/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "locking.h" #include "ref-cache.h" static int total_trans = 0; extern struct kmem_cache *btrfs_trans_handle_cachep; extern struct kmem_cache *btrfs_transaction_cachep; #define BTRFS_ROOT_TRANS_TAG 0 struct dirty_root { struct list_head list; struct btrfs_root *root; struct btrfs_root *latest_root; }; static noinline void put_transaction(struct btrfs_transaction *transaction) { WARN_ON(transaction->use_count == 0); transaction->use_count--; if (transaction->use_count == 0) { WARN_ON(total_trans == 0); total_trans--; list_del_init(&transaction->list); memset(transaction, 0, sizeof(*transaction)); kmem_cache_free(btrfs_transaction_cachep, transaction); } } static noinline int join_transaction(struct btrfs_root *root) { struct btrfs_transaction *cur_trans; cur_trans = root->fs_info->running_transaction; if (!cur_trans) { cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); total_trans++; BUG_ON(!cur_trans); root->fs_info->generation++; root->fs_info->last_alloc = 0; root->fs_info->last_data_alloc = 0; cur_trans->num_writers = 1; cur_trans->num_joined = 0; cur_trans->transid = root->fs_info->generation; init_waitqueue_head(&cur_trans->writer_wait); init_waitqueue_head(&cur_trans->commit_wait); cur_trans->in_commit = 0; cur_trans->blocked = 0; cur_trans->use_count = 1; cur_trans->commit_done = 0; cur_trans->start_time = get_seconds(); INIT_LIST_HEAD(&cur_trans->pending_snapshots); list_add_tail(&cur_trans->list, &root->fs_info->trans_list); extent_io_tree_init(&cur_trans->dirty_pages, root->fs_info->btree_inode->i_mapping, GFP_NOFS); spin_lock(&root->fs_info->new_trans_lock); root->fs_info->running_transaction = cur_trans; spin_unlock(&root->fs_info->new_trans_lock); } else { cur_trans->num_writers++; cur_trans->num_joined++; } return 0; } static noinline int record_root_in_trans(struct btrfs_root *root) { struct dirty_root *dirty; u64 running_trans_id = root->fs_info->running_transaction->transid; if (root->ref_cows && root->last_trans < running_trans_id) { WARN_ON(root == root->fs_info->extent_root); if (root->root_item.refs != 0) { radix_tree_tag_set(&root->fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid, BTRFS_ROOT_TRANS_TAG); dirty = kmalloc(sizeof(*dirty), GFP_NOFS); BUG_ON(!dirty); dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS); BUG_ON(!dirty->root); dirty->latest_root = root; INIT_LIST_HEAD(&dirty->list); root->commit_root = btrfs_root_node(root); root->dirty_root = dirty; memcpy(dirty->root, root, sizeof(*root)); dirty->root->ref_tree = &root->ref_tree_struct; spin_lock_init(&dirty->root->node_lock); mutex_init(&dirty->root->objectid_mutex); dirty->root->node = root->commit_root; dirty->root->commit_root = NULL; } else { WARN_ON(1); } root->last_trans = running_trans_id; } return 0; } struct btrfs_trans_handle *start_transaction(struct btrfs_root *root, int num_blocks, int join) { struct btrfs_trans_handle *h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); struct btrfs_transaction *cur_trans; int ret; mutex_lock(&root->fs_info->trans_mutex); cur_trans = root->fs_info->running_transaction; if (cur_trans && cur_trans->blocked && !join) { DEFINE_WAIT(wait); cur_trans->use_count++; while(1) { prepare_to_wait(&root->fs_info->transaction_wait, &wait, TASK_UNINTERRUPTIBLE); if (cur_trans->blocked) { mutex_unlock(&root->fs_info->trans_mutex); schedule(); mutex_lock(&root->fs_info->trans_mutex); finish_wait(&root->fs_info->transaction_wait, &wait); } else { finish_wait(&root->fs_info->transaction_wait, &wait); break; } } put_transaction(cur_trans); } ret = join_transaction(root); BUG_ON(ret); record_root_in_trans(root); h->transid = root->fs_info->running_transaction->transid; h->transaction = root->fs_info->running_transaction; h->blocks_reserved = num_blocks; h->blocks_used = 0; h->block_group = NULL; h->alloc_exclude_nr = 0; h->alloc_exclude_start = 0; root->fs_info->running_transaction->use_count++; mutex_unlock(&root->fs_info->trans_mutex); return h; } struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, int num_blocks) { return start_transaction(root, num_blocks, 0); } struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root, int num_blocks) { return start_transaction(root, num_blocks, 1); } static noinline int wait_for_commit(struct btrfs_root *root, struct btrfs_transaction *commit) { DEFINE_WAIT(wait); mutex_lock(&root->fs_info->trans_mutex); while(!commit->commit_done) { prepare_to_wait(&commit->commit_wait, &wait, TASK_UNINTERRUPTIBLE); if (commit->commit_done) break; mutex_unlock(&root->fs_info->trans_mutex); schedule(); mutex_lock(&root->fs_info->trans_mutex); } mutex_unlock(&root->fs_info->trans_mutex); finish_wait(&commit->commit_wait, &wait); return 0; } void btrfs_throttle(struct btrfs_root *root) { struct btrfs_fs_info *info = root->fs_info; harder: if (atomic_read(&info->throttles)) { DEFINE_WAIT(wait); int thr; int harder_count = 0; thr = atomic_read(&info->throttle_gen); do { prepare_to_wait(&info->transaction_throttle, &wait, TASK_UNINTERRUPTIBLE); if (!atomic_read(&info->throttles)) { finish_wait(&info->transaction_throttle, &wait); break; } schedule(); finish_wait(&info->transaction_throttle, &wait); } while (thr == atomic_read(&info->throttle_gen)); if (harder_count < 5 && info->total_ref_cache_size > 5 * 1024 * 1024) { harder_count++; goto harder; } if (harder_count < 10 && info->total_ref_cache_size > 10 * 1024 * 1024) { harder_count++; goto harder; } } } static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root, int throttle) { struct btrfs_transaction *cur_trans; struct btrfs_fs_info *info = root->fs_info; mutex_lock(&info->trans_mutex); cur_trans = info->running_transaction; WARN_ON(cur_trans != trans->transaction); WARN_ON(cur_trans->num_writers < 1); cur_trans->num_writers--; if (waitqueue_active(&cur_trans->writer_wait)) wake_up(&cur_trans->writer_wait); put_transaction(cur_trans); mutex_unlock(&info->trans_mutex); memset(trans, 0, sizeof(*trans)); kmem_cache_free(btrfs_trans_handle_cachep, trans); if (throttle) btrfs_throttle(root); return 0; } int btrfs_end_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root) { return __btrfs_end_transaction(trans, root, 0); } int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, struct btrfs_root *root) { return __btrfs_end_transaction(trans, root, 1); } int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret; int err; int werr = 0; struct extent_io_tree *dirty_pages; struct page *page; struct inode *btree_inode = root->fs_info->btree_inode; u64 start; u64 end; unsigned long index; if (!trans || !trans->transaction) { return filemap_write_and_wait(btree_inode->i_mapping); } dirty_pages = &trans->transaction->dirty_pages; while(1) { ret = find_first_extent_bit(dirty_pages, 0, &start, &end, EXTENT_DIRTY); if (ret) break; clear_extent_dirty(dirty_pages, start, end, GFP_NOFS); while(start <= end) { index = start >> PAGE_CACHE_SHIFT; start = (u64)(index + 1) << PAGE_CACHE_SHIFT; page = find_lock_page(btree_inode->i_mapping, index); if (!page) continue; if (PageWriteback(page)) { if (PageDirty(page)) wait_on_page_writeback(page); else { unlock_page(page); page_cache_release(page); continue; } } err = write_one_page(page, 0); if (err) werr = err; page_cache_release(page); } } err = filemap_fdatawait(btree_inode->i_mapping); if (err) werr = err; return werr; } static int update_cowonly_root(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret; u64 old_root_bytenr; struct btrfs_root *tree_root = root->fs_info->tree_root; btrfs_write_dirty_block_groups(trans, root); while(1) { old_root_bytenr = btrfs_root_bytenr(&root->root_item); if (old_root_bytenr == root->node->start) break; btrfs_set_root_bytenr(&root->root_item, root->node->start); btrfs_set_root_level(&root->root_item, btrfs_header_level(root->node)); ret = btrfs_update_root(trans, tree_root, &root->root_key, &root->root_item); BUG_ON(ret); btrfs_write_dirty_block_groups(trans, root); } return 0; } int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; struct list_head *next; while(!list_empty(&fs_info->dirty_cowonly_roots)) { next = fs_info->dirty_cowonly_roots.next; list_del_init(next); root = list_entry(next, struct btrfs_root, dirty_list); update_cowonly_root(trans, root); if (root->fs_info->closing) btrfs_remove_leaf_refs(root); } return 0; } int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest, struct list_head *dead_list) { struct dirty_root *dirty; dirty = kmalloc(sizeof(*dirty), GFP_NOFS); if (!dirty) return -ENOMEM; dirty->root = root; dirty->latest_root = latest; list_add(&dirty->list, dead_list); return 0; } static noinline int add_dirty_roots(struct btrfs_trans_handle *trans, struct radix_tree_root *radix, struct list_head *list) { struct dirty_root *dirty; struct btrfs_root *gang[8]; struct btrfs_root *root; int i; int ret; int err = 0; u32 refs; while(1) { ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0, ARRAY_SIZE(gang), BTRFS_ROOT_TRANS_TAG); if (ret == 0) break; for (i = 0; i < ret; i++) { root = gang[i]; radix_tree_tag_clear(radix, (unsigned long)root->root_key.objectid, BTRFS_ROOT_TRANS_TAG); BUG_ON(!root->ref_tree); dirty = root->dirty_root; if (root->commit_root == root->node) { WARN_ON(root->node->start != btrfs_root_bytenr(&root->root_item)); free_extent_buffer(root->commit_root); root->commit_root = NULL; kfree(dirty->root); kfree(dirty); /* make sure to update the root on disk * so we get any updates to the block used * counts */ err = btrfs_update_root(trans, root->fs_info->tree_root, &root->root_key, &root->root_item); continue; } memset(&root->root_item.drop_progress, 0, sizeof(struct btrfs_disk_key)); root->root_item.drop_level = 0; root->commit_root = NULL; root->root_key.offset = root->fs_info->generation; btrfs_set_root_bytenr(&root->root_item, root->node->start); btrfs_set_root_level(&root->root_item, btrfs_header_level(root->node)); err = btrfs_insert_root(trans, root->fs_info->tree_root, &root->root_key, &root->root_item); if (err) break; refs = btrfs_root_refs(&dirty->root->root_item); btrfs_set_root_refs(&dirty->root->root_item, refs - 1); err = btrfs_update_root(trans, root->fs_info->tree_root, &dirty->root->root_key, &dirty->root->root_item); BUG_ON(err); if (refs == 1) { list_add(&dirty->list, list); } else { WARN_ON(1); free_extent_buffer(dirty->root->node); kfree(dirty->root); kfree(dirty); } } } return err; } int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) { struct btrfs_fs_info *info = root->fs_info; int ret; struct btrfs_trans_handle *trans; unsigned long nr; smp_mb(); if (root->defrag_running) return 0; trans = btrfs_start_transaction(root, 1); while (1) { root->defrag_running = 1; ret = btrfs_defrag_leaves(trans, root, cacheonly); nr = trans->blocks_used; btrfs_end_transaction(trans, root); btrfs_btree_balance_dirty(info->tree_root, nr); cond_resched(); trans = btrfs_start_transaction(root, 1); if (root->fs_info->closing || ret != -EAGAIN) break; } root->defrag_running = 0; smp_mb(); btrfs_end_transaction(trans, root); return 0; } static noinline int drop_dirty_roots(struct btrfs_root *tree_root, struct list_head *list) { struct dirty_root *dirty; struct btrfs_trans_handle *trans; unsigned long nr; u64 num_bytes; u64 bytes_used; int ret = 0; int err; while(!list_empty(list)) { struct btrfs_root *root; dirty = list_entry(list->prev, struct dirty_root, list); list_del_init(&dirty->list); num_bytes = btrfs_root_used(&dirty->root->root_item); root = dirty->latest_root; atomic_inc(&root->fs_info->throttles); mutex_lock(&root->fs_info->drop_mutex); while(1) { trans = btrfs_start_transaction(tree_root, 1); ret = btrfs_drop_snapshot(trans, dirty->root); if (ret != -EAGAIN) { break; } err = btrfs_update_root(trans, tree_root, &dirty->root->root_key, &dirty->root->root_item); if (err) ret = err; nr = trans->blocks_used; ret = btrfs_end_transaction(trans, tree_root); BUG_ON(ret); mutex_unlock(&root->fs_info->drop_mutex); btrfs_btree_balance_dirty(tree_root, nr); cond_resched(); mutex_lock(&root->fs_info->drop_mutex); } BUG_ON(ret); atomic_dec(&root->fs_info->throttles); wake_up(&root->fs_info->transaction_throttle); mutex_lock(&root->fs_info->alloc_mutex); num_bytes -= btrfs_root_used(&dirty->root->root_item); bytes_used = btrfs_root_used(&root->root_item); if (num_bytes) { record_root_in_trans(root); btrfs_set_root_used(&root->root_item, bytes_used - num_bytes); } mutex_unlock(&root->fs_info->alloc_mutex); ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key); if (ret) { BUG(); break; } mutex_unlock(&root->fs_info->drop_mutex); nr = trans->blocks_used; ret = btrfs_end_transaction(trans, tree_root); BUG_ON(ret); free_extent_buffer(dirty->root->node); kfree(dirty->root); kfree(dirty); btrfs_btree_balance_dirty(tree_root, nr); cond_resched(); } return ret; } static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_pending_snapshot *pending) { struct btrfs_key key; struct btrfs_root_item *new_root_item; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *root = pending->root; struct extent_buffer *tmp; struct extent_buffer *old; int ret; int namelen; u64 objectid; new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); if (!new_root_item) { ret = -ENOMEM; goto fail; } ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid); if (ret) goto fail; memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); key.objectid = objectid; key.offset = 1; btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); old = btrfs_lock_root_node(root); btrfs_cow_block(trans, root, old, NULL, 0, &old); btrfs_copy_root(trans, root, old, &tmp, objectid); btrfs_tree_unlock(old); free_extent_buffer(old); btrfs_set_root_bytenr(new_root_item, tmp->start); btrfs_set_root_level(new_root_item, btrfs_header_level(tmp)); ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, new_root_item); btrfs_tree_unlock(tmp); free_extent_buffer(tmp); if (ret) goto fail; /* * insert the directory item */ key.offset = (u64)-1; namelen = strlen(pending->name); ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root, pending->name, namelen, root->fs_info->sb->s_root->d_inode->i_ino, &key, BTRFS_FT_DIR, 0); if (ret) goto fail; ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root, pending->name, strlen(pending->name), objectid, root->fs_info->sb->s_root->d_inode->i_ino, 0); /* Invalidate existing dcache entry for new snapshot. */ btrfs_invalidate_dcache_root(root, pending->name, namelen); fail: kfree(new_root_item); return ret; } static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_pending_snapshot *pending; struct list_head *head = &trans->transaction->pending_snapshots; int ret; while(!list_empty(head)) { pending = list_entry(head->next, struct btrfs_pending_snapshot, list); ret = create_pending_snapshot(trans, fs_info, pending); BUG_ON(ret); list_del(&pending->list); kfree(pending->name); kfree(pending); } return 0; } int btrfs_commit_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root) { unsigned long joined = 0; unsigned long timeout = 1; struct btrfs_transaction *cur_trans; struct btrfs_transaction *prev_trans = NULL; struct btrfs_root *chunk_root = root->fs_info->chunk_root; struct list_head dirty_fs_roots; struct extent_io_tree *pinned_copy; DEFINE_WAIT(wait); int