 0 */ MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); for (j = 0; j < (1 << order); j++) { k = (i * (1 << order)) + j; MB_CHECK_ASSERT( !mb_test_bit(k, EXT4_MB_BITMAP(e4b))); } count++; } MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); order--; } fstart = -1; buddy = mb_find_buddy(e4b, 0, &max); for (i = 0; i < max; i++) { if (!mb_test_bit(i, buddy)) { MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); if (fstart == -1) { fragments++; fstart = i; } continue; } fstart = -1; /* check used bits only */ for (j = 0; j < e4b->bd_blkbits + 1; j++) { buddy2 = mb_find_buddy(e4b, j, &max2); k = i >> j; MB_CHECK_ASSERT(k < max2); MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); } } MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); grp = ext4_get_group_info(sb, e4b->bd_group); buddy = mb_find_buddy(e4b, 0, &max); list_for_each(cur, &grp->bb_prealloc_list) { ext4_group_t groupnr; struct ext4_prealloc_space *pa; pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); MB_CHECK_ASSERT(groupnr == e4b->bd_group); for (i = 0; i < pa->pa_len; i++) MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); } return 0; } #undef MB_CHECK_ASSERT #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ __FILE__, __func__, __LINE__) #else #define mb_check_buddy(e4b) #endif /* FIXME!! need more doc */ static void ext4_mb_mark_free_simple(struct super_block *sb, void *buddy, unsigned first, int len, struct ext4_group_info *grp) { struct ext4_sb_info *sbi = EXT4_SB(sb); unsigned short min; unsigned short max; unsigned short chunk; unsigned short border; BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb)); border = 2 << sb->s_blocksize_bits; while (len > 0) { /* find how many blocks can be covered since this position */ max = ffs(first | border) - 1; /* find how many blocks of power 2 we need to mark */ min = fls(len) - 1; if (max < min) min = max; chunk = 1 << min; /* mark multiblock chunks only */ grp->bb_counters[min]++; if (min > 0) mb_clear_bit(first >> min, buddy + sbi->s_mb_offsets[min]); len -= chunk; first += chunk; } } static void ext4_mb_generate_buddy(struct super_block *sb, void *buddy, void *bitmap, ext4_group_t group) { struct ext4_group_info *grp = ext4_get_group_info(sb, group); unsigned short max = EXT4_BLOCKS_PER_GROUP(sb); unsigned short i = 0; unsigned short first; unsigned short len; unsigned free = 0; unsigned fragments = 0; unsigned long long period = get_cycles(); /* initialize buddy from bitmap which is aggregation * of on-disk bitmap and preallocations */ i = mb_find_next_zero_bit(bitmap, max, 0); grp->bb_first_free = i; while (i < max) { fragments++; first = i; i = mb_find_next_bit(bitmap, max, i); len = i - first; free += len; if (len > 1) ext4_mb_mark_free_simple(sb, buddy, first, len, grp); else grp->bb_counters[0]++; if (i < max) i = mb_find_next_zero_bit(bitmap, max, i); } grp->bb_fragments = fragments; if (free != grp->bb_free) { ext4_error(sb, __func__, "EXT4-fs: group %lu: %u blocks in bitmap, %u in gd\n", group, free, grp->bb_free); /* * If we intent to continue, we consider group descritor * corrupt and update bb_free using bitmap value */ grp->bb_free = free; } clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); period = get_cycles() - period; spin_lock(&EXT4_SB(sb)->s_bal_lock); EXT4_SB(sb)->s_mb_buddies_generated++; EXT4_SB(sb)->s_mb_generation_time += period; spin_unlock(&EXT4_SB(sb)->s_bal_lock); } /* The buddy information is attached the buddy cache inode * for convenience. The information regarding each group * is loaded via ext4_mb_load_buddy. The information involve * block bitmap and buddy information. The information are * stored in the inode as * * { page } * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... * * * one block each for bitmap and buddy information. * So for each group we take up 2 blocks. A page can * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. * So it can have information regarding groups_per_page which * is blocks_per_page/2 */ static int ext4_mb_init_cache(struct page *page, char *incore) { int blocksize; int blocks_per_page; int groups_per_page; int err = 0; int i; ext4_group_t first_group; int first_block; struct super_block *sb; struct buffer_head *bhs; struct buffer_head **bh; struct inode *inode; char *data; char *bitmap; mb_debug("init page %lu\n", page->index); inode = page->mapping->host; sb = inode->i_sb; blocksize = 1 << inode->i_blkbits; blocks_per_page = PAGE_CACHE_SIZE / blocksize; groups_per_page = blocks_per_page >> 1; if (groups_per_page == 0) groups_per_page = 1; /* allocate buffer_heads to read bitmaps */ if (groups_per_page > 1) { err = -ENOMEM; i = sizeof(struct buffer_head *) * groups_per_page; bh = kzalloc(i, GFP_NOFS); if (bh == NULL) goto out; } else bh = &bhs; first_group = page->index * blocks_per_page / 2; /* read all groups the page covers into the cache */ for (i = 0; i < groups_per_page; i++) { struct ext4_group_desc *desc; if (first_group + i >= EXT4_SB(sb)->s_groups_count) break; err = -EIO; desc = ext4_get_group_desc(sb, first_group + i, NULL); if (desc == NULL) goto out; err = -ENOMEM; bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc)); if (bh[i] == NULL) goto out; if (bitmap_uptodate(bh[i])) continue; lock_buffer(bh[i]); if (bitmap_uptodate(bh[i])) { unlock_buffer(bh[i]); continue; } spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i)); if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { ext4_init_block_bitmap(sb, bh[i], first_group + i, desc); set_bitmap_uptodate(bh[i]); set_buffer_uptodate(bh[i]); unlock_buffer(bh[i]); spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i)); continue; } spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i)); if (buffer_uptodate(bh[i])) { /* * if not uninit if bh is uptodate, * bitmap is also uptodate */ set_bitmap_uptodate(bh[i]); unlock_buffer(bh[i]); continue; } get_bh(bh[i]); /* * submit the buffer_head for read. We can * safely mark the bitmap as uptodate now. * We do it here so the bitmap uptodate bit * get set with buffer lock held. */ set_bitmap_uptodate(bh[i]); bh[i]->b_end_io = end_buffer_read_sync; submit_bh(READ, bh[i]); mb_debug("read bitmap for group %lu\n", first_group + i); } /* wait for I/O completion */ for (i = 0; i < groups_per_page && bh[i]; i++) wait_on_buffer(bh[i]); err = -EIO; for (i = 0; i < groups_per_page && bh[i]; i++) if (!buffer_uptodate(bh[i])) goto out; err = 0; first_block = page->index * blocks_per_page; /* init the page */ memset(page_address(page), 0xff, PAGE_CACHE_SIZE); for (i = 0; i < blocks_per_page; i++) { int group; struct ext4_group_info *grinfo; group = (first_block + i) >> 1; if (group >= EXT4_SB(sb)->s_groups_count) break; /* * data carry information regarding this * particular group in the format specified * above * */ data = page_address(page) + (i * blocksize); bitmap = bh[group - first_group]->b_data; /* * We place the buddy block and bitmap block * close together */ if ((first_block + i) & 1) { /* this is block of buddy */ BUG_ON(incore == NULL); mb_debug("put buddy for group %u in page %lu/%x\n", group, page->index, i * blocksize); grinfo = ext4_get_group_info(sb, group); grinfo->bb_fragments = 0; memset(grinfo->bb_counters, 0, sizeof(unsigned short)*(sb->s_blocksize_bits+2)); /* * incore got set to the group block bitmap below */ ext4_lock_group(sb, group); ext4_mb_generate_buddy(sb, data, incore, group); ext4_unlock_group(sb, group); incore = NULL; } else { /* this is block of bitmap */ BUG_ON(incore != NULL); mb_debug("put bitmap for group %u in page %lu/%x\n", group, page->index, i * blocksize); /* see comments in ext4_mb_put_pa() */ ext4_lock_group(sb, group); memcpy(data, bitmap, blocksize); /* mark all preallocated blks used in in-core bitmap */ ext4_mb_generate_from_pa(sb, data, group); ext4_mb_generate_from_freelist(sb, data, group); ext4_unlock_group(sb, group); /* set incore so that the buddy information can be * generated using this */ incore = data; } } SetPageUptodate(page); out: if (bh) { for (i = 0; i < groups_per_page && bh[i]; i++) brelse(bh[i]); if (bh != &bhs) kfree(bh); } return err; } static noinline_for_stack int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, struct ext4_buddy *e4b) { int blocks_per_page; int block; int pnum; int poff; struct page *page; int ret; struct ext4_group_info *grp; struct ext4_sb_info *sbi = EXT4_SB(sb); struct inode *inode = sbi->s_buddy_cache; mb_debug("load group %lu\n", group); blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; grp = ext4_get_group_info(sb, group); e4b->bd_blkbits = sb->s_blocksize_bits; e4b->bd_info = ext4_get_group_info(sb, group); e4b->bd_sb = sb; e4b->bd_group = group; e4b->bd_buddy_page = NULL; e4b->bd_bitmap_page = NULL; e4b->alloc_semp = &grp->alloc_sem; /* Take the read lock on the group alloc * sem. This would make sure a parallel * ext4_mb_init_group happening on other * groups mapped by the page is blocked * till we are done with allocation */ down_read(e4b->alloc_semp); /* * the buddy cache inode stores the block bitmap * and buddy information in consecutive blocks. * So for each group we need two blocks. */ block = group * 2; pnum = block / blocks_per_page; poff = block % blocks_per_page; /* we could use find_or_create_page(), but it locks page * what we'd like to avoid in fast path ... */ page = find_get_page(inode->i_mapping, pnum); if (page == NULL || !PageUptodate(page)) { if (page) /* * drop the page reference and try * to get the page with lock. If we * are not uptodate that implies * somebody just created the page but * is yet to initialize the same. So * wait for it to initialize. */ page_cache_release(page); page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); if (page) { BUG_ON(page->mapping != inode->i_mapping); if (!PageUptodate(page)) { ret = ext4_mb_init_cache(page, NULL); if (ret) { unlock_page(page); goto err; } mb_cmp_bitmaps(e4b, page_address(page) + (poff * sb->s_blocksize)); } unlock_page(page); } } if (page == NULL || !PageUptodate(page)) { ret = -EIO; goto err; } e4b->bd_bitmap_page = page; e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); mark_page_accessed(page); block++; pnum = block / blocks_per_page; poff = block % blocks_per_page; page = find_get_page(inode->i_mapping, pnum); if (page == NULL || !PageUptodate(page)) { if (page) page_cache_release(page); page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); if (page) { BUG_ON(page->mapping != inode->i_mapping); if (!PageUptodate(page)) { ret = ext4_mb_init_cache(page, e4b->bd_bitmap); if (ret) { unlock_page(page); goto err; } } unlock_page(page); } } if (page == NULL || !PageUptodate(page)) { ret = -EIO; goto err; } e4b->bd_buddy_page = page; e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); mark_page_accessed(page); BUG_ON(e4b->bd_bitmap_page == NULL); BUG_ON(e4b->bd_buddy_page == NULL); return 0; err: if (e4b->bd_bitmap_page) page_cache_release(e4b->bd_bitmap_page); if (e4b->bd_buddy_page) page_cache_release(e4b->bd_buddy_page); e4b->bd_buddy = NULL; e4b->bd_bitmap = NULL; /* Done with the buddy cache */ up_read(e4b->alloc_semp); return ret; } static void ext4_mb_release_desc(struct ext4_buddy *e4b) { if (e4b->bd_bitmap_page) page_cache_release(e4b->bd_bitmap_page); if (e4b->bd_buddy_page) page_cache_release(e4b->bd_buddy_page); /* Done with the buddy cache */ if (e4b->alloc_semp) up_read(e4b->alloc_semp); } static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) { int order = 1; void *bb; BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); bb = EXT4_MB_BUDDY(e4b); while (order <= e4b->bd_blkbits + 1) { block = block >> 1; if (!mb_test_bit(block, bb)) { /* this block is part of buddy of order 'order' */ return order; } bb += 1 << (e4b->bd_blkbits - order); order++; } return 0; } static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len) { __u32 *addr; len = cur + len; while (cur < len) { if ((cur & 31) == 0 && (len - cur) >= 32) { /* fast path: clear whole word at once */ addr = bm + (cur >> 3); *addr = 0; cur += 32; continue; } if (lock) mb_clear_bit_atomic(lock, cur, bm); else mb_clear_bit(cur, bm); cur++; } } static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len) { __u32 *addr; len = cur + len; while (cur < len) { if ((cur & 31) == 0 && (len - cur) >= 32) { /* fast path: set whole word at once */ addr = bm + (cur >> 3); *addr = 0xffffffff; cur += 32; continue; } if (lock) mb_set_bit_atomic(lock, cur, bm); else mb_set_bit(cur, bm); cur++; } } static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, int first, int count) { int block = 0; int max = 0; int order; void *buddy; void *buddy2; struct super_block *sb = e4b->bd_sb; BUG_ON(first + count > (sb->s_blocksize << 3)); BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group)); mb_check_buddy(e4b); mb_free_blocks_double(inode, e4b, first, count); e4b->bd_info->bb_free += count; if (first < e4b->bd_info->bb_first_free) e4b->bd_info->bb_first_free = first; /* let's maintain fragments counter */ if (first != 0) block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b)); if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b)); if (block && max) e4b->bd_info->bb_fragments--; else if (!block && !max) e4b->bd_info->bb_fragments++; /* let's maintain buddy itself */ while (count-- > 0) { block = first++; order = 0; if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) { ext4_fsblk_t blocknr; blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb); blocknr += block; blocknr += le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); ext4_unlock_group(sb, e4b->bd_group); ext4_error(sb, __func__, "double-free of inode" " %lu's block %llu(bit %u in group %lu)\n", inode ? inode->i_ino : 0, blocknr, block, e4b->bd_group); ext4_lock_group(sb, e4b->bd_group); } mb_clear_bit(block, EXT4_MB_BITMAP(e4b)); e4b->bd_info->bb_counters[order]++; /* start of the buddy */ buddy = mb_find_buddy(e4b, order, &max); do { block &= ~1UL; if (mb_test_bit(block, buddy) || mb_test_bit(block + 1, buddy)) break; /* both the buddies are free, try to coalesce them */ buddy2 = mb_find_buddy(e4b, order + 1, &max); if (!buddy2) break; if (order > 0) { /* for special purposes, we don't set * free bits in bitmap */ mb_set_bit(block, buddy); mb_set_bit(block + 1, buddy); } e4b->bd_info->bb_counters[order]--; e4b->bd_info->bb_counters[order]--; block = block >> 1; order++; e4b->bd_info->bb_counters[order]++; mb_clear_bit(block, buddy2); buddy = buddy2; } while (1); } mb_check_buddy(e4b); } static int mb_find_extent(struct ext4_buddy *e4b, int order, int block, int needed, struct ext4_free_extent *ex) { int next = block; int max; int ord; void *buddy; BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group)); BUG_ON(ex == NULL); buddy = mb_find_buddy(e4b, order, &max); BUG_ON(buddy == NULL); BUG_ON(block >= max); if (mb_test_bit(block, buddy)) { ex->fe_len = 0; ex->fe_start = 0; ex->fe_group = 0; return 0; } /* FIXME dorp order completely ? */ if (likely(order == 0)) { /* find actual order */ order = mb_find_order_for_block(e4b, block); block = block >> order; } ex->fe_len = 1 << order; ex->fe_start = block << order; ex->fe_group = e4b->bd_group; /* calc difference from given start */ next = next - ex->fe_start; ex->fe_len -= next; ex->fe_start += next; while (needed > ex->fe_len && (buddy = mb_find_buddy(e4b, order, &max))) { if (block + 1 >= max) break; next = (block + 1) * (1 << order); if (mb_test_bit(next, EXT4_MB_BITMAP(e4b))) break; ord = mb_find_order_for_block(e4b, next); order = ord; block = next >> order; ex->fe_len += 1 << order; } BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); return ex->fe_len; } static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) { int ord; int mlen = 0; int max = 0; int cur; int start = ex->fe_start; int len = ex->fe_len; unsigned ret = 0; int len0 = len; void *buddy; BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); BUG_ON(e4b->bd_group != ex->fe_group); BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group)); mb_check_buddy(e4b); mb_mark_used_double(e4b, start, len); e4b->bd_info->bb_free -= len; if (e4b->bd_info->bb_first_free == start) e4b->bd_info->bb_first_free += len; /* let's maintain fragments counter */ if (start != 0) mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b)); if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b)); if (mlen && max) e4b->bd_info->bb_fragments++; else if (!mlen && !max) e4b->bd_info->bb_fragments--; /* let's maintain buddy itself */ while (len) { ord = mb_find_order_for_block(e4b, start); if (((start >> ord) << ord) == start && len >= (1 << ord)) { /* the whole chunk may be allocated at once! */ mlen = 1 << ord; buddy = mb_find_buddy(e4b, ord, &max); BUG_ON((start >> ord) >= max); mb_set_bit(start >> ord, buddy); e4b->bd_info->bb_counters[ord]--; start += mlen; len -= mlen; BUG_ON(len < 0); continue; } /* store for history */ if (ret == 0) ret = len | (ord << 16); /* we have to split large buddy */ BUG_ON(ord <= 0); buddy = mb_find_buddy(e4b, ord, &max); mb_set_bit(start >> ord, buddy); e4b->bd_info->bb_counters[ord]--; ord--; cur = (start >> ord) & ~1U; buddy = mb_find_buddy(e4b, ord, &max); mb_clear_bit(cur, buddy); mb_clear_bit(cur + 1, buddy); e4b->bd_info->bb_counters[ord]++; e4b->bd_info->bb_counters[ord]++; } mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group), EXT4_MB_BITMAP(e4b), ex->fe_start, len0); mb_check_buddy(e4b); return ret; } /* * Must be called under group lock! */ static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, struct ext4_buddy *e4b) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); int ret; BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); BUG_ON(ac->ac_status == AC_STATUS_FOUND); ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; ret = mb_mark_used(e4b, &ac->ac_b_ex); /* preallocation can change ac_b_ex, thus we store actually * allocated blocks for history */ ac->ac_f_ex = ac->ac_b_ex; ac->ac_status = AC_STATUS_FOUND; ac->ac_tail = ret & 0xffff; ac->ac_buddy = ret >> 16; /* * take the page reference. We want the page to be pinned * so that we don't get a ext4_mb_init_cache_call for this * group until we update the bitmap. That would mean we * double allocate blocks. The reference is dropped * in ext4_mb_release_context */ ac->ac_bitmap_page = e4b->bd_bitmap_page; get_page(ac->ac_bitmap_page); ac->ac_buddy_page = e4b->bd_buddy_page; get_page(ac->ac_buddy_page); /* on allocation we use ac to track the held semaphore */ ac->alloc_semp = e4b->alloc_semp; e4b->alloc_semp = NULL; /* store last allocated for subsequent stream allocation */ if ((ac->ac_flags & EXT4_MB_HINT_DATA)) { spin_lock(&sbi->s_md_lock); sbi->s_mb_last_group = ac->ac_f_ex.fe_group; sbi->s_mb_last_start = ac->ac_f_ex.fe_start; spin_unlock(&sbi->s_md_lock); } } /* * regular allocator, for general purposes allocation */ static void ext4_mb_check_limits(struct ext4_allocation_context *ac, struct ext4_buddy *e4b, int finish_group) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct ext4_free_extent *bex = &ac->ac_b_ex; struct ext4_free_extent *gex = &ac->ac_g_ex; struct ext4_free_extent ex; int max; if (ac->ac_status == AC_STATUS_FOUND) return; /* * We don't want to scan for a whole year */ if (ac->ac_found > sbi->s_mb_max_to_scan && !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { ac->ac_status = AC_STATUS_BREAK; return; } /* * Haven't found good chunk so far, let's continue */ if (bex->fe_len < gex->fe_len) return; if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) && bex->fe_group == e4b->bd_group) { /* recheck chunk's availability - we don't know * when it was found (within this lock-unlock * period or not) */ max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex); if (max >= gex->fe_len) { ext4_mb_use_best_found(ac, e4b); return; } } } /* * The routine checks whether found extent is good enough. If it is, * then the extent gets marked used and flag is set to the context * to stop scanning. Otherwise, the extent is compared with the * previous found extent and if new one is better, then it's stored * in the context. Later, the best found extent will be used, if * mballoc can't find good enough extent. * * FIXME: real allocation policy is to be designed yet! */ static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, struct ext4_free_extent *ex, struct ext4_buddy *e4b) { struct ext4_free_extent *bex = &ac->ac_b_ex; struct ext4_free_extent *gex = &ac->ac_g_ex; BUG_ON(ex->fe_len <= 0); BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); ac->ac_found++; /* * The special case - take what you catch first */ if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { *bex = *ex; ext4_mb_use_best_found(ac, e4b); return; } /* * Let's check whether the chuck is good enough */ if (ex->fe_len == gex->fe_len) { *bex = *ex; ext4_mb_use_best_found(ac, e4b); return; } /* * If this is first found extent, just store it in the context */ if (bex->fe_len == 0) { *bex = *ex; return; } /* * If new found extent is better, store it in the context */ if (bex->fe_len < gex->fe_len) { /* if the request isn't satisfied, any found extent * larger than previous best one is better */ if (ex->fe_len > bex->fe_len) *bex = *ex; } else if (ex->fe_len > gex->fe_len) { /* if the request is satisfied, then we try to find * an extent that still satisfy the request, but is * smaller than previous one */ if (ex->fe_len < bex->fe_len) *bex = *ex; } ext4_mb_check_limits(ac, e4b, 0); } static int ext4_mb_try_best_found(struct ext4_allocation_context *ac, struct ext4_buddy *e4b) { struct ext4_free_extent ex = ac->ac_b_ex; ext4_group_t group = ex.fe_group; int max; int err; BUG_ON(ex.fe_len <= 0); err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); if (err) return err; ext4_lock_group(ac->ac_sb, group); max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex); if (max > 0) { ac->ac_b_ex = ex; ext4_mb_use_best_found(ac, e4b); } ext4_unlock_group(ac->ac_sb, group); ext4_mb_release_desc(e4b); return 0; } static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, struct ext4_buddy *e4b) { ext4_group_t group = ac->ac_g_ex.fe_group; int max; int err; struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct ext4_super_block *es = sbi->s_es; struct ext4_free_extent ex; if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) return 0; err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); if (err) return err; ext4_lock_group(ac->ac_sb, group); max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start, ac->ac_g_ex.fe_len, &ex); if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { ext4_fsblk_t start; start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) + ex.fe_start + le32_to_cpu(es->s_first_data_block); /* use do_div to get remainder (would be 64-bit modulo) */ if (do_div(start, sbi->s_stripe) == 0) { ac->ac_found++; ac->ac_b_ex = ex; ext4_mb_use_best_found(ac, e4b); } } else if (max >= ac->ac_g_ex.fe_len) { BUG_ON(ex.fe_len <= 0); BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); ac->ac_found++; ac->ac_b_ex = ex; ext4_mb_use_best_found(ac, e4b); } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { /* Sometimes, caller may want to merge even small * number of blocks to an existing extent */ BUG_ON(ex.fe_len <= 0); BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); ac->ac_found++; ac->ac_b_ex = ex; ext4_mb_use_best_found(ac, e4b); } ext4_unlock_group(ac->ac_sb, group); ext4_mb_release_desc(e4b); return 0; } /* * The routine scans buddy structures (not bitmap!) from given order * to max order and tries to find big enough chunk to satisfy the req */ static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, struct ext4_buddy *e4b) { struct super_block *sb = ac->ac_sb; struct ext4_group_info *grp = e4b->bd_info; void *buddy; int i; int k; int max; BUG_ON(ac->ac_2order <= 0); for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { if (grp->bb_counters[i] == 0) continue; buddy = mb_find_buddy(e4b, i, &max); BUG_ON(buddy == NULL); k = mb_find_next_zero_bit(buddy, max, 0); BUG_ON(k >= max); ac->ac_found++; ac->ac_b_ex.fe_len = 1 << i; ac->ac_b_ex.fe_start = k << i; ac->ac_b_ex.fe_group = e4b->bd_group; ext4_mb_use_best_found(ac, e4b); BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); if (EXT4_SB(sb)->s_mb_stats) atomic_inc(&EXT4_SB(sb)->s_bal_2orders); break; } } /* * The routine scans the group and measures all found extents. * In order to optimize scanning, caller must pass number of * free blocks in the group, so the routine can know upper limit. */ static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, struct ext4_buddy *e4b) { struct super_block *sb = ac->ac_sb; void *bitmap = EXT4_MB_BITMAP(e4b); struct ext4_free_extent ex; int i; int free; free = e4b->bd_info->bb_free; BUG_ON(free <= 0); i = e4b->bd_info->bb_first_free; while (free && ac->ac_status == AC_STATUS_CONTINUE) { i = mb_find_next_zero_bit(bitmap, EXT4_BLOCKS_PER_GROUP(sb), i); if (i >= EXT4_BLOCKS_PER_GROUP(sb)) { /* * IF we have corrupt bitmap, we won't find any * free blocks even though group info says we * we have free blocks */ ext4_error(sb, __func__, "%d free blocks as per " "group info. But bitmap says 0\n", free); break; } mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex); BUG_ON(ex.fe_len <= 0); if (free < ex.fe_len) { ext4_error(sb, __func__, "%d free blocks as per " "group info. But got %d blocks\n", free, ex.fe_len); /* * The number of free blocks differs. This mostly * indicate that the bitmap is corrupt. So exit * without claiming the space. */ break; } ext4_mb_measure_extent(ac, &ex, e4b); i += ex.fe_len; free -= ex.fe_len; } ext4_mb_check_limits(ac, e4b, 1); } /* * This is a special case for storages like raid5 * we try to find stripe-aligned chunks for stripe-size requests * XXX should do so at least for multiples of stripe size as well */ static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, struct ext4_buddy *e4b) { struct super_block *sb = ac->ac_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); void *bitmap = EXT4_MB_BITMAP(e4b); struct ext4_free_extent ex; ext4_fsblk_t first_group_block; ext4_fsblk_t a; ext4_grpblk_t i; int max; BUG_ON(sbi->s_stripe == 0); /* find first stripe-aligned block in group */ first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb) + le32_to_cpu(sbi->s_es->s_first_data_block); a = first_group_block + sbi->s_stripe - 1; do_div(a, sbi->s_stripe); i = (a * sbi->s_stripe) - first_group_block; while (i < EXT4_BLOCKS_PER_GROUP(sb)) { if (!mb_test_bit(i, bitmap)) { max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex); if (max >= sbi->s_stripe) { ac->ac_found++; ac->ac_b_ex = ex; ext4_mb_use_best_found(ac, e4b); break; } } i += sbi->s_stripe; } } static int ext4_mb_good_group(struct ext4_allocation_context *ac, ext4_group_t group, int cr) { unsigned free, fragments; unsigned i, bits; struct ext4_group_desc *desc; struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); BUG_ON(cr < 0 || cr >= 4); BUG_ON(EXT4_MB_GRP_NEED_INIT(grp)); free = grp->bb_free; fragments = grp->bb_fragments; if (free == 0) return 0; if (fragments == 0) return 0; switch (cr) { case 0: BUG_ON(ac->ac_2order == 0); /* If this group is uninitialized, skip it initially */ desc = ext4_get_group_desc(ac->ac_sb, group, NULL); if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) return 0; bits = ac->ac_sb->s_blocksize_bits + 1; for (i = ac->ac_2order; i <= bits; i++) if (grp->bb_counters[i] > 0) return 1; break; case 1: if ((free / fragments) >= ac->ac_g_ex.fe_len) return 1; break; case 2: if (free >= ac->ac_g_ex.fe_len) return 1; break; case 3: return 1; default: BUG(); } return 0; } /* * lock the group_info alloc_sem of all the groups * belonging to the same buddy cache page. This * make sure other parallel