/****************************************************************************** * Xen selfballoon driver (and optional frontswap self-shrinking driver) * * Copyright (c) 2009-2011, Dan Magenheimer, Oracle Corp. * * This code complements the cleancache and frontswap patchsets to optimize * support for Xen Transcendent Memory ("tmem"). The policy it implements * is rudimentary and will likely improve over time, but it does work well * enough today. * * Two functionalities are implemented here which both use "control theory" * (feedback) to optimize memory utilization. In a virtualized environment * such as Xen, RAM is often a scarce resource and we would like to ensure * that each of a possibly large number of virtual machines is using RAM * efficiently, i.e. using as little as possible when under light load * and obtaining as much as possible when memory demands are high. * Since RAM needs vary highly dynamically and sometimes dramatically, * "hysteresis" is used, that is, memory target is determined not just * on current data but also on past data stored in the system. * * "Selfballooning" creates memory pressure by managing the Xen balloon * driver to decrease and increase available kernel memory, driven * largely by the target value of "Committed_AS" (see /proc/meminfo). * Since Committed_AS does not account for clean mapped pages (i.e. pages * in RAM that are identical to pages on disk), selfballooning has the * affect of pushing less frequently used clean pagecache pages out of * kernel RAM and, presumably using cleancache, into Xen tmem where * Xen can more efficiently optimize RAM utilization for such pages. * * When kernel memory demand unexpectedly increases faster than Xen, via * the selfballoon driver, is able to (or chooses to) provide usable RAM, * the kernel may invoke swapping. In most cases, frontswap is able * to absorb this swapping into Xen tmem. However, due to the fact * that the kernel swap subsystem assumes swapping occurs to a disk, * swapped pages may sit on the disk for a very long time; even if * the kernel knows the page will never be used again. This is because * the disk space costs very little and can be overwritten when * necessary. When such stale pages are in frontswap, however, they * are taking up valuable real estate. "Frontswap selfshrinking" works * to resolve this: When frontswap activity is otherwise stable * and the guest kernel is not under memory pressure, the "frontswap * selfshrinking" accounts for this by providing pressure to remove some * pages from frontswap and return them to kernel memory. * * For both "selfballooning" and "frontswap-selfshrinking", a worker * thread is used and sysfs tunables are provided to adjust the frequency * and rate of adjustments to achieve the goal, as well as to disable one * or both functions independently. * * While some argue that this functionality can and should be implemented * in userspace, it has been observed that bad things happen (e.g. OOMs). * * System configuration note: Selfballooning should not be enabled on * systems without a sufficiently large swap device configured; for best * results, it is recommended that total swap be increased by the size * of the guest memory. Also, while technically not required to be * configured, it is highly recommended that frontswap also be configured * and enabled when selfballooning is running. So, selfballooning * is disabled by default if frontswap is not configured and can only * be enabled with the "selfballooning" kernel boot option; similarly * selfballooning is enabled by default if frontswap is configured and * can be disabled with the "noselfballooning" kernel boot option. Finally, * when frontswap is configured, frontswap-selfshrinking can be disabled * with the "noselfshrink" kernel boot option. * * Selfballooning is disallowed in domain0 and force-disabled. * */ #include #include #include #include #include #include #include #include #include #include /* Enable/disable with sysfs. */ static int xen_selfballooning_enabled __read_mostly; /* * Controls rate at which memory target (this iteration) approaches * ultimate goal when memory need is increasing (up-hysteresis) or * decreasing (down-hysteresis). Higher values of hysteresis cause * slower increases/decreases. The default values for the various * parameters were deemed reasonable by experimentation, may be * workload-dependent, and can all be adjusted via sysfs. */ static unsigned int selfballoon_downhysteresis __read_mostly = 8; static unsigned int selfballoon_uphysteresis __read_mostly = 1; /* In HZ, controls frequency of worker invocation. */ static unsigned int selfballoon_interval __read_mostly = 5; /* * Minimum usable RAM in MB for selfballooning target for balloon. * If non-zero, it is added to totalreserve_pages and self-ballooning * will not balloon below the sum. If zero, a piecewise linear function * is calculated as a minimum and added to totalreserve_pages. Note that * setting this value indiscriminately may cause OOMs and crashes. */ static unsigned int selfballoon_min_usable_mb; static void selfballoon_process(struct work_struct *work); static DECLARE_DELAYED_WORK(selfballoon_worker, selfballoon_process); #ifdef CONFIG_FRONTSWAP #include /* Enable/disable with sysfs. */ static bool frontswap_selfshrinking __read_mostly; /* Enable/disable with