ret; INIT_LIST_HEAD(&dirty_fs_roots); mutex_lock(&root->fs_info->trans_mutex); if (trans->transaction->in_commit) { cur_trans = trans->transaction; trans->transaction->use_count++; mutex_unlock(&root->fs_info->trans_mutex); btrfs_end_transaction(trans, root); ret = wait_for_commit(root, cur_trans); BUG_ON(ret); mutex_lock(&root->fs_info->trans_mutex); put_transaction(cur_trans); mutex_unlock(&root->fs_info->trans_mutex); return 0; } pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS); if (!pinned_copy) return -ENOMEM; extent_io_tree_init(pinned_copy, root->fs_info->btree_inode->i_mapping, GFP_NOFS); trans->transaction->in_commit = 1; trans->transaction->blocked = 1; cur_trans = trans->transaction; if (cur_trans->list.prev != &root->fs_info->trans_list) { prev_trans = list_entry(cur_trans->list.prev, struct btrfs_transaction, list); if (!prev_trans->commit_done) { prev_trans->use_count++; mutex_unlock(&root->fs_info->trans_mutex); wait_for_commit(root, prev_trans); mutex_lock(&root->fs_info->trans_mutex); put_transaction(prev_trans); } } do { joined = cur_trans->num_joined; WARN_ON(cur_trans != trans->transaction); prepare_to_wait(&cur_trans->writer_wait, &wait, TASK_UNINTERRUPTIBLE); if (cur_trans->num_writers > 1) timeout = MAX_SCHEDULE_TIMEOUT; else timeout = 1; mutex_unlock(&root->fs_info->trans_mutex); schedule_timeout(timeout); mutex_lock(&root->fs_info->trans_mutex); finish_wait(&cur_trans->writer_wait, &wait); } while (cur_trans->num_writers > 1 || (cur_trans->num_joined != joined)); ret = create_pending_snapshots(trans, root->fs_info); BUG_ON(ret); WARN_ON(cur_trans != trans->transaction); ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix, &dirty_fs_roots); BUG_ON(ret); ret = btrfs_commit_tree_roots(trans, root); BUG_ON(ret); cur_trans = root->fs_info->running_transaction; spin_lock(&root->fs_info->new_trans_lock); root->fs_info->running_transaction = NULL; spin_unlock(&root->fs_info->new_trans_lock); btrfs_set_super_generation(&root->fs_info->super_copy, cur_trans->transid); btrfs_set_super_root(&root->fs_info->super_copy, root->fs_info->tree_root->node->start); btrfs_set_super_root_level(&root->fs_info->super_copy, btrfs_header_level(root->fs_info->tree_root->node)); btrfs_set_super_chunk_root(&root->fs_info->super_copy, chunk_root->node->start); btrfs_set_super_chunk_root_level(&root->fs_info->super_copy, btrfs_header_level(chunk_root->node)); memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy, sizeof(root->fs_info->super_copy)); btrfs_copy_pinned(root, pinned_copy); trans->transaction->blocked = 0; wake_up(&root->fs_info->transaction_throttle); wake_up(&root->fs_info->transaction_wait); mutex_unlock(&root->fs_info->trans_mutex); ret = btrfs_write_and_wait_transaction(trans, root); BUG_ON(ret); write_ctree_super(trans, root); btrfs_finish_extent_commit(trans, root, pinned_copy); mutex_lock(&root->fs_info->trans_mutex); kfree(pinned_copy); cur_trans->commit_done = 1; root->fs_info->last_trans_committed = cur_trans->transid; wake_up(&cur_trans->commit_wait); put_transaction(cur_trans); put_transaction(cur_trans); if (root->fs_info->closing) list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots); else list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots); mutex_unlock(&root->fs_info->trans_mutex); kmem_cache_free(btrfs_trans_handle_cachep, trans); if (root->fs_info->closing) { drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots); } return ret; } int btrfs_clean_old_snapshots(struct btrfs_root *root) { struct list_head dirty_roots; INIT_LIST_HEAD(&dirty_roots); again: mutex_lock(&root->fs_info->trans_mutex); list_splice_init(&root->fs_info->dead_roots, &dirty_roots); mutex_unlock(&root->fs_info->trans_mutex); if (!list_empty(&dirty_roots)) { drop_dirty_roots(root, &dirty_roots); goto again; } return 0; }