operation on the buddy * cache doesn't happen whild holding the buddy cache * lock */ int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group) { int i; int block, pnum; int blocks_per_page; int groups_per_page; ext4_group_t first_group; struct ext4_group_info *grp; blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; /* * the buddy cache inode stores the block bitmap * and buddy information in consecutive blocks. * So for each group we need two blocks. */ block = group * 2; pnum = block / blocks_per_page; first_group = pnum * blocks_per_page / 2; groups_per_page = blocks_per_page >> 1; if (groups_per_page == 0) groups_per_page = 1; /* read all groups the page covers into the cache */ for (i = 0; i < groups_per_page; i++) { if ((first_group + i) >= EXT4_SB(sb)->s_groups_count) break; grp = ext4_get_group_info(sb, first_group + i); /* take all groups write allocation * semaphore. This make sure there is * no block allocation going on in any * of that groups */ down_write(&grp->alloc_sem); } return i; } void ext4_mb_put_buddy_cache_lock(struct super_block *sb, ext4_group_t group, int locked_group) { int i; int block, pnum; int blocks_per_page; ext4_group_t first_group; struct ext4_group_info *grp; blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; /* * the buddy cache inode stores the block bitmap * and buddy information in consecutive blocks. * So for each group we need two blocks. */ block = group * 2; pnum = block / blocks_per_page; first_group = pnum * blocks_per_page / 2; /* release locks on all the groups */ for (i = 0; i < locked_group; i++) { grp = ext4_get_group_info(sb, first_group + i); /* take all groups write allocation * semaphore. This make sure there is * no block allocation going on in any * of that groups */ up_write(&grp->alloc_sem); } } static int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) { int ret; void *bitmap; int blocks_per_page; int block, pnum, poff; int num_grp_locked = 0; struct ext4_group_info *this_grp; struct ext4_sb_info *sbi = EXT4_SB(sb); struct inode *inode = sbi->s_buddy_cache; struct page *page = NULL, *bitmap_page = NULL; mb_debug("init group %lu\n", group); blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; this_grp = ext4_get_group_info(sb, group); /* * This ensures we don't add group * to this buddy cache via resize */ num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group); if (!EXT4_MB_GRP_NEED_INIT(this_grp)) { /* * somebody initialized the group * return without doing anything */ ret = 0; goto err; } /* * the buddy cache inode stores the block bitmap * and buddy information in consecutive blocks. * So for each group we need two blocks. */ block = group * 2; pnum = block / blocks_per_page; poff = block % blocks_per_page; page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); if (page) { BUG_ON(page->mapping != inode->i_mapping); ret = ext4_mb_init_cache(page, NULL); if (ret) { unlock_page(page); goto err; } unlock_page(page); } if (page == NULL || !PageUptodate(page)) { ret = -EIO; goto err; } mark_page_accessed(page); bitmap_page = page; bitmap = page_address(page) + (poff * sb->s_blocksize); /* init buddy cache */ block++; pnum = block / blocks_per_page; poff = block % blocks_per_page; page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); if (page == bitmap_page) { /* * If both the bitmap and buddy are in * the same page we don't need to force * init the buddy */ unlock_page(page); } else if (page) { BUG_ON(page->mapping != inode->i_mapping); ret = ext4_mb_init_cache(page, bitmap); if (ret) { unlock_page(page); goto err; } unlock_page(page); } if (page == NULL || !PageUptodate(page)) { ret = -EIO; goto err; } mark_page_accessed(page); err: ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked); if (bitmap_page) page_cache_release(bitmap_page); if (page) page_cache_release(page); return ret; } static noinline_for_stack int ext4_mb_regular_allocator(struct ext4_allocation_context *ac) { ext4_group_t group; ext4_group_t i; int cr; int err = 0; int bsbits; struct ext4_sb_info *sbi; struct super_block *sb; struct ext4_buddy e4b; loff_t size, isize; sb = ac->ac_sb; sbi = EXT4_SB(sb); BUG_ON(ac->ac_status == AC_STATUS_FOUND); /* first, try the goal */ err = ext4_mb_find_by_goal(ac, &e4b); if (err || ac->ac_status == AC_STATUS_FOUND) goto out; if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) goto out; /* * ac->ac2_order is set only if the fe_len is a power of 2 * if ac2_order is set we also set criteria to 0 so that we * try exact allocation using buddy. */ i = fls(ac->ac_g_ex.fe_len); ac->ac_2order = 0; /* * We search using buddy data only if the order of the request * is greater than equal to the sbi_s_mb_order2_reqs * You can tune it via /proc/fs/ext4//order2_req */ if (i >= sbi->s_mb_order2_reqs) { /* * This should tell if fe_len is exactly power of 2 */ if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) ac->ac_2order = i - 1; } bsbits = ac->ac_sb->s_blocksize_bits; /* if stream allocation is enabled, use global goal */ size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; isize = i_size_read(ac->ac_inode) >> bsbits; if (size < isize) size = isize; if (size < sbi->s_mb_stream_request && (ac->ac_flags & EXT4_MB_HINT_DATA)) { /* TBD: may be hot point */ spin_lock(&sbi->s_md_lock); ac->ac_g_ex.fe_group = sbi->s_mb_last_group; ac->ac_g_ex.fe_start = sbi->s_mb_last_start; spin_unlock(&sbi->s_md_lock); } /* Let's just scan groups to find more-less suitable blocks */ cr = ac->ac_2order ? 0 : 1; /* * cr == 0 try to get exact allocation, * cr == 3 try to get anything */ repeat: for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { ac->ac_criteria = cr; /* * searching for the right group start * from the goal value specified */ group = ac->ac_g_ex.fe_group; for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) { struct ext4_group_info *grp; struct ext4_group_desc *desc; if (group == EXT4_SB(sb)->s_groups_count) group = 0; /* quick check to skip empty groups */ grp = ext4_get_group_info(sb, group); if (grp->bb_free == 0) continue; /* * if the group is already init we check whether it is * a good group and if not we don't load the buddy */ if (EXT4_MB_GRP_NEED_INIT(grp)) { /* * we need full data about the group * to make a good selection */ err = ext4_mb_init_group(sb, group); if (err) goto out; } /* * If the particular group doesn't satisfy our * criteria we continue with the next group */ if (!ext4_mb_good_group(ac, group, cr)) continue; err = ext4_mb_load_buddy(sb, group, &e4b); if (err) goto out; ext4_lock_group(sb, group); if (!ext4_mb_good_group(ac, group, cr)) { /* someone did allocation from this group */ ext4_unlock_group(sb, group); ext4_mb_release_desc(&e4b); continue; } ac->ac_groups_scanned++; desc = ext4_get_group_desc(sb, group, NULL); if (cr == 0 || (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT) && ac->ac_2order != 0)) ext4_mb_simple_scan_group(ac, &e4b); else if (cr == 1 && ac->ac_g_ex.fe_len == sbi->s_stripe) ext4_mb_scan_aligned(ac, &e4b); else ext4_mb_complex_scan_group(ac, &e4b); ext4_unlock_group(sb, group); ext4_mb_release_desc(&e4b); if (ac->ac_status != AC_STATUS_CONTINUE) break; } } if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { /* * We've been searching too long. Let's try to allocate * the best chunk we've found so far */ ext4_mb_try_best_found(ac, &e4b); if (ac->ac_status != AC_STATUS_FOUND) { /* * Someone more lucky has already allocated it. * The only thing we can do is just take first * found block(s) printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); */ ac->ac_b_ex.fe_group = 0; ac->ac_b_ex.fe_start = 0; ac->ac_b_ex.fe_len = 0; ac->ac_status = AC_STATUS_CONTINUE; ac->ac_flags |= EXT4_MB_HINT_FIRST; cr = 3; atomic_inc(&sbi->s_mb_lost_chunks); goto repeat; } } out: return err; } #ifdef EXT4_MB_HISTORY struct ext4_mb_proc_session { struct ext4_mb_history *history; struct super_block *sb; int start; int max; }; static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s, struct ext4_mb_history *hs, int first) { if (hs == s->history + s->max) hs = s->history; if (!first && hs == s->history + s->start) return NULL; while (hs->orig.fe_len == 0) { hs++; if (hs == s->history + s->max) hs = s->history; if (hs == s->history + s->start) return NULL; } return hs; } static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos) { struct ext4_mb_proc_session *s = seq->private; struct ext4_mb_history *hs; int l = *pos; if (l == 0) return SEQ_START_TOKEN; hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1); if (!hs) return NULL; while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL); return hs; } static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v, loff_t *pos) { struct ext4_mb_proc_session *s = seq->private; struct ext4_mb_history *hs = v; ++*pos; if (v == SEQ_START_TOKEN) return ext4_mb_history_skip_empty(s, s->history + s->start, 1); else return ext4_mb_history_skip_empty(s, ++hs, 0); } static int ext4_mb_seq_history_show(struct seq_file *seq, void *v) { char buf[25], buf2[25], buf3[25], *fmt; struct ext4_mb_history *hs = v; if (v == SEQ_START_TOKEN) { seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s " "%-5s %-2s %-5s %-5s %-5s %-6s\n", "pid", "inode", "original", "goal", "result", "found", "grps", "cr", "flags", "merge", "tail", "broken"); return 0; } if (hs->op == EXT4_MB_HISTORY_ALLOC) { fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u " "%-5u %-5s %-5u %-6u\n"; sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group, hs->result.fe_start, hs->result.fe_len, hs->result.fe_logical); sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group, hs->orig.fe_start, hs->orig.fe_len, hs->orig.fe_logical); sprintf(buf3, "%lu/%d/%u@%u", hs->goal.fe_group, hs->goal.fe_start, hs->goal.fe_len, hs->goal.fe_logical); seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2, hs->found, hs->groups, hs->cr, hs->flags, hs->merged ? "M" : "", hs->tail, hs->buddy ? 1 << hs->buddy : 0); } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) { fmt = "%-5u %-8u %-23s %-23s %-23s\n"; sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group, hs->result.fe_start, hs->result.fe_len, hs->result.fe_logical); sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group, hs->orig.fe_start, hs->orig.fe_len, hs->orig.fe_logical); seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2); } else if (hs->op == EXT4_MB_HISTORY_DISCARD) { sprintf(buf2, "%lu/%d/%u", hs->result.fe_group, hs->result.fe_start, hs->result.fe_len); seq_printf(seq, "%-5u %-8u %-23s discard\n", hs->pid, hs->ino, buf2); } else if (hs->op == EXT4_MB_HISTORY_FREE) { sprintf(buf2, "%lu/%d/%u", hs->result.fe_group, hs->result.fe_start, hs->result.fe_len); seq_printf(seq, "%-5u %-8u %-23s free\n", hs->pid, hs->ino, buf2); } return 0; } static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v) { } static struct seq_operations ext4_mb_seq_history_ops = { .start = ext4_mb_seq_history_start, .next = ext4_mb_seq_history_next, .stop = ext4_mb_seq_history_stop, .show = ext4_mb_seq_history_show, }; static int ext4_mb_seq_history_open(struct inode *inode, struct file *file) { struct super_block *sb = PDE(inode)->data; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_mb_proc_session *s; int rc; int size; if (unlikely(sbi->s_mb_history == NULL)) return -ENOMEM; s = kmalloc(sizeof(*s), GFP_KERNEL); if (s == NULL) return -ENOMEM; s->sb = sb; size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max; s->history = kmalloc(size, GFP_KERNEL); if (s->history == NULL) { kfree(s); return -ENOMEM; } spin_lock(&sbi->s_mb_history_lock); memcpy(s->history, sbi->s_mb_history, size); s->max = sbi->s_mb_history_max; s->start = sbi->s_mb_history_cur % s->max; spin_unlock(&sbi->s_mb_history_lock); rc = seq_open(file, &ext4_mb_seq_history_ops); if (rc == 0) { struct seq_file *m = (struct seq_file *)file->private_data; m->private = s; } else { kfree(s->history); kfree(s); } return rc; } static int ext4_mb_seq_history_release(struct inode *inode, struct file *file) { struct seq_file *seq = (struct seq_file *)file->private_data; struct ext4_mb_proc_session *s = seq->private; kfree(s->history); kfree(s); return seq_release(inode, file); } static ssize_t ext4_mb_seq_history_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct seq_file *seq = (struct seq_file *)file->private_data; struct ext4_mb_proc_session *s = seq->private; struct super_block *sb = s->sb; char str[32]; int value; if (count >= sizeof(str)) { printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n", "mb_history", (int)sizeof(str)); return -EOVERFLOW; } if (copy_from_user(str, buffer, count)) return -EFAULT; value = simple_strtol(str, NULL, 0); if (value < 0) return -ERANGE; EXT4_SB(sb)->s_mb_history_filter = value; return count; } static struct file_operations ext4_mb_seq_history_fops = { .owner = THIS_MODULE, .open = ext4_mb_seq_history_open, .read = seq_read, .write = ext4_mb_seq_history_write, .llseek = seq_lseek, .release = ext4_mb_seq_history_release, }; static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) { struct super_block *sb = seq->private; struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_group_t group; if (*pos < 0 || *pos >= sbi->s_groups_count) return NULL; group = *pos + 1; return (void *) group; } static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) { struct super_block *sb = seq->private; struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_group_t group; ++*pos; if (*pos < 0 || *pos >= sbi->s_groups_count) return NULL; group = *pos + 1; return (void *) group;; } static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) { struct super_block *sb = seq->private; long group = (long) v; int i; int err; struct ext4_buddy e4b; struct sg { struct ext4_group_info info; unsigned short counters[16]; } sg; group--; if (group == 0) seq_printf(seq, "#%-5s: %-5s %-5s %-5s " "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", "group", "free", "frags", "first", "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + sizeof(struct ext4_group_info); err = ext4_mb_load_buddy(sb, group, &e4b); if (err) { seq_printf(seq, "#%-5lu: I/O error\n", group); return 0; } ext4_lock_group(sb, group); memcpy(&sg, ext4_get_group_info(sb, group), i); ext4_unlock_group(sb, group); ext4_mb_release_desc(&e4b); seq_printf(seq, "#%-5lu: %-5u %-5u %-5u [", group, sg.info.bb_free, sg.info.bb_fragments, sg.info.bb_first_free); for (i = 0; i <= 13; i++) seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? sg.info.bb_counters[i] : 0); seq_printf(seq, " ]\n"); return 0; } static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) { } static struct seq_operations ext4_mb_seq_groups_ops = { .start = ext4_mb_seq_groups_start, .next = ext4_mb_seq_groups_next, .stop = ext4_mb_seq_groups_stop, .show = ext4_mb_seq_groups_show, }; static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) { struct super_block *sb = PDE(inode)->data; int rc; rc = seq_open(file, &ext4_mb_seq_groups_ops); if (rc == 0) { struct seq_file *m = (struct seq_file *)file->private_data; m->private = sb; } return rc; } static struct file_operations ext4_mb_seq_groups_fops = { .owner = THIS_MODULE, .open = ext4_mb_seq_groups_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static void ext4_mb_history_release(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); remove_proc_entry("mb_groups", sbi->s_mb_proc); remove_proc_entry("mb_history", sbi->s_mb_proc); kfree(sbi->s_mb_history); } static void ext4_mb_history_init(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); int i; if (sbi->s_mb_proc != NULL) { proc_create_data("mb_history", S_IRUGO, sbi->s_mb_proc, &ext4_mb_seq_history_fops, sb); proc_create_data("mb_groups", S_IRUGO, sbi->s_mb_proc, &ext4_mb_seq_groups_fops, sb); } sbi->s_mb_history_max = 1000; sbi->s_mb_history_cur = 0; spin_lock_init(&sbi->s_mb_history_lock); i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history); sbi->s_mb_history = kzalloc(i, GFP_KERNEL); /* if we can't allocate history, then we simple won't use it */ } static noinline_for_stack void ext4_mb_store_history(struct ext4_allocation_context *ac) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); struct ext4_mb_history h; if (unlikely(sbi->s_mb_history == NULL)) return; if (!(ac->ac_op & sbi->s_mb_history_filter)) return; h.op = ac->ac_op; h.pid = current->pid; h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0; h.orig = ac->ac_o_ex; h.result = ac->ac_b_ex; h.flags = ac->ac_flags; h.found = ac->ac_found; h.groups = ac->ac_groups_scanned; h.cr = ac->ac_criteria; h.tail = ac->ac_tail; h.buddy = ac->ac_buddy; h.merged = 0; if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) { if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) h.merged = 1; h.goal = ac->ac_g_ex; h.result = ac->ac_f_ex; } spin_lock(&sbi->s_mb_history_lock); memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h)); if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max) sbi->s_mb_history_cur = 0; spin_unlock(&sbi->s_mb_history_lock); } #else #define ext4_mb_history_release(sb) #define ext4_mb_history_init(sb) #endif /* Create and initialize ext4_group_info data for the given group. */ int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, struct ext4_group_desc *desc) { int i, len; int metalen = 0; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_group_info **meta_group_info; /* * First check if this group is the first of a reserved block. * If it's true, we have to allocate a new table of pointers * to ext4_group_info structures */ if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb); meta_group_info = kmalloc(metalen, GFP_KERNEL); if (meta_group_info == NULL) { printk(KERN_ERR "EXT4-fs: can't allocate mem for a " "buddy group\n"); goto exit_meta_group_info; } sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = meta_group_info; } /* * calculate needed size. if change bb_counters size, * don't forget about ext4_mb_generate_buddy() */ len = offsetof(typeof(**meta_group_info), bb_counters[sb->s_blocksize_bits + 2]); meta_group_info = sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); meta_group_info[i] = kzalloc(len, GFP_KERNEL); if (meta_group_info[i] == NULL) { printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n"); goto exit_group_info; } set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(meta_group_info[i]->bb_state)); /* * initialize bb_free to be able to skip * empty groups without initialization */ if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { meta_group_info[i]->bb_free = ext4_free_blocks_after_init(sb, group, desc); } else { meta_group_info[i]->bb_free = le16_to_cpu(desc->bg_free_blocks_count); } INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); init_rwsem(&meta_group_info[i]->alloc_sem); meta_group_info[i]->bb_free_root.rb_node = NULL;; #ifdef DOUBLE_CHECK { struct buffer_head *bh; meta_group_info[i]->bb_bitmap = kmalloc(sb->s_blocksize, GFP_KERNEL); BUG_ON(meta_group_info[i]->bb_bitmap == NULL); bh = ext4_read_block_bitmap(sb, group); BUG_ON(bh == NULL); memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, sb->s_blocksize); put_bh(bh); } #endif return 0; exit_group_info: /* If a meta_group_info table has been allocated, release it now */ if (group % EXT4_DESC_PER_BLOCK(sb) == 0) kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); exit_meta_group_info: return -ENOMEM; } /* ext4_mb_add_groupinfo */ /* * Update an existing group. * This function is used for online resize */ void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add) { grp->bb_free += add; } static int ext4_mb_init_backend(struct super_block *sb) { ext4_group_t i; int metalen; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; int num_meta_group_infos; int num_meta_group_infos_max; int array_size; struct ext4_group_info **meta_group_info; struct ext4_group_desc *desc; /* This is the number of blocks used by GDT */ num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) >> EXT4_DESC_PER_BLOCK_BITS(sb); /* * This is the total number of blocks used by GDT including * the number of reserved blocks for GDT. * The s_group_info array is allocated with this value * to allow a clean online resize without a complex * manipulation of pointer. * The drawback is the unused memory when no resize * occurs but it's very low in terms of pages * (see comments below) * Need to handle this properly when META_BG resizing is allowed */ num_meta_group_infos_max = num_meta_group_infos + le16_to_cpu(es->s_reserved_gdt_blocks); /* * array_size is the size of s_group_info array. We round it * to the next power of two because this approximation is done * internally by kmalloc so we can have some more memory * for free here (e.g. may be used for META_BG resize). */ array_size = 1; while (array_size < sizeof(*sbi->s_group_info) * num_meta_group_infos_max) array_size = array_size << 1; /* An 8TB filesystem with 64-bit pointers requires a 4096 byte * kmalloc. A 128kb malloc should suffice for a 256TB filesystem. * So a two level scheme suffices for now. */ sbi->s_group_info = kmalloc(array_size, GFP_KERNEL); if (sbi->s_group_info == NULL) { printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n"); return -ENOMEM; } sbi->s_buddy_cache = new_inode(sb); if (sbi->s_buddy_cache == NULL) { printk(KERN_ERR "EXT4-fs: can't get new inode\n"); goto err_freesgi; } EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb); for (i = 0; i < num_meta_group_infos; i++) { if ((i + 1) == num_meta_group_infos) metalen = sizeof(*meta_group_info) * (sbi->s_groups_count - (i << EXT4_DESC_PER_BLOCK_BITS(sb))); meta_group_info = kmalloc(metalen, GFP_KERNEL); if (meta_group_info == NULL) { printk(KERN_ERR "EXT4-fs: can't allocate mem for a " "buddy group\n"); goto err_freemeta; } sbi->s_group_info[i] = meta_group_info; } for (i = 0; i < sbi->s_groups_count; i++) { desc = ext4_get_group_desc(sb, i, NULL); if (desc == NULL) { printk(KERN_ERR "EXT4-fs: can't read descriptor %lu\n", i); goto err_freebuddy; } if (ext4_mb_add_groupinfo(sb, i, desc) != 0) goto err_freebuddy; } return 0; err_freebuddy: while (i-- > 0) kfree(ext4_get_group_info(sb, i)); i = num_meta_group_infos; err_freemeta: while (i-- > 0) kfree(sbi->s_group_info[i]); iput(sbi->s_buddy_cache); err_freesgi: kfree(sbi->s_group_info); return -ENOMEM; } int ext4_mb_init(struct super_block *sb, int needs_recovery) { struct ext4_sb_info *sbi = EXT4_SB(sb); unsigned i, j; unsigned offset; unsigned max; int ret; if (!test_opt(sb, MBALLOC)) return 0; i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short); sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); if (sbi->s_mb_offsets == NULL) { clear_opt(sbi->s_mount_opt, MBALLOC); return -ENOMEM; } i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int); sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); if (sbi->s_mb_maxs == NULL) { clear_opt(sbi->s_mount_opt, MBALLOC); kfree(sbi->s_mb_maxs); return -ENOMEM; } /* order 0 is regular bitmap */ sbi->s_mb_maxs[0] = sb->s_blocksize << 3; sbi->s_mb_offsets[0] = 0; i = 1; offset = 0; max = sb->s_blocksize << 2; do { sbi->s_mb_offsets[i] = offset; sbi->s_mb_maxs[i] = max; offset += 1 << (sb->s_blocksize_bits - i); max = max >> 1; i++; } while (i <= sb->s_blocksize_bits + 1); /* init file for buddy data */ ret = ext4_mb_init_backend(sb); if (ret != 0) { clear_opt(sbi->s_mount_opt, MBALLOC); kfree(sbi->s_mb_offsets); kfree(sbi->s_mb_maxs); return ret; } spin_lock_init(&sbi->s_md_lock); INIT_LIST_HEAD(&sbi->s_active_transaction); INIT_LIST_HEAD(&sbi->s_closed_transaction); INIT_LIST_HEAD(&sbi->s_committed_transaction); spin_lock_init(&sbi->s_bal_lock); sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; sbi->s_mb_stats = MB_DEFAULT_STATS; sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT; sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC; i = sizeof(struct ext4_locality_group) * nr_cpu_ids; sbi->s_locality_groups = kmalloc(i, GFP_KERNEL); if (sbi->s_locality_groups == NULL) { clear_opt(sbi->s_mount_opt, MBALLOC); kfree(sbi->s_mb_offsets); kfree(sbi->s_mb_maxs); return -ENOMEM; } for (i = 0; i < nr_cpu_ids; i++) { struct ext4_locality_group *lg; lg = &sbi->s_locality_groups[i]; mutex_init(&lg->lg_mutex); for (j = 0; j < PREALLOC_TB_SIZE; j++) INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); spin_lock_init(&lg->lg_prealloc_lock); } ext4_mb_init_per_dev_proc(sb); ext4_mb_history_init(sb); printk("EXT4-fs: mballoc enabled\n"); return 0; } /* need to called with ext4 group lock (ext4_lock_group) */ static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) { struct ext4_prealloc_space *pa; struct list_head *cur, *tmp; int count = 0; list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); list_del(&pa->pa_group_list); count++; kmem_cache_free(ext4_pspace_cachep, pa); } if (count) mb_debug("mballoc: %u PAs left\n", count); } int ext4_mb_release(struct super_block *sb) { ext4_group_t i; int num_meta_group_infos; struct ext4_group_info *grinfo; struct ext4_sb_info *sbi = EXT4_SB(sb); if (!test_opt(sb, MBALLOC)) return 0; /* release freed, non-committed blocks */ spin_lock(&sbi->s_md_lock); list_splice_init(&sbi->s_closed_transaction, &sbi->s_committed_transaction); list_splice_init(&sbi->s_active_transaction, &sbi->s_committed_transaction); spin_unlock(&sbi->s_md_lock); ext4_mb_free_committed_blocks(sb); if (sbi->s_group_info) { for (i = 0; i < sbi->s_groups_count; i++) { grinfo = ext4_get_group_info(sb, i); #ifdef DOUBLE_CHECK kfree(grinfo->bb_bitmap); #endif ext4_lock_group(sb, i); ext4_mb_cleanup_pa(grinfo); ext4_unlock_group(sb, i); kfree(grinfo); } num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) >> EXT4_DESC_PER_BLOCK_BITS(sb); for (i = 0; i < num_meta_group_infos; i++) kfree(sbi->s_group_info[i]); kfree(sbi->s_group_info); } kfree(sbi->s_mb_offsets); kfree(sbi->s_mb_maxs); if (sbi->s_buddy_cache) iput(sbi->s_buddy_cache); if (sbi->s_mb_stats) { printk(KERN_INFO "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n", atomic_read(&sbi->s_bal_allocated), atomic_read(&sbi->s_bal_reqs), atomic_read(&sbi->s_bal_success)); printk(KERN_INFO "EXT4-fs: mballoc: %u extents scanned, %u goal hits, " "%u 2^N hits, %u breaks, %u lost\n", atomic_read(&sbi->s_bal_ex_scanned), atomic_read(&sbi->s_bal_goals), atomic_read(&sbi->s_bal_2orders), atomic_read(&sbi->s_bal_breaks), atomic_read(&sbi->s_mb_lost_chunks)); printk(KERN_INFO "EXT4-fs: mballoc: %lu generated and it took %Lu\n", sbi->s_mb_buddies_generated++, sbi->s_mb_generation_time); printk(KERN_INFO "EXT4-fs: mballoc: %u preallocated, %u discarded\n", atomic_read(&sbi->s_mb_preallocated), atomic_read(&sbi->s_mb_discarded)); } kfree(sbi->s_locality_groups); ext4_mb_history_release(sb); ext4_mb_destroy_per_dev_proc(sb); return 0; } static noinline_for_stack void ext4_mb_free_committed_blocks(struct super_block *sb) { struct ext4_buddy e4b; struct ext4_group_info *db; struct ext4_sb_info *sbi = EXT4_SB(sb); int err, count = 0, count2 = 0; struct ext4_free_data *entry; if (list_empty(&sbi->s_committed_transaction)) return; /* there is committed blocks to be freed yet */ do { /* get next array of blocks */ entry = NULL; spin_lock(&sbi->s_md_lock); if (!list_empty(&sbi->s_committed_transaction)) { entry = list_entry(sbi->s_committed_transaction.next, struct ext4_free_data, list); list_del(&entry->list); } spin_unlock(&sbi->s_md_lock); if (entry == NULL) break; mb_debug("gonna free %u blocks in group %lu (0x%p):", entry->count, entry->group, entry); err = ext4_mb_load_buddy(sb, entry->group, &e4b); /* we expect to find existing buddy because it's pinned */ BUG_ON(err != 0); db = e4b.bd_info; /* there are blocks to put in buddy to make them really free */ count += entry->count; count2++; ext4_lock_group(sb, entry->group); /* Take