/* * Copyright (C) 2011 STRATO. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include "ctree.h" #include "transaction.h" #include "disk-io.h" #include "locking.h" #include "ulist.h" #include "backref.h" #include "extent_io.h" #include "qgroup.h" /* TODO XXX FIXME * - subvol delete -> delete when ref goes to 0? delete limits also? * - reorganize keys * - compressed * - sync * - copy also limits on subvol creation * - limit * - caches fuer ulists * - performance benchmarks * - check all ioctl parameters */ /* * one struct for each qgroup, organized in fs_info->qgroup_tree. */ struct btrfs_qgroup { u64 qgroupid; /* * state */ u64 rfer; /* referenced */ u64 rfer_cmpr; /* referenced compressed */ u64 excl; /* exclusive */ u64 excl_cmpr; /* exclusive compressed */ /* * limits */ u64 lim_flags; /* which limits are set */ u64 max_rfer; u64 max_excl; u64 rsv_rfer; u64 rsv_excl; /* * reservation tracking */ u64 reserved; /* * lists */ struct list_head groups; /* groups this group is member of */ struct list_head members; /* groups that are members of this group */ struct list_head dirty; /* dirty groups */ struct rb_node node; /* tree of qgroups */ /* * temp variables for accounting operations * Refer to qgroup_shared_accounting() for details. */ u64 old_refcnt; u64 new_refcnt; }; static void btrfs_qgroup_update_old_refcnt(struct btrfs_qgroup *qg, u64 seq, int mod) { if (qg->old_refcnt < seq) qg->old_refcnt = seq; qg->old_refcnt += mod; } static void btrfs_qgroup_update_new_refcnt(struct btrfs_qgroup *qg, u64 seq, int mod) { if (qg->new_refcnt < seq) qg->new_refcnt = seq; qg->new_refcnt += mod; } static inline u64 btrfs_qgroup_get_old_refcnt(struct btrfs_qgroup *qg, u64 seq) { if (qg->old_refcnt < seq) return 0; return qg->old_refcnt - seq; } static inline u64 btrfs_qgroup_get_new_refcnt(struct btrfs_qgroup *qg, u64 seq) { if (qg->new_refcnt < seq) return 0; return qg->new_refcnt - seq; } /* * glue structure to represent the relations between qgroups. */ struct btrfs_qgroup_list { struct list_head next_group; struct list_head next_member; struct btrfs_qgroup *group; struct btrfs_qgroup *member; }; #define ptr_to_u64(x) ((u64)(uintptr_t)x) #define u64_to_ptr(x) ((struct btrfs_qgroup *)(uintptr_t)x) static int qgroup_rescan_init(struct btrfs_fs_info *fs_info, u64 progress_objectid, int init_flags); static void qgroup_rescan_zero_tracking(struct btrfs_fs_info *fs_info); /* must be called with qgroup_ioctl_lock held */ static struct btrfs_qgroup *find_qgroup_rb(struct btrfs_fs_info *fs_info, u64 qgroupid) { struct rb_node *n = fs_info->qgroup_tree.rb_node; struct btrfs_qgroup *qgroup; while (n) { qgroup = rb_entry(n, struct btrfs_qgroup, node); if (qgroup->qgroupid < qgroupid) n = n->rb_left; else if (qgroup->qgroupid > qgroupid) n = n->rb_right; else return qgroup; } return NULL; } /* must be called with qgroup_lock held */ static struct btrfs_qgroup *add_qgroup_rb(struct btrfs_fs_info *fs_info, u64 qgroupid) { struct rb_node **p = &fs_info->qgroup_tree.rb_node; struct rb_node *parent = NULL; struct btrfs_qgroup *qgroup; while (*p) { parent = *p; qgroup = rb_entry(parent, struct btrfs_qgroup, node); if (qgroup->qgroupid < qgroupid) p = &(*p)->rb_left; else if (qgroup->qgroupid > qgroupid) p = &(*p)->rb_right; else return qgroup; } qgroup = kzalloc(sizeof(*qgroup), GFP_ATOMIC); if (!qgroup) return ERR_PTR(-ENOMEM); qgroup->qgroupid = qgroupid; INIT_LIST_HEAD(&qgroup->groups); INIT_LIST_HEAD(&qgroup->members); INIT_LIST_HEAD(&qgroup->dirty); rb_link_node(&qgroup->node, parent, p); rb_insert_color(&qgroup->node, &fs_info->qgroup_tree); return qgroup; } static void __del_qgroup_rb(struct btrfs_qgroup *qgroup) { struct btrfs_qgroup_list *list; list_del(&qgroup->dirty); while (!list_empty(&qgroup->groups)) { list = list_first_entry(&qgroup->groups, struct btrfs_qgroup_list, next_group); list_del(&list->next_group); list_del(&list->next_member); kfree(list); } while (!list_empty(&qgroup->members)) { list = list_first_entry(&qgroup->members, struct btrfs_qgroup_list, next_member); list_del(&list->next_group); list_del(&list->next_member); kfree(list); } kfree(qgroup); } /* must be called with qgroup_lock held */ static int del_qgroup_rb(struct btrfs_fs_info *fs_info, u64 qgroupid) { struct btrfs_qgroup *qgroup = find_qgroup_rb(fs_info, qgroupid); if (!qgroup) return -ENOENT; rb_erase(&qgroup->node, &fs_info->qgroup_tree); __del_qgroup_rb(qgroup); return 0; } /* must be called with qgroup_lock held */ static int add_relation_rb(struct btrfs_fs_info *fs_info, u64 memberid, u64 parentid) { struct btrfs_qgroup *member; struct btrfs_qgroup *parent; struct btrfs_qgroup_list *list; member = find_qgroup_rb(fs_info, memberid); parent = find_qgroup_rb(fs_info, parentid); if (!member || !parent) return -ENOENT; list = kzalloc(sizeof(*list), GFP_ATOMIC); if (!list) return -ENOMEM; list->group = parent; list->member = member; list_add_tail(&list->next_group, &member->groups); list_add_tail(&list->next_member, &parent->members); return 0; } /* must be called with qgroup_lock held */ static int del_relation_rb(struct btrfs_fs_info *fs_info, u64 memberid, u64 parentid) { struct btrfs_qgroup *member; struct btrfs_qgroup *parent; struct btrfs_qgroup_list *list; member = find_qgroup_rb(fs_info, memberid); parent = find_qgroup_rb(fs_info, parentid); if (!member || !parent) return -ENOENT; list_for_each_entry(list, &member->groups, next_group) { if (list->group == parent) { list_del(&list->next_group); list_del(&list->next_member); kfree(list); return 0; } } return -ENOENT; } #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS int btrfs_verify_qgroup_counts(struct btrfs_fs_info *fs_info, u64 qgroupid, u64 rfer, u64 excl) { struct btrfs_qgroup *qgroup; qgroup = find_qgroup_rb(fs_info, qgroupid); if (!qgroup) return -EINVAL; if (qgroup->rfer != rfer || qgroup->excl != excl) return -EINVAL; return 0; } #endif /* * The full config is read in one go, only called from open_ctree() * It doesn't use any locking, as at this point we're still single-threaded */ int btrfs_read_qgroup_config(struct btrfs_fs_info *fs_info) { struct btrfs_key key; struct btrfs_key found_key; struct btrfs_root *quota_root = fs_info->quota_root; struct btrfs_path *path = NULL; struct extent_buffer *l; int slot; int ret = 0; u64 flags = 0; u64 rescan_progress = 0; if (!fs_info->quota_enabled) return 0; fs_info->qgroup_ulist = ulist_alloc(GFP_NOFS); if (!fs_info->qgroup_ulist) { ret = -ENOMEM; goto out; } path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } /* default this to quota off, in case no status key is found */ fs_info->qgroup_flags = 0; /* * pass 1: read status, all qgroup infos and limits */ key.objectid = 0; key.type = 0; key.offset = 0; ret = btrfs_search_slot_for_read(quota_root, &key, path, 1, 1); if (ret) goto out; while (1) { struct btrfs_qgroup *qgroup; slot = path->slots[0]; l = path->nodes[0]; btrfs_item_key_to_cpu(l, &found_key, slot); if (found_key.type == BTRFS_QGROUP_STATUS_KEY) { struct btrfs_qgroup_status_item *ptr; ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_status_item); if (btrfs_qgroup_status_version(l, ptr) != BTRFS_QGROUP_STATUS_VERSION) { btrfs_err(fs_info, "old qgroup version, quota disabled"); goto out; } if (btrfs_qgroup_status_generation(l, ptr) != fs_info->generation) { flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; btrfs_err(fs_info, "qgroup generation mismatch, " "marked as inconsistent"); } fs_info->qgroup_flags = btrfs_qgroup_status_flags(l, ptr); rescan_progress = btrfs_qgroup_status_rescan(l, ptr); goto next1; } if (found_key.type != BTRFS_QGROUP_INFO_KEY && found_key.type != BTRFS_QGROUP_LIMIT_KEY) goto next1; qgroup = find_qgroup_rb(fs_info, found_key.offset); if ((qgroup && found_key.type == BTRFS_QGROUP_INFO_KEY) || (!qgroup && found_key.type == BTRFS_QGROUP_LIMIT_KEY)) { btrfs_err(fs_info, "inconsistent qgroup config"); flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; } if (!qgroup) { qgroup = add_qgroup_rb(fs_info, found_key.offset); if (IS_ERR(qgroup)) { ret = PTR_ERR(qgroup); goto out; } } switch (found_key.type) { case BTRFS_QGROUP_INFO_KEY: { struct btrfs_qgroup_info_item *ptr; ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_info_item); qgroup->rfer = btrfs_qgroup_info_rfer(l, ptr); qgroup->rfer_cmpr = btrfs_qgroup_info_rfer_cmpr(l, ptr); qgroup->excl = btrfs_qgroup_info_excl(l, ptr); qgroup->excl_cmpr = btrfs_qgroup_info_excl_cmpr(l, ptr); /* generation currently unused */ break; } case BTRFS_QGROUP_LIMIT_KEY: { struct btrfs_qgroup_limit_item *ptr; ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_limit_item); qgroup->lim_flags = btrfs_qgroup_limit_flags(l, ptr); qgroup->max_rfer = btrfs_qgroup_limit_max_rfer(l, ptr); qgroup->max_excl = btrfs_qgroup_limit_max_excl(l, ptr); qgroup->rsv_rfer = btrfs_qgroup_limit_rsv_rfer(l, ptr); qgroup->rsv_excl = btrfs_qgroup_limit_rsv_excl(l, ptr); break; } } next1: ret = btrfs_next_item(quota_root, path); if (ret < 0) goto out; if (ret) break; } btrfs_release_path(path); /* * pass 2: read all qgroup relations */ key.objectid = 0; key.type = BTRFS_QGROUP_RELATION_KEY; key.offset = 0; ret = btrfs_search_slot_for_read(quota_root, &key, path, 1, 0); if (ret) goto out; while (1) { slot = path->slots[0]; l = path->nodes[0]; btrfs_item_key_to_cpu(l, &found_key, slot); if (found_key.type != BTRFS_QGROUP_RELATION_KEY) goto next2; if (found_key.objectid > found_key.offset) { /* parent <- member, not needed to build config */ /* FIXME should we omit the key completely? */ goto next2; } ret = add_relation_rb(fs_info, found_key.objectid, found_key.offset); if (ret == -ENOENT) { btrfs_warn(fs_info, "orphan qgroup relation 0x%llx->0x%llx", found_key.objectid, found_key.offset); ret = 0; /* ignore the error */ } if (ret) goto out; next2: ret = btrfs_next_item(quota_root, path); if (ret < 0) goto out; if (ret) break; } out: fs_info->qgroup_flags |= flags; if (!(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON)) { fs_info->quota_enabled = 0; fs_info->pending_quota_state = 0; } else if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN && ret >= 0) { ret = qgroup_rescan_init(fs_info, rescan_progress, 0); } btrfs_free_path(path); if (ret < 0) { ulist_free(fs_info->qgroup_ulist); fs_info->qgroup_ulist = NULL; fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN; } return ret < 0 ? ret : 0; } /* * This is called from close_ctree() or open_ctree() or btrfs_quota_disable(), * first two are in single-threaded paths.And for the third one, we have set * quota_root to be null with qgroup_lock held before, so it is safe to clean * up the in-memory structures without qgroup_lock held. */ void btrfs_free_qgroup_config(struct btrfs_fs_info *fs_info) { struct rb_node *n; struct btrfs_qgroup *qgroup; while ((n = rb_first(&fs_info->qgroup_tree))) { qgroup = rb_entry(n, struct btrfs_qgroup, node); rb_erase(n, &fs_info->qgroup_tree); __del_qgroup_rb(qgroup); } /* * we call btrfs_free_qgroup_config() when umounting * filesystem and disabling quota, so we set qgroup_ulist * to be null here to avoid double free. */ ulist_free(fs_info->qgroup_ulist); fs_info->qgroup_ulist = NULL; } static int add_qgroup_relation_item(struct btrfs_trans_handle *trans, struct btrfs_root *quota_root, u64 src, u64 dst) { int ret; struct btrfs_path *path; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = src; key.type = BTRFS_QGROUP_RELATION_KEY; key.offset = dst; ret = btrfs_insert_empty_item(trans, quota_root, path, &key, 0); btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_free_path(path); return ret; } static int del_qgroup_relation_item(struct btrfs_trans_handle *trans, struct btrfs_root *quota_root, u64 src, u64 dst) { int ret; struct btrfs_path *path; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = src; key.type = BTRFS_QGROUP_RELATION_KEY; key.offset = dst; ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, quota_root, path); out: btrfs_free_path(path); return ret; } static int add_qgroup_item(struct btrfs_trans_handle *trans, struct btrfs_root *quota_root, u64 qgroupid) { int ret; struct btrfs_path *path; struct btrfs_qgroup_info_item *qgroup_info; struct btrfs_qgroup_limit_item *qgroup_limit; struct extent_buffer *leaf; struct btrfs_key key; if (btrfs_is_testing(quota_root->fs_info)) return 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = 0; key.type = BTRFS_QGROUP_INFO_KEY; key.offset = qgroupid; /* * Avoid a transaction abort by catching -EEXIST here. In that * case, we proceed by re-initializing the existing structure * on disk. */ ret = btrfs_insert_empty_item(trans, quota_root, path, &key, sizeof(*qgroup_info)); if (ret && ret != -EEXIST) goto out; leaf = path->nodes[0]; qgroup_info = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_qgroup_info_item); btrfs_set_qgroup_info_generation(leaf, qgroup_info, trans->transid); btrfs_set_qgroup_info_rfer(leaf, qgroup_info, 0); btrfs_set_qgroup_info_rfer_cmpr(leaf, qgroup_info, 0); btrfs_set_qgroup_info_excl(leaf, qgroup_info, 0); btrfs_set_qgroup_info_excl_cmpr(leaf, qgroup_info, 0); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); key.type = BTRFS_QGROUP_LIMIT_KEY; ret = btrfs_insert_empty_item(trans, quota_root, path, &key, sizeof(*qgroup_limit)); if (ret && ret != -EEXIST) goto out; leaf = path->nodes[0]; qgroup_limit = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_qgroup_limit_item); btrfs_set_qgroup_limit_flags(leaf, qgroup_limit, 0); btrfs_set_qgroup_limit_max_rfer(leaf, qgroup_limit, 0); btrfs_set_qgroup_limit_max_excl(leaf, qgroup_limit, 0); btrfs_set_qgroup_limit_rsv_rfer(leaf, qgroup_limit, 0); btrfs_set_qgroup_limit_rsv_excl(leaf, qgroup_limit, 0); btrfs_mark_buffer_dirty(leaf); ret = 0; out: btrfs_free_path(path); return ret; } static int del_qgroup_item(struct btrfs_trans_handle *trans, struct btrfs_root *quota_root, u64 qgroupid) { int ret; struct btrfs_path *path; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = 0; key.type = BTRFS_QGROUP_INFO_KEY; key.offset = qgroupid; ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, quota_root, path); if (ret) goto out; btrfs_release_path(path); key.type = BTRFS_QGROUP_LIMIT_KEY; ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, quota_root, path); out: btrfs_free_path(path); return ret; } static int update_qgroup_limit_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_qgroup *qgroup) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *l; struct btrfs_qgroup_limit_item *qgroup_limit; int ret; int slot; key.objectid = 0; key.type = BTRFS_QGROUP_LIMIT_KEY; key.offset = qgroup->qgroupid; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret > 0) ret = -ENOENT; if (ret) goto out; l = path->nodes[0]; slot = path->slots[0]; qgroup_limit = btrfs_item_ptr(l, slot, struct btrfs_qgroup_limit_item); btrfs_set_qgroup_limit_flags(l, qgroup_limit, qgroup->lim_flags); btrfs_set_qgroup_limit_max_rfer(l, qgroup_limit, qgroup->max_rfer); btrfs_set_qgroup_limit_max_excl(l, qgroup_limit, qgroup->max_excl); btrfs_set_qgroup_limit_rsv_rfer(l, qgroup_limit, qgroup->rsv_rfer); btrfs_set_qgroup_limit_rsv_excl(l, qgroup_limit, qgroup->rsv_excl); btrfs_mark_buffer_dirty(l); out: btrfs_free_path(path); return ret; } static int update_qgroup_info_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_qgroup *qgroup) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *l; struct btrfs_qgroup_info_item *qgroup_info; int ret; int slot; if (btrfs_is_testing(root->fs_info)) return 0; key.objectid = 0; key.type = BTRFS_QGROUP_INFO_KEY; key.offset = qgroup->qgroupid; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret > 0) ret = -ENOENT; if (ret) goto out; l = path->nodes[0]; slot = path->slots[0]; qgroup_info = btrfs_item_ptr(l, slot, struct btrfs_qgroup_info_item); btrfs_set_qgroup_info_generation(l, qgroup_info, trans->transid); btrfs_set_qgroup_info_rfer(l, qgroup_info, qgroup->rfer); btrfs_set_qgroup_info_rfer_cmpr(l, qgroup_info, qgroup->rfer_cmpr); btrfs_set_qgroup_info_excl(l, qgroup_info, qgroup->excl); btrfs_set_qgroup_info_excl_cmpr(l, qgroup_info, qgroup->excl_cmpr); btrfs_mark_buffer_dirty(l); out: btrfs_free_path(path); return ret; } static int update_qgroup_status_item(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_root *root) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *l; struct btrfs_qgroup_status_item *ptr; int ret; int slot; key.objectid = 0; key.type = BTRFS_QGROUP_STATUS_KEY; key.offset = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret > 0) ret = -ENOENT; if (ret) goto out; l = path->nodes[0]; slot = path->slots[0]; ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_status_item); btrfs_set_qgroup_status_flags(l, ptr, fs_info->qgroup_flags); btrfs_set_qgroup_status_generation(l, ptr, trans->transid); btrfs_set_qgroup_status_rescan(l, ptr, fs_info->qgroup_rescan_progress.objectid); btrfs_mark_buffer_dirty(l); out: btrfs_free_path(path); return ret; } /* * called with qgroup_lock held */ static int btrfs_clean_quota_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *leaf = NULL; int ret; int nr = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->leave_spinning = 1; key.objectid = 0; key.offset = 0; key.type = 0; while (1) { ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto out; leaf = path->nodes[0]; nr = btrfs_header_nritems(leaf); if (!nr) break; /* * delete the leaf one by one * since the whole tree is going * to be deleted. */ path->slots[0] = 0; ret = btrfs_del_items(trans, root, path, 0, nr); if (ret) goto out; btrfs_release_path(path); } ret = 0; out: root->fs_info->pending_quota_state = 0; btrfs_free_path(path); return ret; } int btrfs_quota_enable(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *quota_root; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_path *path = NULL; struct btrfs_qgroup_status_item *ptr; struct extent_buffer *leaf; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_qgroup *qgroup = NULL; int ret = 0; int slot; mutex_lock(&fs_info->qgroup_ioctl_lock); if (fs_info->quota_root) { fs_info->pending_quota_state = 1; goto out; } fs_info->qgroup_ulist = ulist_alloc(GFP_NOFS); if (!fs_info->qgroup_ulist) { ret = -ENOMEM; goto out; } /* * initially create the quota tree */ quota_root = btrfs_create_tree(trans, fs_info, BTRFS_QUOTA_TREE_OBJECTID); if (IS_ERR(quota_root)) { ret = PTR_ERR(quota_root); goto out; } path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out_free_root; } key.objectid = 0; key.type = BTRFS_QGROUP_STATUS_KEY; key.offset = 0; ret = btrfs_insert_empty_item(trans, quota_root, path, &key, sizeof(*ptr)); if (ret) goto out_free_path; leaf = path->nodes[0]; ptr = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_qgroup_status_item); btrfs_set_qgroup_status_generation(leaf, ptr, trans->transid); btrfs_set_qgroup_status_version(leaf, ptr, BTRFS_QGROUP_STATUS_VERSION); fs_info->qgroup_flags = BTRFS_QGROUP_STATUS_FLAG_ON | BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; btrfs_set_qgroup_status_flags(leaf, ptr, fs_info->qgroup_flags); btrfs_set_qgroup_status_rescan(leaf, ptr, 0); btrfs_mark_buffer_dirty(leaf); key.objectid = 0; key.type = BTRFS_ROOT_REF_KEY; key.offset = 0; btrfs_release_path(path); ret = btrfs_search_slot_for_read(tree_root, &key, path, 1, 0); if (ret > 0) goto out_add_root; if (ret < 0) goto out_free_path; while (1) { slot = path->slots[0]; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.type == BTRFS_ROOT_REF_KEY) { ret = add_qgroup_item(trans, quota_root, found_key.offset); if (ret) goto out_free_path; qgroup = add_qgroup_rb(fs_info, found_key.offset); if (IS_ERR(qgroup)) { ret = PTR_ERR(qgroup); goto out_free_path; } } ret = btrfs_next_item(tree_root, path); if (ret < 0) goto out_free_path; if (ret) break; } out_add_root: btrfs_release_path(path); ret = add_qgroup_item(trans, quota_root, BTRFS_FS_TREE_OBJECTID); if (ret) goto out_free_path; qgroup = add_qgroup_rb(fs_info, BTRFS_FS_TREE_OBJECTID); if (IS_ERR(qgroup)) { ret = PTR_ERR(qgroup); goto out_free_path; } spin_lock(&fs_info->qgroup_lock); fs_info->quota_root = quota_root; fs_info->pending_quota_state = 1; spin_unlock(&fs_info->qgroup_lock); out_free_path: btrfs_free_path(path); out_free_root: if (ret) { free_extent_buffer(quota_root->node); free_extent_buffer(quota_root->commit_root); kfree(quota_root); } out: if (ret) { ulist_free(fs_info->qgroup_ulist); fs_info->qgroup_ulist = NULL; } mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_quota_disable(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *quota_root; int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); if (!fs_info->quota_root) goto out; fs_info->quota_enabled = 0; fs_info->pending_quota_state = 0; btrfs_qgroup_wait_for_completion(fs_info); spin_lock(&fs_info->qgroup_lock); quota_root = fs_info->quota_root; fs_info->quota_root = NULL; fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_ON; spin_unlock(&fs_info->qgroup_lock); btrfs_free_qgroup_config(fs_info); ret = btrfs_clean_quota_tree(trans, quota_root); if (ret) goto out; ret = btrfs_del_root(trans, tree_root, "a_root->root_key); if (ret) goto out; list_del("a_root->dirty_list); btrfs_tree_lock(quota_root->node); clean_tree_block(trans, tree_root->fs_info, quota_root->node); btrfs_tree_unlock(quota_root->node); btrfs_free_tree_block(trans, quota_root, quota_root->node, 0, 1); free_extent_buffer(quota_root->node); free_extent_buffer(quota_root->commit_root); kfree(quota_root); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } static void qgroup_dirty(struct btrfs_fs_info *fs_info, struct btrfs_qgroup *qgroup) { if (list_empty(&qgroup->dirty)) list_add(&qgroup->dirty, &fs_info->dirty_qgroups); } /* * The easy accounting, if we are adding/removing the only ref for an extent * then this qgroup and all of the parent qgroups get their reference and * exclusive counts adjusted. * * Caller should hold fs_info->qgroup_lock. */ static int __qgroup_excl_accounting(struct btrfs_fs_info *fs_info, struct ulist *tmp, u64 ref_root, u64 num_bytes, int sign) { struct btrfs_qgroup *qgroup; struct btrfs_qgroup_list *glist; struct ulist_node *unode; struct ulist_iterator uiter; int ret = 0; qgroup = find_qgroup_rb(fs_info, ref_root); if (!qgroup) goto out; qgroup->rfer += sign * num_bytes; qgroup->rfer_cmpr += sign * num_bytes; WARN_ON(sign < 0 && qgroup->excl < num_bytes); qgroup->excl += sign * num_bytes; qgroup->excl_cmpr += sign * num_bytes; if (sign > 0) qgroup->reserved -= num_bytes; qgroup_dirty(fs_info, qgroup); /* Get all of the parent groups that contain this qgroup */ list_for_each_entry(glist, &qgroup->groups, next_group) { ret = ulist_add(tmp, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) goto out; } /* Iterate all of the parents and adjust their reference counts */ ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(tmp, &uiter))) { qgroup = u64_to_ptr(unode->aux); qgroup->rfer += sign * num_bytes; qgroup->rfer_cmpr += sign * num_bytes; WARN_ON(sign < 0 && qgroup->excl < num_bytes); qgroup->excl += sign * num_bytes; if (sign > 0) qgroup->reserved -= num_bytes; qgroup->excl_cmpr += sign * num_bytes; qgroup_dirty(fs_info, qgroup); /* Add any parents of the parents */ list_for_each_entry(glist, &qgroup->groups, next_group) { ret = ulist_add(tmp, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) goto out; } } ret = 0; out: return ret; } /* * Quick path for updating qgroup with only excl refs. * * In that case, just update all parent will be enough. * Or we needs to do a full rescan. * Caller should also hold fs_info->qgroup_lock. * * Return 0 for quick update, return >0 for need to full rescan * and mark INCONSISTENT flag. * Return < 0 for other error. */ static int quick_update_accounting(struct btrfs_fs_info *fs_info, struct ulist *tmp, u64 src, u64 dst, int sign) { struct btrfs_qgroup *qgroup; int ret = 1; int err = 0; qgroup = find_qgroup_rb(fs_info, src); if (!qgroup) goto out; if (qgroup->excl == qgroup->rfer) { ret = 0; err = __qgroup_excl_accounting(fs_info, tmp, dst, qgroup->excl, sign); if (err < 0) { ret = err; goto out; } } out: if (ret) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; return ret; } int btrfs_add_qgroup_relation(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 src, u64 dst) { struct btrfs_root *quota_root; struct btrfs_qgroup *parent; struct btrfs_qgroup *member; struct btrfs_qgroup_list *list; struct ulist *tmp; int ret = 0; /* Check the level of src and dst first */ if (btrfs_qgroup_level(src) >= btrfs_qgroup_level(dst)) return -EINVAL; tmp = ulist_alloc(GFP_NOFS); if (!tmp) return -ENOMEM; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } member = find_qgroup_rb(fs_info, src); parent = find_qgroup_rb(fs_info, dst); if (!member || !parent) { ret = -EINVAL; goto out; } /* check if such qgroup relation exist firstly */ list_for_each_entry(list, &member->groups, next_group) { if (list->group == parent) { ret = -EEXIST; goto out; } } ret = add_qgroup_relation_item(trans, quota_root, src, dst); if (ret) goto out; ret = add_qgroup_relation_item(trans, quota_root, dst, src); if (ret) { del_qgroup_relation_item(trans, quota_root, src, dst); goto out; } spin_lock(&fs_info->qgroup_lock); ret = add_relation_rb(quota_root->fs_info, src, dst); if (ret < 0) { spin_unlock(&fs_info->qgroup_lock); goto out; } ret = quick_update_accounting(fs_info, tmp, src, dst, 1); spin_unlock(&fs_info->qgroup_lock); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); ulist_free(tmp); return ret; } int __del_qgroup_relation(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 src, u64 dst) { struct btrfs_root *quota_root; struct btrfs_qgroup *parent; struct btrfs_qgroup *member; struct btrfs_qgroup_list *list; struct ulist *tmp; int ret = 0; int err; tmp = ulist_alloc(GFP_NOFS); if (!tmp) return -ENOMEM; quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } member = find_qgroup_rb(fs_info, src); parent = find_qgroup_rb(fs_info, dst); if (!member || !parent) { ret = -EINVAL; goto out; } /* check if such qgroup relation exist firstly */ list_for_each_entry(list, &member->groups, next_group) { if (list->group == parent) goto exist; } ret = -ENOENT; goto out; exist: ret = del_qgroup_relation_item(trans, quota_root, src, dst); err = del_qgroup_relation_item(trans, quota_root, dst, src); if (err && !ret) ret = err; spin_lock(&fs_info->qgroup_lock); del_relation_rb(fs_info, src, dst); ret = quick_update_accounting(fs_info, tmp, src, dst, -1); spin_unlock(&fs_info->qgroup_lock); out: ulist_free(tmp); return ret; } int btrfs_del_qgroup_relation(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 src, u64 dst) { int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); ret = __del_qgroup_relation(trans, fs_info, src, dst); mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_create_qgroup(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 qgroupid) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } qgroup = find_qgroup_rb(fs_info, qgroupid); if (qgroup) { ret = -EEXIST; goto out; } ret = add_qgroup_item(trans, quota_root, qgroupid); if (ret) goto out; spin_lock(&fs_info->qgroup_lock); qgroup = add_qgroup_rb(fs_info, qgroupid); spin_unlock(&fs_info->qgroup_lock); if (IS_ERR(qgroup)) ret = PTR_ERR(qgroup); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_remove_qgroup(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 qgroupid) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; struct btrfs_qgroup_list *list; int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } qgroup = find_qgroup_rb(fs_info, qgroupid); if (!qgroup) { ret = -ENOENT; goto out; } else { /* check if there are no children of this qgroup */ if (!list_empty(&qgroup->members)) { ret = -EBUSY; goto out; } } ret = del_qgroup_item(trans, quota_root, qgroupid); while (!list_empty(&qgroup->groups)) { list = list_first_entry(&qgroup->groups, struct btrfs_qgroup_list, next_group); ret = __del_qgroup_relation(trans, fs_info, qgroupid, list->group->qgroupid); if (ret) goto out; } spin_lock(&fs_info->qgroup_lock); del_qgroup_rb(quota_root->fs_info, qgroupid); spin_unlock(&fs_info->qgroup_lock); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_limit_qgroup(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 qgroupid, struct btrfs_qgroup_limit *limit) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; int ret = 0; /* Sometimes we would want to clear the limit on this qgroup. * To meet this requirement, we treat the -1 as a special value * which tell kernel to clear the limit on this qgroup. */ const u64 CLEAR_VALUE = -1; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } qgroup = find_qgroup_rb(fs_info, qgroupid); if (!qgroup) { ret = -ENOENT; goto out; } spin_lock(&fs_info->qgroup_lock); if (limit->flags & BTRFS_QGROUP_LIMIT_MAX_RFER) { if (limit->max_rfer == CLEAR_VALUE) { qgroup->lim_flags &= ~BTRFS_QGROUP_LIMIT_MAX_RFER; limit->flags &= ~BTRFS_QGROUP_LIMIT_MAX_RFER; qgroup->max_rfer = 0; } else { qgroup->max_rfer = limit->max_rfer; } } if (limit->flags & BTRFS_QGROUP_LIMIT_MAX_EXCL) { if (limit->max_excl == CLEAR_VALUE) { qgroup->lim_flags &= ~BTRFS_QGROUP_LIMIT_MAX_EXCL; limit->flags &= ~BTRFS_QGROUP_LIMIT_MAX_EXCL; qgroup->max_excl = 0; } else { qgroup->max_excl = limit->max_excl; } } if (limit->flags & BTRFS_QGROUP_LIMIT_RSV_RFER) { if (limit->rsv_rfer == CLEAR_VALUE) { qgroup->lim_flags &= ~BTRFS_QGROUP_LIMIT_RSV_RFER; limit->flags &= ~BTRFS_QGROUP_LIMIT_RSV_RFER; qgroup->rsv_rfer = 0; } else { qgroup->rsv_rfer = limit->rsv_rfer; } } if (limit->flags & BTRFS_QGROUP_LIMIT_RSV_EXCL) { if (limit->rsv_excl == CLEAR_VALUE) { qgroup->lim_flags &= ~BTRFS_QGROUP_LIMIT_RSV_EXCL; limit->flags &= ~BTRFS_QGROUP_LIMIT_RSV_EXCL; qgroup->rsv_excl = 0; } else { qgroup->rsv_excl = limit->rsv_excl; } } qgroup->lim_flags |= limit->flags; spin_unlock(&fs_info->qgroup_lock); ret = update_qgroup_limit_item(trans, quota_root, qgroup); if (ret) { fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; btrfs_info(fs_info, "unable to update quota limit for %llu", qgroupid); } out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_qgroup_prepare_account_extents(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_qgroup_extent_record *record; struct btrfs_delayed_ref_root *delayed_refs; struct rb_node *node; u64 qgroup_to_skip; int ret = 0; delayed_refs = &trans->transaction->delayed_refs; qgroup_to_skip = delayed_refs->qgroup_to_skip; /* * No need to do lock, since this function will only be called in * btrfs_commit_transaction(). */ node = rb_first(&delayed_refs->dirty_extent_root); while (node) { record = rb_entry(node, struct btrfs_qgroup_extent_record, node); ret = btrfs_find_all_roots(NULL, fs_info, record->bytenr, 0, &record->old_roots); if (ret < 0) break; if (qgroup_to_skip) ulist_del(record->old_roots, qgroup_to_skip, 0); node = rb_next(node); } return ret; } struct btrfs_qgroup_extent_record * btrfs_qgroup_insert_dirty_extent(struct btrfs_fs_info *fs_info, struct btrfs_delayed_ref_root *delayed_refs, struct btrfs_qgroup_extent_record *record) { struct rb_node **p = &delayed_refs->dirty_extent_root.rb_node; struct rb_node *parent_node = NULL; struct btrfs_qgroup_extent_record *entry; u64 bytenr = record->bytenr; assert_spin_locked(&delayed_refs->lock); trace_btrfs_qgroup_insert_dirty_extent(fs_info, record); while (*p) { parent_node = *p; entry = rb_entry(parent_node, struct btrfs_qgroup_extent_record, node); if (bytenr < entry->bytenr) p = &(*p)->rb_left; else if (bytenr > entry->bytenr) p = &(*p)->rb_right; else return entry; } rb_link_node(&record->node, parent_node, p); rb_insert_color(&record->node, &delayed_refs->dirty_extent_root); return NULL; } #define UPDATE_NEW 0 #define UPDATE_OLD 1 /* * Walk all of the roots that points to the bytenr and adjust their refcnts. */ static int qgroup_update_refcnt(struct btrfs_fs_info *fs_info, struct ulist *roots, struct ulist *tmp, struct ulist *qgroups, u64 seq, int update_old) { struct ulist_node *unode; struct ulist_iterator uiter; struct ulist_node *tmp_unode; struct ulist_iterator tmp_uiter; struct btrfs_qgroup *qg; int ret = 0; if (!roots) return 0; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(roots, &uiter))) { qg = find_qgroup_rb(fs_info, unode->val); if (!qg) continue; ulist_reinit(tmp); ret = ulist_add(qgroups, qg->qgroupid, ptr_to_u64(qg), GFP_ATOMIC); if (ret < 0) return ret; ret = ulist_add(tmp, qg->qgroupid, ptr_to_u64(qg), GFP_ATOMIC); if (ret < 0) return ret; ULIST_ITER_INIT(&tmp_uiter); while ((tmp_unode = ulist_next(tmp, &tmp_uiter))) { struct btrfs_qgroup_list *glist; qg = u64_to_ptr(tmp_unode->aux); if (update_old) btrfs_qgroup_update_old_refcnt(qg, seq, 1); else btrfs_qgroup_update_new_refcnt(qg, seq, 1); list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(qgroups, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) return ret; ret = ulist_add(tmp, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) return ret; } } } return 0; } /* * Update qgroup rfer/excl counters. * Rfer update is easy, codes can explain themselves. * * Excl update is tricky, the update is split into 2 part. * Part 1: Possible exclusive <-> sharing detect: * | A | !A | * ------------------------------------- * B | * | - | * ------------------------------------- * !B | + | ** | * ------------------------------------- * * Conditions: * A: cur_old_roots < nr_old_roots (not exclusive before) * !A: cur_old_roots == nr_old_roots (possible exclusive before) * B: cur_new_roots < nr_new_roots (not exclusive now) * !B: cur_new_roots == nr_new_roots (possible exclusive now) * * Results: * +: Possible sharing -> exclusive -: Possible exclusive -> sharing * *: Definitely not changed. **: Possible unchanged. * * For !A and !B condition, the exception is cur_old/new_roots == 0 case. * * To make the logic clear, we first use condition A and B to split * combination into 4 results. * * Then, for result "+" and "-", check old/new_roots == 0 case, as in them * only on variant maybe 0. * * Lastly, check result **, since there are 2 variants maybe 0, split them * again(2x2). * But this time we don't need to consider other things, the codes and logic * is easy to understand now. */ static int qgroup_update_counters(struct btrfs_fs_info *fs_info, struct ulist *qgroups, u64 nr_old_roots, u64 nr_new_roots, u64 num_bytes, u64 seq) { struct ulist_node *unode; struct ulist_iterator uiter; struct btrfs_qgroup *qg; u64 cur_new_count, cur_old_count; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(qgroups, &uiter))) { bool dirty = false; qg = u64_to_ptr(unode->aux); cur_old_count = btrfs_qgroup_get_old_refcnt(qg, seq); cur_new_count = btrfs_qgroup_get_new_refcnt(qg, seq); trace_qgroup_update_counters(fs_info, qg->qgroupid, cur_old_count, cur_new_count); /* Rfer update part */ if (cur_old_count == 0 && cur_new_count > 0) { qg->rfer += num_bytes; qg->rfer_cmpr += num_bytes; dirty = true; } if (cur_old_count > 0 && cur_new_count == 0) { qg->rfer -= num_bytes; qg->rfer_cmpr -= num_bytes; dirty = true; } /* Excl update part */ /* Exclusive/none -> shared case */ if (cur_old_count == nr_old_roots && cur_new_count < nr_new_roots) { /* Exclusive -> shared */ if (cur_old_count != 0) { qg->excl -= num_bytes; qg->excl_cmpr -= num_bytes; dirty = true; } } /* Shared -> exclusive/none case */ if (cur_old_count < nr_old_roots && cur_new_count == nr_new_roots) { /* Shared->exclusive */ if (cur_new_count != 0) { qg->excl += num_bytes; qg->excl_cmpr += num_bytes; dirty = true; } } /* Exclusive/none -> exclusive/none case */ if (cur_old_count == nr_old_roots && cur_new_count == nr_new_roots) { if (cur_old_count == 0) { /* None -> exclusive/none */ if (cur_new_count != 0) { /* None -> exclusive */ qg->excl += num_bytes; qg->excl_cmpr += num_bytes; dirty = true; } /* None -> none, nothing changed */ } else { /* Exclusive -> exclusive/none */ if (cur_new_count == 0) { /* Exclusive -> none */ qg->excl -= num_bytes; qg->excl_cmpr -= num_bytes; dirty = true; } /* Exclusive -> exclusive, nothing changed */ } } if (dirty) qgroup_dirty(fs_info, qg); } return 0; } int btrfs_qgroup_account_extent(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 bytenr, u64 num_bytes, struct ulist *old_roots, struct ulist *new_roots) { struct ulist *qgroups = NULL; struct ulist *tmp = NULL; u64 seq; u64 nr_new_roots = 0; u64 nr_old_roots = 0; int ret = 0; if (new_roots) nr_new_roots = new_roots->nnodes; if (old_roots) nr_old_roots = old_roots->nnodes; if (!fs_info->quota_enabled) goto out_free; BUG_ON(!fs_info->quota_root); trace_btrfs_qgroup_account_extent(fs_info, bytenr, num_bytes, nr_old_roots, nr_new_roots); qgroups = ulist_alloc(GFP_NOFS); if (!qgroups) { ret = -ENOMEM; goto out_free; } tmp = ulist_alloc(GFP_NOFS); if (!tmp) { ret = -ENOMEM; goto out_free; } mutex_lock(&fs_info->qgroup_rescan_lock); if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { if (fs_info->qgroup_rescan_progress.objectid <= bytenr) { mutex_unlock(&fs_info->qgroup_rescan_lock); ret = 0; goto out_free; } } mutex_unlock(&fs_info->qgroup_rescan_lock); spin_lock(&fs_info->qgroup_lock); seq = fs_info->qgroup_seq; /* Update old refcnts using old_roots */ ret = qgroup_update_refcnt(fs_info, old_roots, tmp, qgroups, seq, UPDATE_OLD); if (ret < 0) goto out; /* Update new refcnts using new_roots */ ret = qgroup_update_refcnt(fs_info, new_roots, tmp, qgroups, seq, UPDATE_NEW); if (ret < 0) goto out; qgroup_update_counters(fs_info, qgroups, nr_old_roots, nr_new_roots, num_bytes, seq); /* * Bump qgroup_seq to avoid seq overlap */ fs_info->qgroup_seq += max(nr_old_roots, nr_new_roots) + 1; out: spin_unlock(&fs_info->qgroup_lock); out_free: ulist_free(tmp); ulist_free(qgroups); ulist_free(old_roots); ulist_free(new_roots); return ret; } int btrfs_qgroup_account_extents(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_qgroup_extent_record *record; struct btrfs_delayed_ref_root *delayed_refs; struct ulist *new_roots = NULL; struct rb_node *node; u64 qgroup_to_skip; int ret = 0; delayed_refs = &trans->transaction->delayed_refs; qgroup_to_skip = delayed_refs->qgroup_to_skip; while ((node = rb_first(&delayed_refs->dirty_extent_root))) { record = rb_entry(node, struct