it out of per group rb tree */ rb_erase(&entry->node, &(db->bb_free_root)); mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count); if (!db->bb_free_root.rb_node) { /* No more items in the per group rb tree * balance refcounts from ext4_mb_free_metadata() */ page_cache_release(e4b.bd_buddy_page); page_cache_release(e4b.bd_bitmap_page); } ext4_unlock_group(sb, entry->group); kmem_cache_free(ext4_free_ext_cachep, entry); ext4_mb_release_desc(&e4b); } while (1); mb_debug("freed %u blocks in %u structures\n", count, count2); } #define EXT4_MB_STATS_NAME "stats" #define EXT4_MB_MAX_TO_SCAN_NAME "max_to_scan" #define EXT4_MB_MIN_TO_SCAN_NAME "min_to_scan" #define EXT4_MB_ORDER2_REQ "order2_req" #define EXT4_MB_STREAM_REQ "stream_req" #define EXT4_MB_GROUP_PREALLOC "group_prealloc" #define MB_PROC_FOPS(name) \ static int ext4_mb_##name##_proc_show(struct seq_file *m, void *v) \ { \ struct ext4_sb_info *sbi = m->private; \ \ seq_printf(m, "%ld\n", sbi->s_mb_##name); \ return 0; \ } \ \ static int ext4_mb_##name##_proc_open(struct inode *inode, struct file *file)\ { \ return single_open(file, ext4_mb_##name##_proc_show, PDE(inode)->data);\ } \ \ static ssize_t ext4_mb_##name##_proc_write(struct file *file, \ const char __user *buf, size_t cnt, loff_t *ppos) \ { \ struct ext4_sb_info *sbi = PDE(file->f_path.dentry->d_inode)->data;\ char str[32]; \ long value; \ if (cnt >= sizeof(str)) \ return -EINVAL; \ if (copy_from_user(str, buf, cnt)) \ return -EFAULT; \ value = simple_strtol(str, NULL, 0); \ if (value <= 0) \ return -ERANGE; \ sbi->s_mb_##name = value; \ return cnt; \ } \ \ static const struct file_operations ext4_mb_##name##_proc_fops = { \ .owner = THIS_MODULE, \ .open = ext4_mb_##name##_proc_open, \ .read = seq_read, \ .llseek = seq_lseek, \ .release = single_release, \ .write = ext4_mb_##name##_proc_write, \ }; MB_PROC_FOPS(stats); MB_PROC_FOPS(max_to_scan); MB_PROC_FOPS(min_to_scan); MB_PROC_FOPS(order2_reqs); MB_PROC_FOPS(stream_request); MB_PROC_FOPS(group_prealloc); #define MB_PROC_HANDLER(name, var) \ do { \ proc = proc_create_data(name, mode, sbi->s_mb_proc, \ &ext4_mb_##var##_proc_fops, sbi); \ if (proc == NULL) { \ printk(KERN_ERR "EXT4-fs: can't to create %s\n", name); \ goto err_out; \ } \ } while (0) static int ext4_mb_init_per_dev_proc(struct super_block *sb) { mode_t mode = S_IFREG | S_IRUGO | S_IWUSR; struct ext4_sb_info *sbi = EXT4_SB(sb); struct proc_dir_entry *proc; char devname[BDEVNAME_SIZE], *p; if (proc_root_ext4 == NULL) { sbi->s_mb_proc = NULL; return -EINVAL; } bdevname(sb->s_bdev, devname); p = devname; while ((p = strchr(p, '/'))) *p = '!'; sbi->s_mb_proc = proc_mkdir(devname, proc_root_ext4); if (!sbi->s_mb_proc) goto err_create_dir; MB_PROC_HANDLER(EXT4_MB_STATS_NAME, stats); MB_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, max_to_scan); MB_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, min_to_scan); MB_PROC_HANDLER(EXT4_MB_ORDER2_REQ, order2_reqs); MB_PROC_HANDLER(EXT4_MB_STREAM_REQ, stream_request); MB_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, group_prealloc); return 0; err_out: remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc); remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc); remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc); remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc); remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc); remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc); remove_proc_entry(devname, proc_root_ext4); sbi->s_mb_proc = NULL; err_create_dir: printk(KERN_ERR "EXT4-fs: Unable to create %s\n", devname); return -ENOMEM; } static int ext4_mb_destroy_per_dev_proc(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); char devname[BDEVNAME_SIZE], *p; if (sbi->s_mb_proc == NULL) return -EINVAL; bdevname(sb->s_bdev, devname); p = devname; while ((p = strchr(p, '/'))) *p = '!'; remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc); remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc); remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc); remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc); remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc); remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc); remove_proc_entry(devname, proc_root_ext4); return 0; } int __init init_ext4_mballoc(void) { ext4_pspace_cachep = kmem_cache_create("ext4_prealloc_space", sizeof(struct ext4_prealloc_space), 0, SLAB_RECLAIM_ACCOUNT, NULL); if (ext4_pspace_cachep == NULL) return -ENOMEM; ext4_ac_cachep = kmem_cache_create("ext4_alloc_context", sizeof(struct ext4_allocation_context), 0, SLAB_RECLAIM_ACCOUNT, NULL); if (ext4_ac_cachep == NULL) { kmem_cache_destroy(ext4_pspace_cachep); return -ENOMEM; } ext4_free_ext_cachep = kmem_cache_create("ext4_free_block_extents", sizeof(struct ext4_free_data), 0, SLAB_RECLAIM_ACCOUNT, NULL); if (ext4_free_ext_cachep == NULL) { kmem_cache_destroy(ext4_pspace_cachep); kmem_cache_destroy(ext4_ac_cachep); return -ENOMEM; } #ifdef CONFIG_PROC_FS proc_root_ext4 = proc_mkdir("fs/ext4", NULL); if (proc_root_ext4 == NULL) printk(KERN_ERR "EXT4-fs: Unable to create fs/ext4\n"); #endif return 0; } void exit_ext4_mballoc(void) { /* XXX: synchronize_rcu(); */ kmem_cache_destroy(ext4_pspace_cachep); kmem_cache_destroy(ext4_ac_cachep); #ifdef CONFIG_PROC_FS remove_proc_entry("fs/ext4", NULL); #endif kmem_cache_destroy(ext4_free_ext_cachep); } /* * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps * Returns 0 if success or error code */ static noinline_for_stack int ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, handle_t *handle) { struct buffer_head *bitmap_bh = NULL; struct ext4_super_block *es; struct ext4_group_desc *gdp; struct buffer_head *gdp_bh; struct ext4_sb_info *sbi; struct super_block *sb; ext4_fsblk_t block; int err, len; BUG_ON(ac->ac_status != AC_STATUS_FOUND); BUG_ON(ac->ac_b_ex.fe_len <= 0); sb = ac->ac_sb; sbi = EXT4_SB(sb); es = sbi->s_es; err = -EIO; bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); if (!bitmap_bh) goto out_err; err = ext4_journal_get_write_access(handle, bitmap_bh); if (err) goto out_err; err = -EIO; gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); if (!gdp) goto out_err; ext4_debug("using block group %lu(%d)\n", ac->ac_b_ex.fe_group, gdp->bg_free_blocks_count); err = ext4_journal_get_write_access(handle, gdp_bh); if (err) goto out_err; block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb) + ac->ac_b_ex.fe_start + le32_to_cpu(es->s_first_data_block); len = ac->ac_b_ex.fe_len; if (in_range(ext4_block_bitmap(sb, gdp), block, len) || in_range(ext4_inode_bitmap(sb, gdp), block, len) || in_range(block, ext4_inode_table(sb, gdp), EXT4_SB(sb)->s_itb_per_group) || in_range(block + len - 1, ext4_inode_table(sb, gdp), EXT4_SB(sb)->s_itb_per_group)) { ext4_error(sb, __func__, "Allocating block %llu in system zone of %lu group\n", block, ac->ac_b_ex.fe_group); /* File system mounted not to panic on error * Fix the bitmap and repeat the block allocation * We leak some of the blocks here. */ mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), bitmap_bh->b_data, ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len); err = ext4_journal_dirty_metadata(handle, bitmap_bh); if (!err) err = -EAGAIN; goto out_err; } #ifdef AGGRESSIVE_CHECK { int i; for (i = 0; i < ac->ac_b_ex.fe_len; i++) { BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, bitmap_bh->b_data)); } } #endif spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group)); mb_set_bits(NULL, bitmap_bh->b_data, ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len); if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); gdp->bg_free_blocks_count = cpu_to_le16(ext4_free_blocks_after_init(sb, ac->ac_b_ex.fe_group, gdp)); } le16_add_cpu(&gdp->bg_free_blocks_count, -ac->ac_b_ex.fe_len); gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp); spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group)); /* * free blocks account has already be reduced/reserved * at write_begin() time for delayed allocation * do not double accounting */ if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len); if (sbi->s_log_groups_per_flex) { ext4_group_t flex_group = ext4_flex_group(sbi, ac->ac_b_ex.fe_group); spin_lock(sb_bgl_lock(sbi, flex_group)); sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len; spin_unlock(sb_bgl_lock(sbi, flex_group)); } err = ext4_journal_dirty_metadata(handle, bitmap_bh); if (err) goto out_err; err = ext4_journal_dirty_metadata(handle, gdp_bh); out_err: sb->s_dirt = 1; brelse(bitmap_bh); return err; } /* * here we normalize request for locality group * Group request are normalized to s_strip size if we set the same via mount * option. If not we set it to s_mb_group_prealloc which can be configured via * /proc/fs/ext4//group_prealloc * * XXX: should we try to preallocate more than the group has now? */ static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) { struct super_block *sb = ac->ac_sb; struct ext4_locality_group *lg = ac->ac_lg; BUG_ON(lg == NULL); if (EXT4_SB(sb)->s_stripe) ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe; else ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; mb_debug("#%u: goal %u blocks for locality group\n", current->pid, ac->ac_g_ex.fe_len); } /* * Normalization means making request better in terms of * size and alignment */ static noinline_for_stack void ext4_mb_normalize_request(struct ext4_allocation_context *ac, struct ext4_allocation_request *ar) { int bsbits, max; ext4_lblk_t end; loff_t size, orig_size, start_off; ext4_lblk_t start, orig_start; struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); struct ext4_prealloc_space *pa; /* do normalize only data requests, metadata requests do not need preallocation */ if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) return; /* sometime caller may want exact blocks */ if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) return; /* caller may indicate that preallocation isn't * required (it's a tail, for example) */ if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) return; if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { ext4_mb_normalize_group_request(ac); return ; } bsbits = ac->ac_sb->s_blocksize_bits; /* first, let's learn actual file size * given current request is allocated */ size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; size = size << bsbits; if (size < i_size_read(ac->ac_inode)) size = i_size_read(ac->ac_inode); /* max size of free chunks */ max = 2 << bsbits; #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ (req <= (size) || max <= (chunk_size)) /* first, try to predict filesize */ /* XXX: should this table be tunable? */ start_off = 0; if (size <= 16 * 1024) { size = 16 * 1024; } else if (size <= 32 * 1024) { size = 32 * 1024; } else if (size <= 64 * 1024) { size = 64 * 1024; } else if (size <= 128 * 1024) { size = 128 * 1024; } else if (size <= 256 * 1024) { size = 256 * 1024; } else if (size <= 512 * 1024) { size = 512 * 1024; } else if (size <= 1024 * 1024) { size = 1024 * 1024; } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { start_off = ((loff_t)ac->ac_o_ex.fe_logical >> (21 - bsbits)) << 21; size = 2 * 1024 * 1024; } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { start_off = ((loff_t)ac->ac_o_ex.fe_logical >> (22 - bsbits)) << 22; size = 4 * 1024 * 1024; } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, (8<<20)>>bsbits, max, 8 * 1024)) { start_off = ((loff_t)ac->ac_o_ex.fe_logical >> (23 - bsbits)) << 23; size = 8 * 1024 * 1024; } else { start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; size = ac->ac_o_ex.fe_len << bsbits; } orig_size = size = size >> bsbits; orig_start = start = start_off >> bsbits; /* don't cover already allocated blocks in selected range */ if (ar->pleft && start <= ar->lleft) { size -= ar->lleft + 1 - start; start = ar->lleft + 1; } if (ar->pright && start + size - 1 >= ar->lright) size -= start + size - ar->lright; end = start + size; /* check we don't cross already preallocated blocks */ rcu_read_lock(); list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { unsigned long pa_end; if (pa->pa_deleted) continue; spin_lock(&pa->pa_lock); if (pa->pa_deleted) { spin_unlock(&pa->pa_lock); continue; } pa_end = pa->pa_lstart + pa->pa_len; /* PA must not overlap original request */ BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || ac->ac_o_ex.fe_logical < pa->pa_lstart)); /* skip PA normalized request doesn't overlap with */ if (pa->pa_lstart >= end) { spin_unlock(&pa->pa_lock); continue; } if (pa_end <= start) { spin_unlock(&pa->pa_lock); continue; } BUG_ON(pa->pa_lstart <= start && pa_end >= end); if (pa_end <= ac->ac_o_ex.fe_logical) { BUG_ON(pa_end < start); start = pa_end; } if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { BUG_ON(pa->pa_lstart > end); end = pa->pa_lstart; } spin_unlock(&pa->pa_lock); } rcu_read_unlock(); size = end - start; /* XXX: extra loop to check we really don't overlap preallocations */ rcu_read_lock(); list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { unsigned long pa_end; spin_lock(&pa->pa_lock); if (pa->pa_deleted == 0) { pa_end = pa->pa_lstart + pa->pa_len; BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); } spin_unlock(&pa->pa_lock); } rcu_read_unlock(); if (start + size <= ac->ac_o_ex.fe_logical && start > ac->ac_o_ex.fe_logical) { printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n", (unsigned long) start, (unsigned long) size, (unsigned long) ac->ac_o_ex.fe_logical); } BUG_ON(start + size <= ac->ac_o_ex.fe_logical && start > ac->ac_o_ex.fe_logical); BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); /* now prepare goal request */ /* XXX: is it better to align blocks WRT to logical * placement or satisfy big request as is */ ac->ac_g_ex.fe_logical = start; ac->ac_g_ex.fe_len = size; /* define goal start in order to merge */ if (ar->pright && (ar->lright == (start + size))) { /* merge to the right */ ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, &ac->ac_f_ex.fe_group, &ac->ac_f_ex.fe_start); ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; } if (ar->pleft && (ar->lleft + 1 == start)) { /* merge to the left */ ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, &ac->ac_f_ex.fe_group, &ac->ac_f_ex.fe_start); ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; } mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size, (unsigned) orig_size, (unsigned) start); } static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { atomic_inc(&sbi->s_bal_reqs); atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len) atomic_inc(&sbi->s_bal_success); atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) atomic_inc(&sbi->s_bal_goals); if (ac->ac_found > sbi->s_mb_max_to_scan) atomic_inc(&sbi->s_bal_breaks); } ext4_mb_store_history(ac); } /* * use blocks preallocated to inode */ static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa) { ext4_fsblk_t start; ext4_fsblk_t end; int len; /* found preallocated blocks, use them */ start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len); len = end - start; ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, &ac->ac_b_ex.fe_start); ac->ac_b_ex.fe_len = len; ac->ac_status = AC_STATUS_FOUND; ac->ac_pa = pa; BUG_ON(start < pa->pa_pstart); BUG_ON(start + len > pa->pa_pstart + pa->pa_len); BUG_ON(pa->pa_free < len); pa->pa_free -= len; mb_debug("use %llu/%u from inode pa %p\n", start, len, pa); } /* * use blocks preallocated to locality group */ static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa) { unsigned int len = ac->ac_o_ex.fe_len; ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, &ac->ac_b_ex.fe_group, &ac->ac_b_ex.fe_start); ac->ac_b_ex.fe_len = len; ac->ac_status = AC_STATUS_FOUND; ac->ac_pa = pa; /* we don't correct pa_pstart or pa_plen here to avoid * possible race when the group is being loaded concurrently * instead we correct pa later, after blocks are marked * in on-disk bitmap -- see ext4_mb_release_context() * Other CPUs are prevented from allocating from this pa by lg_mutex */ mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); } /* * Return the prealloc space that have minimal distance * from the goal block. @cpa is the prealloc * space that is having currently known minimal distance * from the goal block. */ static struct ext4_prealloc_space * ext4_mb_check_group_pa(ext4_fsblk_t goal_block, struct ext4_prealloc_space *pa, struct ext4_prealloc_space *cpa) { ext4_fsblk_t cur_distance, new_distance; if (cpa == NULL) { atomic_inc(&pa->pa_count); return pa; } cur_distance = abs(goal_block - cpa->pa_pstart); new_distance = abs(goal_block - pa->pa_pstart); if (cur_distance < new_distance) return cpa; /* drop the previous reference */ atomic_dec(&cpa->pa_count); atomic_inc(&pa->pa_count); return pa; } /* * search goal blocks in preallocated space */ static noinline_for_stack int ext4_mb_use_preallocated(struct ext4_allocation_context *ac) { int order, i; struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); struct ext4_locality_group *lg; struct ext4_prealloc_space *pa, *cpa = NULL; ext4_fsblk_t goal_block; /* only data can be preallocated */ if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) return 0; /* first, try per-file preallocation */ rcu_read_lock(); list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { /* all fields in this condition don't change, * so we can skip locking for them */ if (ac->ac_o_ex.fe_logical < pa->pa_lstart || ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len) continue; /* found preallocated blocks, use them */ spin_lock(&pa->pa_lock); if (pa->pa_deleted == 0 && pa->pa_free) { atomic_inc(&pa->pa_count); ext4_mb_use_inode_pa(ac, pa); spin_unlock(&pa->pa_lock); ac->ac_criteria = 10; rcu_read_unlock(); return 1; } spin_unlock(&pa->pa_lock); } rcu_read_unlock(); /* can we use group allocation? */ if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) return 0; /* inode may have no locality group for some reason */ lg = ac->ac_lg; if (lg == NULL) return 0; order = fls(ac->ac_o_ex.fe_len) - 1; if (order > PREALLOC_TB_SIZE - 1) /* The max size of hash table is PREALLOC_TB_SIZE */ order = PREALLOC_TB_SIZE - 1; goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) + ac->ac_g_ex.fe_start + le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block); /* * search for the prealloc space that is having * minimal distance from the goal block. */ for (i = order; i < PREALLOC_TB_SIZE; i++) { rcu_read_lock(); list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], pa_inode_list) { spin_lock(&pa->pa_lock); if (pa->pa_deleted == 0 && pa->pa_free >= ac->ac_o_ex.fe_len) { cpa = ext4_mb_check_group_pa(goal_block, pa, cpa); } spin_unlock(&pa->pa_lock); } rcu_read_unlock(); } if (cpa) { ext4_mb_use_group_pa(ac, cpa); ac->ac_criteria = 20; return 1; } return 0; } /* * the function goes through all block freed in the group * but not yet committed and marks them used in in-core bitmap. * buddy must be generated from this bitmap * Need to be called with ext4 group lock (ext4_lock_group) */ static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, ext4_group_t group) { struct rb_node *n; struct ext4_group_info *grp; struct ext4_free_data *entry; grp = ext4_get_group_info(sb, group); n = rb_first(&(grp->bb_free_root)); while (n) { entry = rb_entry(n, struct ext4_free_data, node); mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group), bitmap, entry->start_blk, entry->count); n = rb_next(n); } return; } /* * the function goes through all preallocation in this group and marks them * used in in-core bitmap. buddy must be generated from this bitmap * Need to be called with ext4 group lock (ext4_lock_group) */ static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, ext4_group_t group) { struct ext4_group_info *grp = ext4_get_group_info(sb, group); struct ext4_prealloc_space *pa; struct list_head *cur; ext4_group_t groupnr; ext4_grpblk_t start; int preallocated = 0; int count = 0; int len; /* all form of preallocation discards first load group, * so the only competing code is preallocation use. * we don't need any locking here * notice we do NOT ignore preallocations with pa_deleted * otherwise we could leave used blocks available for * allocation in buddy when concurrent ext4_mb_put_pa() * is dropping preallocation */ list_for_each(cur, &grp->bb_prealloc_list) { pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); spin_lock(&pa->pa_lock); ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &start); len = pa->pa_len; spin_unlock(&pa->pa_lock); if (unlikely(len == 0)) continue; BUG_ON(groupnr != group); mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group), bitmap, start, len); preallocated += len; count++; } mb_debug("prellocated %u for group %lu\n", preallocated, group); } static void ext4_mb_pa_callback(struct rcu_head *head) { struct ext4_prealloc_space *pa; pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); kmem_cache_free(ext4_pspace_cachep, pa); } /* * drops a reference to preallocated space descriptor * if this was the last reference and the space is consumed */ static void ext4_mb_put_pa(struct ext4_allocation_context *ac, struct super_block *sb, struct ext4_prealloc_space *pa) { unsigned long grp; if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) return; /* in this short window concurrent discard can set pa_deleted */ spin_lock(&pa->pa_lock); if (pa->pa_deleted == 1) { spin_unlock(&pa->pa_lock); return; } pa->pa_deleted = 1; spin_unlock(&pa->pa_lock); /* -1 is to protect from crossing allocation group */ ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL); /* * possible race: * * P1 (buddy init) P2 (regular allocation) * find block B in PA * copy on-disk bitmap to buddy * mark B in on-disk bitmap * drop PA from group * mark all PAs in buddy * * thus, P1 initializes buddy with B available. to prevent this * we make "copy" and "mark all PAs" atomic and serialize "drop PA" * against that pair */ ext4_lock_group(sb, grp); list_del(&pa->pa_group_list); ext4_unlock_group(sb, grp); spin_lock(pa->pa_obj_lock); list_del_rcu(&pa->pa_inode_list); spin_unlock(pa->pa_obj_lock); call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); } /* * creates new preallocated space for given inode */ static noinline_for_stack int ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) { struct super_block *sb = ac->ac_sb; struct ext4_prealloc_space *pa; struct ext4_group_info *grp; struct ext4_inode_info *ei; /* preallocate only when found space is larger then requested */ BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); BUG_ON(ac->ac_status != AC_STATUS_FOUND); BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); if (pa == NULL) return -ENOMEM; if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { int winl; int wins; int win; int offs; /* we can't allocate as much as normalizer wants. * so, found space must get proper lstart * to cover original request */ BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); /* we're limited by original request in that * logical block must be covered any way * winl is window we can move our chunk within */ winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; /* also, we should cover whole original request */ wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len; /* the smallest one defines real window */ win = min(winl, wins); offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len; if (offs && offs < win) win = offs; ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win; BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); } /* preallocation can change ac_b_ex, thus we store actually * allocated blocks for history */ ac->ac_f_ex = ac->ac_b_ex; pa->pa_lstart = ac->ac_b_ex.fe_logical; pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); pa->pa_len = ac->ac_b_ex.fe_len; pa->pa_free = pa->pa_len; atomic_set(&pa->pa_count, 1); spin_lock_init(&pa->pa_lock); pa->pa_deleted = 0; pa->pa_linear = 0; mb_debug("new inode pa %p: %llu/%u for %u\n", pa, pa->pa_pstart, pa->pa_len, pa->pa_lstart); ext4_mb_use_inode_pa(ac, pa); atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); ei = EXT4_I(ac->ac_inode); grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); pa->pa_obj_lock = &ei->i_prealloc_lock; pa->pa_inode = ac->ac_inode; ext4_lock_group(sb, ac->ac_b_ex.fe_group); list_add(&pa->pa_group_list, &grp->bb_prealloc_list); ext4_unlock_group(sb, ac->ac_b_ex.fe_group); spin_lock(pa->pa_obj_lock); list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); spin_unlock(pa->pa_obj_lock); return 0; } /* * creates new preallocated space for locality group inodes belongs to */ static noinline_for_stack int ext4_mb_new_group_pa(struct ext4_allocation_context *ac) { struct super_block *sb = ac->ac_sb; struct ext4_locality_group *lg; struct ext4_prealloc_space *pa; struct ext4_group_info *grp; /* preallocate only when found space is larger then requested */ BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); BUG_ON(ac->ac_status != AC_STATUS_FOUND); BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); BUG_ON(ext4_pspace_cachep == NULL); pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); if (pa == NULL) return -ENOMEM; /* preallocation can change ac_b_ex, thus we store actually * allocated blocks for history */ ac->ac_f_ex = ac->ac_b_ex; pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); pa->pa_lstart = pa->pa_pstart; pa->pa_len = ac->ac_b_ex.fe_len; pa->pa_free = pa->pa_len; atomic_set(&pa->pa_count, 1); spin_lock_init(&pa->pa_lock); INIT_LIST_HEAD(&pa->pa_inode_list); pa->pa_deleted = 0; pa->pa_linear = 1; mb_debug("new group pa %p: %llu/%u for %u\n", pa, pa->pa_pstart, pa->pa_len, pa->pa_lstart); ext4_mb_use_group_pa(ac, pa); atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); lg = ac->ac_lg; BUG_ON(lg == NULL); pa->pa_obj_lock = &lg->lg_prealloc_lock; pa->pa_inode = NULL; ext4_lock_group(sb, ac->ac_b_ex.fe_group); list_add(&pa->pa_group_list, &grp->bb_prealloc_list); ext4_unlock_group(sb, ac->ac_b_ex.fe_group); /* * We will later add the new pa to the right bucket * after updating the pa_free in ext4_mb_release_context */ return 0; } static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) { int err; if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) err = ext4_mb_new_group_pa(ac); else err = ext4_mb_new_inode_pa(ac); return err; } /* * finds all unused blocks in on-disk bitmap, frees them in * in-core bitmap and buddy. * @pa must be unlinked from inode and group lists, so that * nobody else can find/use it. * the caller MUST hold group/inode locks. * TODO: optimize the case when there are no in-core structures yet */ static noinline_for_stack int ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, struct ext4_prealloc_space *pa, struct ext4_allocation_context *ac) { struct super_block *sb = e4b->bd_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); unsigned long end; unsigned long next; ext4_group_t group; ext4_grpblk_t bit; sector_t start; int err = 0; int free = 0; BUG_ON(pa->pa_deleted == 0); ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); BUG_ON(group != e4b->bd_group && pa->pa_len != 0); end = bit + pa->pa_len; if (ac) { ac->ac_sb = sb; ac->ac_inode = pa->pa_inode; ac->ac_op = EXT4_MB_HISTORY_DISCARD; } while (bit < end) { bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); if (bit >= end) break; next = mb_find_next_bit(bitmap_bh->b_data, end, bit); start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit + le32_to_cpu(sbi->s_es->s_first_data_block); mb_debug(" free preallocated %u/%u in group %u\n", (unsigned) start, (unsigned) next - bit, (unsigned) group); free += next - bit; if (ac) { ac->ac_b_ex.fe_group = group; ac->ac_b_ex.fe_start = bit; ac->ac_b_ex.fe_len = next - bit; ac->ac_b_ex.fe_logical = 0; ext4_mb_store_history(ac); } mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); bit = next + 1; } if (free != pa->pa_free) { printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n", pa, (unsigned long) pa->pa_lstart, (unsigned long) pa->pa_pstart, (unsigned long) pa->pa_len); ext4_error(sb, __func__, "free %u, pa_free %u\n", free, pa->pa_free); /* * pa is already deleted so we use the value obtained * from the bitmap and continue. */ } atomic_add(free, &sbi->s_mb_discarded); return err; } static noinline_for_stack int ext4_mb_release_group_pa(struct ext4_buddy *e4b, struct ext4_prealloc_space *pa, struct ext4_allocation_context *ac) { struct super_block *sb = e4b->bd_sb; ext4_group_t group; ext4_grpblk_t bit; if (ac) ac->ac_op = EXT4_MB_HISTORY_DISCARD; BUG_ON(pa->pa_deleted == 0); ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); BUG_ON(group != e4b->bd_group && pa->pa_len != 0); mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); if (ac) { ac->ac_sb = sb; ac->ac_inode = NULL; ac->ac_b_ex.fe_group = group; ac->ac_b_ex.fe_start = bit; ac->ac_b_ex.fe_len = pa->pa_len; ac->ac_b_ex.fe_logical = 0; ext4_mb_store_history(ac); } return 0; } /* * releases all preallocations in given group * * first, we need to decide discard policy: * - when do we discard * 1) ENOSPC * - how many do we discard * 1) how many requested */ static noinline_for_stack int ext4_mb_discard_group_preallocations(struct super_block *sb, ext4_group_t group, int needed) { struct ext4_group_info *grp = ext4_get_group_info(sb, group); struct buffer_head *bitmap_bh = NULL; struct ext4_prealloc_space *pa, *tmp; struct ext4_allocation_context *ac; struct list_head list; struct ext4_buddy e4b; int err; int busy = 0; int free = 0; mb_debug("discard preallocation for group %lu\n", group); if (list_empty(&grp->bb_prealloc_list)) return 0; bitmap_bh = ext4_read_block_bitmap(sb, group); if (bitmap_bh == NULL) { ext4_error(sb, __func__, "Error in reading block " "bitmap for %lu\n", group); return 0; } err = ext4_mb_load_buddy(sb, group, &e4b); if (err) { ext4_error(sb, __func__, "Error in loading buddy " "information for %lu\n", group); put_bh(bitmap_bh); return 0; } if (needed == 0) needed = EXT4_BLOCKS_PER_GROUP(sb) + 1; INIT_LIST_HEAD(&list); ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); repeat: ext4_lock_group(sb, group); list_for_each_entry_safe(pa, tmp, &grp->bb_prealloc_list, pa_group_list) { spin_lock(&pa->pa_lock); if (atomic_read(&pa->pa_count)) { spin_unlock(&pa->pa_lock); busy = 1; continue; } if (pa->pa_deleted) { spin_unlock(&pa->pa_lock); continue; } /* seems this one can be freed ... */ pa->pa_deleted = 1; /* we can trust pa_free ... */ free += pa->pa_free; spin_unlock(&pa->pa_lock); list_del(&pa->pa_group_list); list_add(&pa->u.pa_tmp_list, &list); } /* if we still need more blocks and some PAs were used, try again */ if (free < needed && busy) { busy = 0; ext4_unlock_group(sb, group); /* * Yield the CPU here so that we don't get soft lockup * in non preempt case. */ yield(); goto repeat; } /* found anything to free? */ if (list_empty(&list)) { BUG_ON(free != 0); goto out; } /* now free all selected PAs */ list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { /* remove from object (inode or locality group) */ spin_lock(pa->pa_obj_lock); list_del_rcu(&pa->pa_inode_list); spin_unlock(pa->pa_obj_lock); if (pa->pa_linear) ext4_mb_release_group_pa(&e4b, pa, ac); else ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac); list_del(&pa->u.pa_tmp_list); call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); } out: ext4_unlock_group(sb, group); if (ac) kmem_cache_free(ext4_ac_cachep, ac); ext4_mb_release_desc(&e4b); put_bh(bitmap_bh); return free; } /* * releases all non-used preallocated blocks for given inode * * It's important to discard preallocations under i_data_sem * We don't want another block to be served from the prealloc * space when we are discarding the inode prealloc space. * * FIXME!! Make sure it is valid at all the call sites */ void ext4_mb_discard_inode_preallocations(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct super_block *sb = inode->i_sb; struct buffer_head *bitmap_bh = NULL; struct ext4_prealloc_space *pa, *tmp; struct ext4_allocation_context *ac; ext4_group_t group = 0; struct list_head list; struct ext4_buddy e4b; int err; if (!test_opt(sb, MBALLOC) || !S_ISREG(inode->i_mode)) { /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ return; } mb_debug("discard preallocation for inode %lu\n", inode->i_ino); INIT_LIST_HEAD(&list); ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); repeat: /* first, collect all pa's in the inode */ spin_lock(&ei->i_prealloc_lock); while (!list_empty(&ei->i_prealloc_list)) { pa = list_entry(ei->i_prealloc_list.next, struct ext4_prealloc_space, pa_inode_list); BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); spin_lock(&pa->pa_lock); if (atomic_read(&pa->pa_count)) { /* this shouldn't happen often - nobody should * use preallocation while we're discarding it */ spin_unlock(&pa->pa_lock); spin_unlock(&ei->i_prealloc_lock); printk(KERN_ERR "uh-oh! used pa while discarding\n"); WARN_ON(1); schedule_timeout_uninterruptible(HZ); goto repeat; } if (pa->pa_deleted == 0) { pa->pa_deleted = 1; spin_unlock(&pa->pa_lock); list_del_rcu(&pa->pa_inode_list); list_add(&pa->u.pa_tmp_list, &list); continue; } /* someone is deleting pa right now */ spin_unlock(&pa->pa_lock); spin_unlock(&ei->i_prealloc_lock); /* we have to wait here because pa_deleted * doesn't mean pa is already unlinked from * the list. as we might be called from * ->clear_inode() the inode will get freed * and concurrent thread which is unlinking * pa from inode's list may access already * freed memory, bad-bad-bad */ /* XXX: if this happens too often, we can * add a flag to force wait only in case * of ->clear_inode(), but not in case of * regular truncate */ schedule_timeout_uninterruptible(HZ); goto repeat; } spin_unlock(&ei->i_prealloc_lock); list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { BUG_ON(pa->pa_linear != 0); ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); err = ext4_mb_load_buddy(sb, group, &e4b); if (err) { ext4_error(sb, __func__, "Error in loading buddy " "information for %lu\n", group); continue; } bitmap_bh = ext4_read_block_bitmap(sb, group); if (bitmap_bh == NULL) { ext4_error(sb, __func__, "Error in reading block " "bitmap for %lu\n", group); ext4_mb_release_desc(&e4b); continue; } ext4_lock_group(sb, group); list_del(&pa->pa_group_list); ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac); ext4_unlock_group(sb, group); ext4_mb_release_desc(&e4b); put_bh(bitmap_bh); list_del(&pa->u.pa_tmp_list); call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); } if (ac) kmem_cache_free(ext4_ac_cachep, ac); } /* * finds all preallocated spaces and return blocks being freed to them * if preallocated space becomes full (no block is used from the space) * then the function frees space in buddy * XXX: at the moment, truncate (which is the only way to free blocks) * discards all preallocations */ static void ext4_mb_return_to_preallocation(struct inode *inode, struct ext4_buddy *e4b, sector_t block, int count) { BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list)); } #ifdef MB_DEBUG static void ext4_mb_show_ac(struct ext4_allocation_context *ac) { struct super_block *sb = ac->ac_sb; ext4_group_t i; printk(KERN_ERR "EXT4-fs: Can't allocate:" " Allocation context details:\n"); printk(KERN_ERR "EXT4-fs: status %d flags %d\n", ac->ac_status, ac->ac_flags); printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, " "best %lu/%lu/%lu@%lu cr %d\n", (unsigned long)ac->ac_o_ex.fe_group, (unsigned long)ac->ac_o_ex.fe_start, (unsigned long)ac->ac_o_ex.fe_len, (unsigned long)ac->ac_o_ex.fe_logical, (unsigned long)ac->ac_g_ex.fe_group, (unsigned long)ac->ac_g_ex.fe_start, (unsigned long)ac->ac_g_ex.fe_len, (unsigned long)ac->ac_g_ex.fe_logical, (unsigned long)ac->ac_b_ex.fe_group, (unsigned long)ac->ac_b_ex.fe_start, (unsigned long)ac->ac_b_ex.fe_len, (unsigned long)ac->ac_b_ex.fe_logical, (int)ac->ac_criteria); printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned, ac->ac_found); printk(KERN_ERR "EXT4-fs: groups: \n"); for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) { struct ext4_group_info *grp = ext4_get_group_info(sb, i); struct ext4_prealloc_space *pa; ext4_grpblk_t start; struct list_head *cur; ext4_lock_group(sb, i); list_for_each(cur, &grp->bb_prealloc_list) { pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); spin_lock(&pa->pa_lock); ext4_get_group_no_and_offset(sb, pa->pa_pstart, NULL, &start); spin_unlock(&pa->pa_lock); printk(KERN_ERR "PA:%lu:%d:%u \n", i, start, pa->pa_len); } ext4_unlock_group(sb, i); if (grp->bb_free == 0) continue; printk(KERN_ERR "%lu: %d/%d \n", i, grp->bb_free, grp->bb_fragments); } printk(KERN_ERR "\n"); } #else static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) { return; } #endif /* * We use locality group preallocation for small size file. The size of the * file is determined by the current size or the resulting size after * allocation which ever is larger * * One can tune this size via /proc/fs/ext4//stream_req */ static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) { struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); int bsbits = ac->ac_sb->s_blocksize_bits; loff_t size, isize; if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) return; size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; isize = i_size_read(ac->ac_inode) >> bsbits; size = max(size, isize); /* don't use group allocation for large files */ if (size >= sbi->s_mb_stream_request) return; if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) return; BUG_ON(ac->ac_lg != NULL); /* * locality group prealloc space are per cpu. The reason for having * per cpu locality group is to reduce the contention between block * request from multiple CPUs. */ ac->ac_lg = &sbi->s_locality_groups[get_cpu()]; put_cpu(); /* we're going to use group allocation */ ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; /* serialize all allocations in the group */ mutex_lock(&ac->ac_lg->lg_mutex); } static noinline_for_stack int ext4_mb_initialize_context(struct ext4_allocation_context *ac, struct ext4_allocation_request *ar) { struct super_block *sb = ar->inode->i_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; ext4_group_t group; unsigned long len; unsigned long goal; ext4_grpblk_t block; /* we can't allocate > group size */ len = ar->len; /* just a dirty hack to filter too big requests */ if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10) len = EXT4_BLOCKS_PER_GROUP(sb) - 10; /* start searching from the goal */ goal = ar->goal; if (goal < le32_to_cpu(es->s_first_data_block) || goal >= ext4_blocks_count(es)) goal = le32_to_cpu(es->s_first_data_block); ext4_get_group_no_and_offset(sb, goal, &group, &block); /* set up allocation goals */ ac->ac_b_ex.fe_logical = ar->logical; ac->ac_b_ex.fe_group = 0; ac->ac_b_ex.fe_start = 0; ac->ac_b_ex.fe_len = 0; ac->ac_status = AC_STATUS_CONTINUE; ac->ac_groups_scanned = 0; ac->ac_ex_scanned = 0; ac->ac_found = 0; ac->ac_sb = sb; ac->ac_inode = ar->inode; ac->ac_o_ex.fe_logical = ar->logical; ac->ac_o_ex.fe_group = group; ac->ac_o_ex.fe_start = block; ac->ac_o_ex.fe_len = len; ac->ac_g_ex.fe_logical = ar->logical; ac->ac_g_ex.fe_group = group; ac->ac_g_ex.fe_start = block; ac->ac_g_ex.fe_len = len; ac->ac_f_ex.fe_len = 0; ac->ac_flags = ar->flags; ac->ac_2order = 0; ac->ac_criteria = 0; ac->ac_pa = NULL; ac->ac_bitmap_page = NULL; ac->ac_buddy_page = NULL; ac->alloc_semp = NULL; ac->ac_lg = NULL; /* we have to define context: we'll we work with a file or * locality group. this is a policy, actually */ ext4_mb_group_or_file(ac); mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " "left: %u/%u, right %u/%u to %swritable\n", (unsigned) ar->len, (unsigned) ar->logical, (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, (unsigned) ar->lleft, (unsigned) ar->pleft, (unsigned) ar->lright, (unsigned) ar->pright, atomic_read(&ar->inode->i_writecount) ? "" : "non-"); return 0; } static noinline_for_stack void ext4_mb_discard_lg_preallocations(struct super_block *sb, struct ext4_locality_group *lg, int order, int total_entries) { ext4_group_t group = 0; struct ext4_buddy e4b; struct list_head discard_list; struct ext4_prealloc_space *pa, *tmp; struct ext4_allocation_context *ac; mb_debug("discard locality group preallocation\n"); INIT_LIST_HEAD(&discard_list); ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); spin_lock(&lg->lg_prealloc_lock); list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], pa_inode_list) { spin_lock(&pa->pa_lock); if (atomic_read(&pa->pa_count)) { /* * This is the pa that we just used * for block allocation. So don't * free that */ spin_unlock(&pa->pa_lock); continue; } if (pa->pa_deleted) { spin_unlock(&pa->pa_lock); continue; } /* only lg prealloc space */ BUG_ON(!pa->pa_linear); /* seems this one can be freed ... */ pa->pa_deleted = 1; spin_unlock(&pa->pa_lock); list_del_rcu(&pa->pa_inode_list); list_add(&pa->u.pa_tmp_list, &discard_list); total_entries--; if (total_entries <= 5) { /* * we want to keep only 5 entries * allowing it to grow to 8. This * mak sure we don't call discard * soon for this list. */ break; } } spin_unlock(&lg->lg_prealloc_lock); list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); if (ext4_mb_load_buddy(sb, group, &e4b)) { ext4_error(sb, __func__, "Error in loading buddy " "information for %lu\n", group); continue; } ext4_lock_group(sb, group); list_del(&pa->pa_group_list); ext4_mb_release_group_pa(&e4b, pa, ac); ext4_unlock_group(sb, group); ext4_mb_release_desc(&e4b); list_del(&pa->u.pa_tmp_list); call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); } if (ac) kmem_cache_free(ext4_ac_cachep, ac); } /* * We have incremented pa_count. So it cannot be freed at this * point. Also we hold lg_mutex. So no parallel allocation is * possible from this lg. That means pa_free cannot be updated. * * A parallel ext4_mb_discard_group_preallocations is possible. * which can cause the lg_prealloc_list to be updated. */ static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) { int order, added = 0, lg_prealloc_count = 1; struct super_block *sb = ac->ac_sb; struct ext4_locality_group *lg = ac->ac_lg; struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; order = fls(pa->pa_free) - 1; if (order > PREALLOC_TB_SIZE - 1) /* The max size of hash table is PREALLOC_TB_SIZE */ order = PREALLOC_TB_SIZE - 1; /* Add the prealloc space to lg */ rcu_read_lock(); list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], pa_inode_list) { spin_lock(&tmp_pa->pa_lock); if (tmp_pa->pa_deleted) { spin_unlock(&pa->pa_lock); continue; } if (!added && pa->pa_free < tmp_pa->pa_free) { /* Add to the tail of the previous entry */ list_add_tail_rcu(&pa->pa_inode_list, &tmp_pa->pa_inode_list); added = 1; /* * we want to count the total * number of entries in the list */ } spin_unlock(&tmp_pa->pa_lock); lg_prealloc_count++; } if (!added) list_add_tail_rcu(&pa->pa_inode_list, &lg->lg_prealloc_list[order]); rcu_read_unlock(); /* Now trim the list to be not more than 8 elements */ if (lg_prealloc_count > 8) { ext4_mb_discard_lg_preallocations(sb, lg, order, lg_prealloc_count); return; } return ; } /* * release all resource we used in allocation */ static int ext4_mb_release_context(struct ext4_allocation_context *ac) { struct ext4_prealloc_space *pa = ac->ac_pa; if (pa) { if (pa->pa_linear) { /* see comment in ext4_mb_use_group_pa() */ spin_lock(&pa->pa_lock); pa->pa_pstart += ac->ac_b_ex.fe_len; pa->pa_lstart += ac->ac_b_ex.fe_len; pa->pa_free -= ac->ac_b_ex.fe_len; pa->pa_len -= ac->ac_b_ex.fe_len; spin_unlock(&pa->pa_lock); /* * We want to add the pa to the right bucket. * Remove it from the list and while adding * make sure the list to which we are adding * doesn't grow big. */ if (likely(pa->pa_free)) { spin_lock(pa->pa_obj_lock); list_del_rcu(&pa->pa_inode_list); spin_unlock(pa->pa_obj_lock); ext4_mb_add_n_trim(ac); } } ext4_mb_put_pa(ac, ac->ac_sb, pa); } if (ac->alloc_semp) up_read(ac->alloc_semp); if (ac->ac_bitmap_page) page_cache_release(ac->ac_bitmap_page); if (ac->ac_buddy_page) page_cache_release(ac->ac_buddy_page); if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) mutex_unlock(&ac->ac_lg->lg_mutex); ext4_mb_collect_stats(ac); return 0; } static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) { ext4_group_t i; int ret; int freed = 0; for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) { ret = ext4_mb_discard_group_preallocations(sb, i, needed); freed += ret; needed -= ret; } return freed; } /* * Main entry point into mballoc to allocate blocks * it tries to use preallocation first, then falls back * to usual allocation */ ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, struct ext4_allocation_request *ar, int *errp) { struct ext4_allocation_context *ac = NULL; struct ext4_sb_info *sbi; struct super_block *sb; ext4_fsblk_t block = 0; int freed; int inquota; sb = ar->inode->i_sb; sbi = EXT4_SB(sb); if (!test_opt(sb, MBALLOC)) { block = ext4_old_new_blocks(handle, ar->inode, ar->goal, &(ar->len), errp); return block; } if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) { /* * With delalloc we already reserved the blocks */ ar->len = ext4_has_free_blocks(sbi, ar->len); } if (ar->len == 0) { *errp = -ENOSPC; return 0; } while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) { ar->flags |= EXT4_MB_HINT_NOPREALLOC; ar->len--; } if (ar->len == 0) { *errp = -EDQUOT; return 0; } inquota = ar->len; if (EXT4_I(ar->inode)->i_delalloc_reserved_flag) ar->flags |= EXT4_MB_DELALLOC_RESERVED; ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); if (!ac) { ar->len = 0; *errp = -ENOMEM; goto out1; } ext4_mb_poll_new_transaction(sb, handle); *errp = ext4_mb_initialize_context(ac, ar); if (*errp) { ar->len = 0; goto out2; } ac->ac_op = EXT4_MB_HISTORY_PREALLOC; if (!ext4_mb_use_preallocated(ac)) { ac->ac_op = EXT4_MB_HISTORY_ALLOC; ext4_mb_normalize_request(ac, ar); repeat: /* allocate space in core */ ext4_mb_regular_allocator(ac); /* as we've just preallocated more space than * user requested orinally, we store allocated * space in a special descriptor */ if (ac->ac_status == AC_STATUS_FOUND && ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) ext4_mb_new_preallocation(ac); } if (likely(ac->ac_status == AC_STATUS_FOUND)) { *errp = ext4_mb_mark_diskspace_used(ac, handle); if (*errp == -EAGAIN) { /* * drop the reference that we took * in ext4_mb_use_best_found */ ext4_mb_release_context(ac); ac->ac_b_ex.fe_group = 0; ac->ac_b_ex.fe_start = 0; ac->ac_b_ex.fe_len = 0; ac->ac_status = AC_STATUS_CONTINUE; goto repeat; } else if (*errp) { ac->ac_b_ex.fe_len = 0; ar->len = 0; ext4_mb_show_ac(ac); } else { block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); ar->len = ac->ac_b_ex.fe_len; } } else { freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); if (freed) goto repeat; *errp = -ENOSPC; ac->ac_b_ex.fe_len = 0; ar->len = 0; ext4_mb_show_ac(ac); } ext4_mb_release_context(ac); out2: kmem_cache_free(ext4_ac_cachep, ac); out1: if (ar->len < inquota) DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len); return block; } static void ext4_mb_poll_new_transaction(struct super_block *sb, handle_t *handle) { struct ext4_sb_info *sbi = EXT4_SB(sb); if (sbi->s_last_transaction == handle->h_transaction->t_tid) return; /* new transaction! time to close last one and free blocks for * committed transaction. we know that only transaction can be * active, so previos transaction can be being logged and we * know that transaction before previous is known to be already * logged. this means that now we may free blocks freed in all * transactions before previous one. hope I'm clear enough ... */ spin_lock(&sbi->s_md_lock); if (sbi->s_last_transaction != handle->h_transaction->t_tid) { mb_debug("new transaction %lu, old %lu\n", (unsigned long) handle->h_transaction->t_tid, (unsigned long) sbi->s_last_transaction); list_splice_init(&sbi->s_closed_transaction, &sbi->s_committed_transaction); list_splice_init(&sbi->s_active_transaction, &sbi->s_closed_transaction); sbi->s_last_transaction = handle->h_transaction->t_tid; } spin_unlock(&sbi->s_md_lock); ext4_mb_free_committed_blocks(sb); } /* * We can merge two free data extents only if the physical blocks * are contiguous, AND the extents were freed by the same transaction, * AND the blocks are associated with the same group. */ static int can_merge(struct ext4_free_data *entry1, struct ext4_free_data *entry2) { if ((entry1->t_tid == entry2->t_tid) && (entry1->group == entry2->group) && ((entry1->start_blk + entry1->count) == entry2->start_blk)) return 1; return 0; } static noinline_for_stack int ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, struct ext4_free_data *new_entry) { ext4_grpblk_t block; struct ext4_free_data *entry; struct ext4_group_info *db = e4b->bd_info; struct super_block *sb = e4b->bd_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); struct rb_node **n = &db->bb_free_root.rb_node, *node; struct rb_node *parent = NULL, *new_node; BUG_ON(e4b->bd_bitmap_page == NULL); BUG_ON(e4b->bd_buddy_page == NULL); new_node = &new_entry->node; block = new_entry->start_blk; if (!*n) { /* first free block exent. We need to protect buddy cache from being freed, * otherwise we'll refresh it from * on-disk bitmap and lose not-yet-available * blocks */ page_cache_get(e4b->bd_buddy_page); page_cache_get(e4b->bd_bitmap_page); } while (*n) { parent = *n; entry = rb_entry(parent, struct ext4_free_data, node); if (block < entry->start_blk) n = &(*n)->rb_left; else if (block >= (entry->start_blk + entry->count)) n = &(*n)->rb_right; else { ext4_error(sb, __func__, "Double free of blocks %d (%d %d)\n", block, entry->start_blk, entry->count); return 0; } } rb_link_node(new_node, parent, n); rb_insert_color(new_node, &db->bb_free_root); /* Now try to see the extent can be merged to left and right */ node = rb_prev(new_node); if (node) { entry = rb_entry(node, struct ext4_free_data, node); if (can_merge(entry, new_entry)) { new_entry->start_blk = entry->start_blk; new_entry->count += entry->count; rb_erase(node, &(db->bb_free_root)); spin_lock(&sbi->s_md_lock); list_del(&entry->list); spin_unlock(&sbi->s_md_lock); kmem_cache_free(ext4_free_ext_cachep, entry); } } node = rb_next(new_node); if (node) { entry = rb_entry(node, struct ext4_free_data, node); if (can_merge(new_entry, entry)) { new_entry->count += entry->count; rb_erase(node, &(db->bb_free_root)); spin_lock(&sbi->s_md_lock); list_del(&entry->list); spin_unlock(&sbi->s_md_lock); kmem_cache_free(ext4_free_ext_cachep, entry); } } /* Add the extent to active_transaction list */ spin_lock(&sbi->s_md_lock); list_add(&new_entry->list, &sbi->s_active_transaction); spin_unlock(&sbi->s_md_lock); return 0; } /* * Main entry point into mballoc to free blocks */ void ext4_mb_free_blocks(handle_t *handle, struct inode *inode, unsigned long block, unsigned long count, int metadata, unsigned long *freed) { struct buffer_head *bitmap_bh = NULL; struct super_block *sb = inode->i_sb; struct ext4_allocation_context *ac = NULL; struct ext4_group_desc *gdp; struct ext4_super_block *es; unsigned long overflow; ext4_grpblk_t bit; struct buffer_head *gd_bh; ext4_group_t block_group; struct ext4_sb_info *sbi; struct ext4_buddy e4b; int err = 0; int ret; *freed = 0; ext4_mb_poll_new_transaction(sb, handle); sbi = EXT4_SB(sb); es = EXT4_SB(sb)->s_es; if (block < le32_to_cpu(es->s_first_data_block) || block + count < block || block + count > ext4_blocks_count(es)) { ext4_error(sb, __func__, "Freeing blocks not in datazone - " "block = %lu, count = %lu", block, count); goto error_return; } ext4_debug("freeing block %lu\n", block); ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); if (ac) { ac->ac_op = EXT4_MB_HISTORY_FREE; ac->ac_inode = inode; ac->ac_sb = sb; } do_more: overflow = 0; ext4_get_group_no_and_offset(sb, block, &block_group, &bit); /* * Check to see if we are freeing blocks across a group * boundary. */ if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb); count -= overflow; } bitmap_bh = ext4_read_block_bitmap(sb, block_group); if (!bitmap_bh) { err = -EIO; goto error_return; } gdp = ext4_get_group_desc(sb, block_group, &gd_bh); if (!gdp) { err = -EIO; goto error_return; } if (in_range(ext4_block_bitmap(sb, gdp), block, count) || in_range(ext4_inode_bitmap(sb, gdp), block, count) || in_range(block, ext4_inode_table(sb, gdp), EXT4_SB(sb)->s_itb_per_group) || in_range(block + count - 1, ext4_inode_table(sb, gdp), EXT4_SB(sb)->s_itb_per_group)) { ext4_error(sb, __func__, "Freeing blocks in system zone - " "Block = %lu, count = %lu", block, count); /* err = 0. ext4_std_error should be a no op */ goto error_return; } BUFFER_TRACE(bitmap_bh, "getting write access"); err = ext4_journal_get_write_access(handle, bitmap_bh); if (err) goto error_return; /* * We are about to modify some metadata. Call the journal APIs * to unshare ->b_data if a currently-committing transaction is * using it */ BUFFER_TRACE(gd_bh, "get_write_access"); err = ext4_journal_get_write_access(handle, gd_bh); if (err) goto error_return; #ifdef AGGRESSIVE_CHECK { int i; for (i = 0; i < count; i++) BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); } #endif if (ac) { ac->ac_b_ex.fe_group = block_group; ac->ac_b_ex.fe_start = bit; ac->ac_b_ex.fe_len = count; ext4_mb_store_history(ac); } err = ext4_mb_load_buddy(sb, block_group, &e4b); if (err) goto error_return; if (metadata) { struct ext4_free_data *new_entry; /* * blocks being freed are metadata. these blocks shouldn't * be used until this transaction is committed */ new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS); new_entry->start_blk = bit; new_entry->group = block_group; new_entry->count = count; new_entry->t_tid = handle->h_transaction->t_tid; ext4_lock_group(sb, block_group); mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data, bit, count); ext4_mb_free_metadata(handle, &e4b, new_entry); ext4_unlock_group(sb, block_group); } else { ext4_lock_group(sb, block_group); /* need to update group_info->bb_free and bitmap * with group lock held. generate_buddy look at * them with group lock_held */ mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data, bit, count); mb_free_blocks(inode, &e4b, bit, count); ext4_mb_return_to_preallocation(inode, &e4b, block, count); ext4_unlock_group(sb, block_group); } spin_lock(sb_bgl_lock(sbi, block_group)); le16_add_cpu(&gdp->bg_free_blocks_count, count); gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp); spin_unlock(sb_bgl_lock(sbi, block_group)); percpu_counter_add(&sbi->s_freeblocks_counter, count); if (sbi->s_log_groups_per_flex) { ext4_group_t flex_group = ext4_flex_group(sbi, block_group); spin_lock(sb_bgl_lock(sbi, flex_group)); sbi->s_flex_groups[flex_group].free_blocks += count; spin_unlock(sb_bgl_lock(sbi, flex_group)); } ext4_mb_release_desc(&e4b); *freed += count; /* We dirtied the bitmap block */ BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); err = ext4_journal_dirty_metadata(handle, bitmap_bh); /* And the group descriptor block */ BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); ret = ext4_journal_dirty_metadata(handle, gd_bh); if (!err) err = ret; if (overflow && !err) { block += count; count = overflow; put_bh(bitmap_bh); goto do_more; } sb->s_dirt = 1; error_return: brelse(bitmap_bh); ext4_std_error(sb, err); if (ac) kmem_cache_free(ext4_ac_cachep, ac); return; }