btrfs_qgroup_extent_record, node); trace_btrfs_qgroup_account_extents(fs_info, record); if (!ret) { /* * Use (u64)-1 as time_seq to do special search, which * doesn't lock tree or delayed_refs and search current * root. It's safe inside commit_transaction(). */ ret = btrfs_find_all_roots(trans, fs_info, record->bytenr, (u64)-1, &new_roots); if (ret < 0) goto cleanup; if (qgroup_to_skip) ulist_del(new_roots, qgroup_to_skip, 0); ret = btrfs_qgroup_account_extent(trans, fs_info, record->bytenr, record->num_bytes, record->old_roots, new_roots); record->old_roots = NULL; new_roots = NULL; } cleanup: ulist_free(record->old_roots); ulist_free(new_roots); new_roots = NULL; rb_erase(node, &delayed_refs->dirty_extent_root); kfree(record); } return ret; } /* * called from commit_transaction. Writes all changed qgroups to disk. */ int btrfs_run_qgroups(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *quota_root = fs_info->quota_root; int ret = 0; int start_rescan_worker = 0; if (!quota_root) goto out; if (!fs_info->quota_enabled && fs_info->pending_quota_state) start_rescan_worker = 1; fs_info->quota_enabled = fs_info->pending_quota_state; spin_lock(&fs_info->qgroup_lock); while (!list_empty(&fs_info->dirty_qgroups)) { struct btrfs_qgroup *qgroup; qgroup = list_first_entry(&fs_info->dirty_qgroups, struct btrfs_qgroup, dirty); list_del_init(&qgroup->dirty); spin_unlock(&fs_info->qgroup_lock); ret = update_qgroup_info_item(trans, quota_root, qgroup); if (ret) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; ret = update_qgroup_limit_item(trans, quota_root, qgroup); if (ret) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; spin_lock(&fs_info->qgroup_lock); } if (fs_info->quota_enabled) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_ON; else fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_ON; spin_unlock(&fs_info->qgroup_lock); ret = update_qgroup_status_item(trans, fs_info, quota_root); if (ret) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; if (!ret && start_rescan_worker) { ret = qgroup_rescan_init(fs_info, 0, 1); if (!ret) { qgroup_rescan_zero_tracking(fs_info); btrfs_queue_work(fs_info->qgroup_rescan_workers, &fs_info->qgroup_rescan_work); } ret = 0; } out: return ret; } /* * Copy the accounting information between qgroups. This is necessary * when a snapshot or a subvolume is created. Throwing an error will * cause a transaction abort so we take extra care here to only error * when a readonly fs is a reasonable outcome. */ int btrfs_qgroup_inherit(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 srcid, u64 objectid, struct btrfs_qgroup_inherit *inherit) { int ret = 0; int i; u64 *i_qgroups; struct btrfs_root *quota_root = fs_info->quota_root; struct btrfs_qgroup *srcgroup; struct btrfs_qgroup *dstgroup; u32 level_size = 0; u64 nums; mutex_lock(&fs_info->qgroup_ioctl_lock); if (!fs_info->quota_enabled) goto out; if (!quota_root) { ret = -EINVAL; goto out; } if (inherit) { i_qgroups = (u64 *)(inherit + 1); nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 2 * inherit->num_excl_copies; for (i = 0; i < nums; ++i) { srcgroup = find_qgroup_rb(fs_info, *i_qgroups); /* * Zero out invalid groups so we can ignore * them later. */ if (!srcgroup || ((srcgroup->qgroupid >> 48) <= (objectid >> 48))) *i_qgroups = 0ULL; ++i_qgroups; } } /* * create a tracking group for the subvol itself */ ret = add_qgroup_item(trans, quota_root, objectid); if (ret) goto out; if (srcid) { struct btrfs_root *srcroot; struct btrfs_key srckey; srckey.objectid = srcid; srckey.type = BTRFS_ROOT_ITEM_KEY; srckey.offset = (u64)-1; srcroot = btrfs_read_fs_root_no_name(fs_info, &srckey); if (IS_ERR(srcroot)) { ret = PTR_ERR(srcroot); goto out; } rcu_read_lock(); level_size = srcroot->nodesize; rcu_read_unlock(); } /* * add qgroup to all inherited groups */ if (inherit) { i_qgroups = (u64 *)(inherit + 1); for (i = 0; i < inherit->num_qgroups; ++i, ++i_qgroups) { if (*i_qgroups == 0) continue; ret = add_qgroup_relation_item(trans, quota_root, objectid, *i_qgroups); if (ret && ret != -EEXIST) goto out; ret = add_qgroup_relation_item(trans, quota_root, *i_qgroups, objectid); if (ret && ret != -EEXIST) goto out; } ret = 0; } spin_lock(&fs_info->qgroup_lock); dstgroup = add_qgroup_rb(fs_info, objectid); if (IS_ERR(dstgroup)) { ret = PTR_ERR(dstgroup); goto unlock; } if (inherit && inherit->flags & BTRFS_QGROUP_INHERIT_SET_LIMITS) { dstgroup->lim_flags = inherit->lim.flags; dstgroup->max_rfer = inherit->lim.max_rfer; dstgroup->max_excl = inherit->lim.max_excl; dstgroup->rsv_rfer = inherit->lim.rsv_rfer; dstgroup->rsv_excl = inherit->lim.rsv_excl; ret = update_qgroup_limit_item(trans, quota_root, dstgroup); if (ret) { fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; btrfs_info(fs_info, "unable to update quota limit for %llu", dstgroup->qgroupid); goto unlock; } } if (srcid) { srcgroup = find_qgroup_rb(fs_info, srcid); if (!srcgroup) goto unlock; /* * We call inherit after we clone the root in order to make sure * our counts don't go crazy, so at this point the only * difference between the two roots should be the root node. */ dstgroup->rfer = srcgroup->rfer; dstgroup->rfer_cmpr = srcgroup->rfer_cmpr; dstgroup->excl = level_size; dstgroup->excl_cmpr = level_size; srcgroup->excl = level_size; srcgroup->excl_cmpr = level_size; /* inherit the limit info */ dstgroup->lim_flags = srcgroup->lim_flags; dstgroup->max_rfer = srcgroup->max_rfer; dstgroup->max_excl = srcgroup->max_excl; dstgroup->rsv_rfer = srcgroup->rsv_rfer; dstgroup->rsv_excl = srcgroup->rsv_excl; qgroup_dirty(fs_info, dstgroup); qgroup_dirty(fs_info, srcgroup); } if (!inherit) goto unlock; i_qgroups = (u64 *)(inherit + 1); for (i = 0; i < inherit->num_qgroups; ++i) { if (*i_qgroups) { ret = add_relation_rb(quota_root->fs_info, objectid, *i_qgroups); if (ret) goto unlock; } ++i_qgroups; } for (i = 0; i < inherit->num_ref_copies; ++i, i_qgroups += 2) { struct btrfs_qgroup *src; struct btrfs_qgroup *dst; if (!i_qgroups[0] || !i_qgroups[1]) continue; src = find_qgroup_rb(fs_info, i_qgroups[0]); dst = find_qgroup_rb(fs_info, i_qgroups[1]); if (!src || !dst) { ret = -EINVAL; goto unlock; } dst->rfer = src->rfer - level_size; dst->rfer_cmpr = src->rfer_cmpr - level_size; } for (i = 0; i < inherit->num_excl_copies; ++i, i_qgroups += 2) { struct btrfs_qgroup *src; struct btrfs_qgroup *dst; if (!i_qgroups[0] || !i_qgroups[1]) continue; src = find_qgroup_rb(fs_info, i_qgroups[0]); dst = find_qgroup_rb(fs_info, i_qgroups[1]); if (!src || !dst) { ret = -EINVAL; goto unlock; } dst->excl = src->excl + level_size; dst->excl_cmpr = src->excl_cmpr + level_size; } unlock: spin_unlock(&fs_info->qgroup_lock); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } static int qgroup_reserve(struct btrfs_root *root, u64 num_bytes) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; struct btrfs_fs_info *fs_info = root->fs_info; u64 ref_root = root->root_key.objectid; int ret = 0; struct ulist_node *unode; struct ulist_iterator uiter; if (!is_fstree(ref_root)) return 0; if (num_bytes == 0) return 0; spin_lock(&fs_info->qgroup_lock); quota_root = fs_info->quota_root; if (!quota_root) goto out; qgroup = find_qgroup_rb(fs_info, ref_root); if (!qgroup) goto out; /* * in a first step, we check all affected qgroups if any limits would * be exceeded */ ulist_reinit(fs_info->qgroup_ulist); ret = ulist_add(fs_info->qgroup_ulist, qgroup->qgroupid, (uintptr_t)qgroup, GFP_ATOMIC); if (ret < 0) goto out; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) { struct btrfs_qgroup *qg; struct btrfs_qgroup_list *glist; qg = u64_to_ptr(unode->aux); if ((qg->lim_flags & BTRFS_QGROUP_LIMIT_MAX_RFER) && qg->reserved + (s64)qg->rfer + num_bytes > qg->max_rfer) { ret = -EDQUOT; goto out; } if ((qg->lim_flags & BTRFS_QGROUP_LIMIT_MAX_EXCL) && qg->reserved + (s64)qg->excl + num_bytes > qg->max_excl) { ret = -EDQUOT; goto out; } list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(fs_info->qgroup_ulist, glist->group->qgroupid, (uintptr_t)glist->group, GFP_ATOMIC); if (ret < 0) goto out; } } ret = 0; /* * no limits exceeded, now record the reservation into all qgroups */ ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) { struct btrfs_qgroup *qg; qg = u64_to_ptr(unode->aux); qg->reserved += num_bytes; } out: spin_unlock(&fs_info->qgroup_lock); return ret; } void btrfs_qgroup_free_refroot(struct btrfs_fs_info *fs_info, u64 ref_root, u64 num_bytes) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; struct ulist_node *unode; struct ulist_iterator uiter; int ret = 0; if (!is_fstree(ref_root)) return; if (num_bytes == 0) return; spin_lock(&fs_info->qgroup_lock); quota_root = fs_info->quota_root; if (!quota_root) goto out; qgroup = find_qgroup_rb(fs_info, ref_root); if (!qgroup) goto out; ulist_reinit(fs_info->qgroup_ulist); ret = ulist_add(fs_info->qgroup_ulist, qgroup->qgroupid, (uintptr_t)qgroup, GFP_ATOMIC); if (ret < 0) goto out; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) { struct btrfs_qgroup *qg; struct btrfs_qgroup_list *glist; qg = u64_to_ptr(unode->aux); qg->reserved -= num_bytes; list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(fs_info->qgroup_ulist, glist->group->qgroupid, (uintptr_t)glist->group, GFP_ATOMIC); if (ret < 0) goto out; } } out: spin_unlock(&fs_info->qgroup_lock); } static inline void qgroup_free(struct btrfs_root *root, u64 num_bytes) { return btrfs_qgroup_free_refroot(root->fs_info, root->objectid, num_bytes); } void assert_qgroups_uptodate(struct btrfs_trans_handle *trans) { if (list_empty(&trans->qgroup_ref_list) && !trans->delayed_ref_elem.seq) return; btrfs_err(trans->root->fs_info, "qgroups not uptodate in trans handle %p: list is%s empty, " "seq is %#x.%x", trans, list_empty(&trans->qgroup_ref_list) ? "" : " not", (u32)(trans->delayed_ref_elem.seq >> 32), (u32)trans->delayed_ref_elem.seq); BUG(); } /* * returns < 0 on error, 0 when more leafs are to be scanned. * returns 1 when done. */ static int qgroup_rescan_leaf(struct btrfs_fs_info *fs_info, struct btrfs_path *path, struct btrfs_trans_handle *trans) { struct btrfs_key found; struct extent_buffer *scratch_leaf = NULL; struct ulist *roots = NULL; struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); u64 num_bytes; int slot; int ret; mutex_lock(&fs_info->qgroup_rescan_lock); ret = btrfs_search_slot_for_read(fs_info->extent_root, &fs_info->qgroup_rescan_progress, path, 1, 0); pr_debug("current progress key (%llu %u %llu), search_slot ret %d\n", fs_info->qgroup_rescan_progress.objectid, fs_info->qgroup_rescan_progress.type, fs_info->qgroup_rescan_progress.offset, ret); if (ret) { /* * The rescan is about to end, we will not be scanning any * further blocks. We cannot unset the RESCAN flag here, because * we want to commit the transaction if everything went well. * To make the live accounting work in this phase, we set our * scan progress pointer such that every real extent objectid * will be smaller. */ fs_info->qgroup_rescan_progress.objectid = (u64)-1; btrfs_release_path(path); mutex_unlock(&fs_info->qgroup_rescan_lock); return ret; } btrfs_item_key_to_cpu(path->nodes[0], &found, btrfs_header_nritems(path->nodes[0]) - 1); fs_info->qgroup_rescan_progress.objectid = found.objectid + 1; btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); scratch_leaf = btrfs_clone_extent_buffer(path->nodes[0]); if (!scratch_leaf) { ret = -ENOMEM; mutex_unlock(&fs_info->qgroup_rescan_lock); goto out; } extent_buffer_get(scratch_leaf); btrfs_tree_read_lock(scratch_leaf); btrfs_set_lock_blocking_rw(scratch_leaf, BTRFS_READ_LOCK); slot = path->slots[0]; btrfs_release_path(path); mutex_unlock(&fs_info->qgroup_rescan_lock); for (; slot < btrfs_header_nritems(scratch_leaf); ++slot) { btrfs_item_key_to_cpu(scratch_leaf, &found, slot); if (found.type != BTRFS_EXTENT_ITEM_KEY && found.type != BTRFS_METADATA_ITEM_KEY) continue; if (found.type == BTRFS_METADATA_ITEM_KEY) num_bytes = fs_info->extent_root->nodesize; else num_bytes = found.offset; ret = btrfs_find_all_roots(NULL, fs_info, found.objectid, 0, &roots); if (ret < 0) goto out; /* For rescan, just pass old_roots as NULL */ ret = btrfs_qgroup_account_extent(trans, fs_info, found.objectid, num_bytes, NULL, roots); if (ret < 0) goto out; } out: if (scratch_leaf) { btrfs_tree_read_unlock_blocking(scratch_leaf); free_extent_buffer(scratch_leaf); } btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); return ret; } static void btrfs_qgroup_rescan_worker(struct btrfs_work *work) { struct btrfs_fs_info *fs_info = container_of(work, struct btrfs_fs_info, qgroup_rescan_work); struct btrfs_path *path; struct btrfs_trans_handle *trans = NULL; int err = -ENOMEM; int ret = 0; path = btrfs_alloc_path(); if (!path) goto out; err = 0; while (!err && !btrfs_fs_closing(fs_info)) { trans = btrfs_start_transaction(fs_info->fs_root, 0); if (IS_ERR(trans)) { err = PTR_ERR(trans); break; } if (!fs_info->quota_enabled) { err = -EINTR; } else { err = qgroup_rescan_leaf(fs_info, path, trans); } if (err > 0) btrfs_commit_transaction(trans, fs_info->fs_root); else btrfs_end_transaction(trans, fs_info->fs_root); } out: btrfs_free_path(path); mutex_lock(&fs_info->qgroup_rescan_lock); if (!btrfs_fs_closing(fs_info)) fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN; if (err > 0 && fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT) { fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; } else if (err < 0) { fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; } mutex_unlock(&fs_info->qgroup_rescan_lock); /* * only update status, since the previous part has already updated the * qgroup info. */ trans = btrfs_start_transaction(fs_info->quota_root, 1); if (IS_ERR(trans)) { err = PTR_ERR(trans); btrfs_err(fs_info, "fail to start transaction for status update: %d\n", err); goto done; } ret = update_qgroup_status_item(trans, fs_info, fs_info->quota_root); if (ret < 0) { err = ret; btrfs_err(fs_info, "fail to update qgroup status: %d\n", err); } btrfs_end_transaction(trans, fs_info->quota_root); if (btrfs_fs_closing(fs_info)) { btrfs_info(fs_info, "qgroup scan paused"); } else if (err >= 0) { btrfs_info(fs_info, "qgroup scan completed%s", err > 0 ? " (inconsistency flag cleared)" : ""); } else { btrfs_err(fs_info, "qgroup scan failed with %d", err); } done: complete_all(&fs_info->qgroup_rescan_completion); } /* * Checks that (a) no rescan is running and (b) quota is enabled. Allocates all * memory required for the rescan context. */ static int qgroup_rescan_init(struct btrfs_fs_info *fs_info, u64 progress_objectid, int init_flags) { int ret = 0; if (!init_flags && (!(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) || !(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON))) { ret = -EINVAL; goto err; } mutex_lock(&fs_info->qgroup_rescan_lock); spin_lock(&fs_info->qgroup_lock); if (init_flags) { if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) ret = -EINPROGRESS; else if (!(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON)) ret = -EINVAL; if (ret) { spin_unlock(&fs_info->qgroup_lock); mutex_unlock(&fs_info->qgroup_rescan_lock); goto err; } fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN; } memset(&fs_info->qgroup_rescan_progress, 0, sizeof(fs_info->qgroup_rescan_progress)); fs_info->qgroup_rescan_progress.objectid = progress_objectid; init_completion(&fs_info->qgroup_rescan_completion); spin_unlock(&fs_info->qgroup_lock); mutex_unlock(&fs_info->qgroup_rescan_lock); memset(&fs_info->qgroup_rescan_work, 0, sizeof(fs_info->qgroup_rescan_work)); btrfs_init_work(&fs_info->qgroup_rescan_work, btrfs_qgroup_rescan_helper, btrfs_qgroup_rescan_worker, NULL, NULL); if (ret) { err: btrfs_info(fs_info, "qgroup_rescan_init failed with %d", ret); return ret; } return 0; } static void qgroup_rescan_zero_tracking(struct btrfs_fs_info *fs_info) { struct rb_node *n; struct btrfs_qgroup *qgroup; spin_lock(&fs_info->qgroup_lock); /* clear all current qgroup tracking information */ for (n = rb_first(&fs_info->qgroup_tree); n; n = rb_next(n)) { qgroup = rb_entry(n, struct btrfs_qgroup, node); qgroup->rfer = 0; qgroup->rfer_cmpr = 0; qgroup->excl = 0; qgroup->excl_cmpr = 0; } spin_unlock(&fs_info->qgroup_lock); } int btrfs_qgroup_rescan(struct btrfs_fs_info *fs_info) { int ret = 0; struct btrfs_trans_handle *trans; ret = qgroup_rescan_init(fs_info, 0, 1); if (ret) return ret; /* * We have set the rescan_progress to 0, which means no more * delayed refs will be accounted by btrfs_qgroup_account_ref. * However, btrfs_qgroup_account_ref may be right after its call * to btrfs_find_all_roots, in which case it would still do the * accounting. * To solve this, we're committing the transaction, which will * ensure we run all delayed refs and only after that, we are * going to clear all tracking information for a clean start. */ trans = btrfs_join_transaction(fs_info->fs_root); if (IS_ERR(trans)) { fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN; return PTR_ERR(trans); } ret = btrfs_commit_transaction(trans, fs_info->fs_root); if (ret) { fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN; return ret; } qgroup_rescan_zero_tracking(fs_info); btrfs_queue_work(fs_info->qgroup_rescan_workers, &fs_info->qgroup_rescan_work); return 0; } int btrfs_qgroup_wait_for_completion(struct btrfs_fs_info *fs_info) { int running; int ret = 0; mutex_lock(&fs_info->qgroup_rescan_lock); spin_lock(&fs_info->qgroup_lock); running = fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN; spin_unlock(&fs_info->qgroup_lock); mutex_unlock(&fs_info->qgroup_rescan_lock); if (running) ret = wait_for_completion_interruptible( &fs_info->qgroup_rescan_completion); return ret; } /* * this is only called from open_ctree where we're still single threaded, thus * locking is omitted here. */ void btrfs_qgroup_rescan_resume(struct btrfs_fs_info *fs_info) { if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) btrfs_queue_work(fs_info->qgroup_rescan_workers, &fs_info->qgroup_rescan_work); } /* * Reserve qgroup space for range [start, start + len). * * This function will either reserve space from related qgroups or doing * nothing if the range is already reserved. * * Return 0 for successful reserve * Return <0 for error (including -EQUOT) * * NOTE: this function may sleep for memory allocation. */ int btrfs_qgroup_reserve_data(struct inode *inode, u64 start, u64 len) { struct btrfs_root *root = BTRFS_I(inode)->root; struct extent_changeset changeset; struct ulist_node *unode; struct ulist_iterator uiter; int ret; if (!root->fs_info->quota_enabled || !is_fstree(root->objectid) || len == 0) return 0; changeset.bytes_changed = 0; changeset.range_changed = ulist_alloc(GFP_NOFS); ret = set_record_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len -1, EXTENT_QGROUP_RESERVED, &changeset); trace_btrfs_qgroup_reserve_data(inode, start, len, changeset.bytes_changed, QGROUP_RESERVE); if (ret < 0) goto cleanup; ret = qgroup_reserve(root, changeset.bytes_changed); if (ret < 0) goto cleanup; ulist_free(changeset.range_changed); return ret; cleanup: /* cleanup already reserved ranges */ ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(changeset.range_changed, &uiter))) clear_extent_bit(&BTRFS_I(inode)->io_tree, unode->val, unode->aux, EXTENT_QGROUP_RESERVED, 0, 0, NULL, GFP_NOFS); ulist_free(changeset.range_changed); return ret; } static int __btrfs_qgroup_release_data(struct inode *inode, u64 start, u64 len, int free) { struct extent_changeset changeset; int trace_op = QGROUP_RELEASE; int ret; changeset.bytes_changed = 0; changeset.range_changed = ulist_alloc(GFP_NOFS); if (!changeset.range_changed) return -ENOMEM; ret = clear_record_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len -1, EXTENT_QGROUP_RESERVED, &changeset); if (ret < 0) goto out; if (free) { qgroup_free(BTRFS_I(inode)->root, changeset.bytes_changed); trace_op = QGROUP_FREE; } trace_btrfs_qgroup_release_data(inode, start, len, changeset.bytes_changed, trace_op); out: ulist_free(changeset.range_changed); return ret; } /* * Free a reserved space range from io_tree and related qgroups * * Should be called when a range of pages get invalidated before reaching disk. * Or for error cleanup case. * * For data written to disk, use btrfs_qgroup_release_data(). * * NOTE: This function may sleep for memory allocation. */ int btrfs_qgroup_free_data(struct inode *inode, u64 start, u64 len) { return __btrfs_qgroup_release_data(inode, start, len, 1); } /* * Release a reserved space range from io_tree only. * * Should be called when a range of pages get written to disk and corresponding * FILE_EXTENT is inserted into corresponding root. * * Since new qgroup accounting framework will only update qgroup numbers at * commit_transaction() time, its reserved space shouldn't be freed from * related qgroups. * * But we should release the range from io_tree, to allow further write to be * COWed. * * NOTE: This function may sleep for memory allocation. */ int btrfs_qgroup_release_data(struct inode *inode, u64 start, u64 len) { return __btrfs_qgroup_release_data(inode, start, len, 0); } int btrfs_qgroup_reserve_meta(struct btrfs_root *root, int num_bytes) { int ret; if (!root->fs_info->quota_enabled || !is_fstree(root->objectid) || num_bytes == 0) return 0; BUG_ON(num_bytes != round_down(num_bytes, root->nodesize)); ret = qgroup_reserve(root, num_bytes); if (ret < 0) return ret; atomic_add(num_bytes, &root->qgroup_meta_rsv); return ret; } void btrfs_qgroup_free_meta_all(struct btrfs_root *root) { int reserved; if (!root->fs_info->quota_enabled || !is_fstree(root->objectid)) return; reserved = atomic_xchg(&root->qgroup_meta_rsv, 0); if (reserved == 0) return; qgroup_free(root, reserved); } void btrfs_qgroup_free_meta(struct btrfs_root *root, int num_bytes) { if (!root->fs_info->quota_enabled || !is_fstree(root->objectid)) return; BUG_ON(num_bytes != round_down(num_bytes, root->nodesize)); WARN_ON(atomic_read(&root->qgroup_meta_rsv) < num_bytes); atomic_sub(num_bytes, &root->qgroup_meta_rsv); qgroup_free(root, num_bytes); } /* * Check qgroup reserved space leaking, normally at destroy inode * time */ void btrfs_qgroup_check_reserved_leak(struct inode *inode) { struct extent_changeset changeset; struct ulist_node *unode; struct ulist_iterator iter; int ret; changeset.bytes_changed = 0; changeset.range_changed = ulist_alloc(GFP_NOFS); if (WARN_ON(!changeset.range_changed)) return; ret = clear_record_extent_bits(&BTRFS_I(inode)->io_tree, 0, (u64)-1, EXTENT_QGROUP_RESERVED, &changeset); WARN_ON(ret < 0); if (WARN_ON(changeset.bytes_changed)) { ULIST_ITER_INIT(&iter); while ((unode = ulist_next(changeset.range_changed, &iter))) { btrfs_warn(BTRFS_I(inode)->root->fs_info, "leaking qgroup reserved space, ino: %lu, start: %llu, end: %llu", inode->i_ino, unode->val, unode->aux); } qgroup_free(BTRFS_I(inode)->root, changeset.bytes_changed); } ulist_free(changeset.range_changed); }