kernel boot option. */ static bool use_frontswap_selfshrink __initdata = true; /* * The default values for the following parameters were deemed reasonable * by experimentation, may be workload-dependent, and can all be * adjusted via sysfs. */ /* Control rate for frontswap shrinking. Higher hysteresis is slower. */ static unsigned int frontswap_hysteresis __read_mostly = 20; /* * Number of selfballoon worker invocations to wait before observing that * frontswap selfshrinking should commence. Note that selfshrinking does * not use a separate worker thread. */ static unsigned int frontswap_inertia __read_mostly = 3; /* Countdown to next invocation of frontswap_shrink() */ static unsigned long frontswap_inertia_counter; /* * Invoked by the selfballoon worker thread, uses current number of pages * in frontswap (frontswap_curr_pages()), previous status, and control * values (hysteresis and inertia) to determine if frontswap should be * shrunk and what the new frontswap size should be. Note that * frontswap_shrink is essentially a partial swapoff that immediately * transfers pages from the "swap device" (frontswap) back into kernel * RAM; despite the name, frontswap "shrinking" is very different from * the "shrinker" interface used by the kernel MM subsystem to reclaim * memory. */ static void frontswap_selfshrink(void) { static unsigned long cur_frontswap_pages; static unsigned long last_frontswap_pages; static unsigned long tgt_frontswap_pages; last_frontswap_pages = cur_frontswap_pages; cur_frontswap_pages = frontswap_curr_pages(); if (!cur_frontswap_pages || (cur_frontswap_pages > last_frontswap_pages)) { frontswap_inertia_counter = frontswap_inertia; return; } if (frontswap_inertia_counter && --frontswap_inertia_counter) return; if (cur_frontswap_pages <= frontswap_hysteresis) tgt_frontswap_pages = 0; else tgt_frontswap_pages = cur_frontswap_pages - (cur_frontswap_pages / frontswap_hysteresis); frontswap_shrink(tgt_frontswap_pages); } static int __init xen_nofrontswap_selfshrink_setup(char *s) { use_frontswap_selfshrink = false; return 1; } __setup("noselfshrink", xen_nofrontswap_selfshrink_setup); /* Disable with kernel boot option. */ static bool use_selfballooning __initdata = true; static int __init xen_noselfballooning_setup(char *s) { use_selfballooning = false; return 1; } __setup("noselfballooning", xen_noselfballooning_setup); #else /* !CONFIG_FRONTSWAP */ /* Enable with kernel boot option. */ static bool use_selfballooning __initdata = false; static int __init xen_selfballooning_setup(char *s) { use_selfballooning = true; return 1; } __setup("selfballooning", xen_selfballooning_setup); #endif /* CONFIG_FRONTSWAP */ #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) /* * Use current balloon size, the goal (vm_committed_as), and hysteresis * parameters to set a new target balloon size */ static void selfballoon_process(struct work_struct *work) { unsigned long cur_pages, goal_pages, tgt_pages, floor_pages; unsigned long useful_pages; bool reset_timer = false; if (xen_selfballooning_enabled) { cur_pages = totalram_pages; tgt_pages = cur_pages; /* default is no change */ goal_pages = percpu_counter_read_positive(&vm_committed_as) + totalreserve_pages; #ifdef CONFIG_FRONTSWAP /* allow space for frontswap pages to be repatriated */ if (frontswap_selfshrinking && frontswap_enabled) goal_pages += frontswap_curr_pages(); #endif if (cur_pages > goal_pages) tgt_pages = cur_pages - ((cur_pages - goal_pages) / selfballoon_downhysteresis); else if (cur_pages < goal_pages) tgt_pages = cur_pages + ((goal_pages - cur_pages) / selfballoon_uphysteresis); /* else if cur_pages == goal_pages, no change */ useful_pages = max_pfn - totalreserve_pages; if (selfballoon_min_usable_mb != 0) floor_pages = totalreserve_pages + MB2PAGES(selfballoon_min_usable_mb); /* piecewise linear function ending in ~3% slope */ else if (useful_pages < MB2PAGES(16)) floor_pages = max_pfn; /* not worth ballooning */ else if (useful_pages < MB2PAGES(64)) floor_pages = totalreserve_pages + MB2PAGES(16) + ((useful_pages - MB2PAGES(16)) >> 1); else if (useful_pages < MB2PAGES(512)) floor_pages = totalreserve_pages + MB2PAGES(40) + ((useful_pages - MB2PAGES(40)) >> 3); else /* useful_pages >= MB2PAGES(512) */ floor_pages = totalreserve_pages + MB2PAGES(99) + ((useful_pages - MB2PAGES(99)) >> 5); if (tgt_pages < floor_pages) tgt_pages = floor_pages; balloon_set_new_target(tgt_pages + balloon_stats.current_pages - totalram_pages); reset_timer = true; } #ifdef CONFIG_FRONTSWAP if (frontswap_selfshrinking && frontswap_enabled) { frontswap_selfshrink(); reset_timer = true; } #endif if (reset_timer) schedule_delayed_work(&selfballoon_worker, selfballoon_interval * HZ); } #ifdef CONFIG_SYSFS #include #define SELFBALLOON_SHOW(name, format, args...) \ static ssize_t show_##name(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ return sprintf(buf, format, ##args); \ } SELFBALLOON_SHOW(selfballooning, "%d\n", xen_selfballooning_enabled); static ssize_t store_selfballooning(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { bool was_enabled = xen_selfballooning_enabled; unsigned long tmp; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; err = strict_strtoul(buf, 10, &tmp); if (err || ((tmp != 0) && (tmp != 1))) return -EINVAL; xen_selfballooning_enabled = !!tmp; if (!was_enabled && xen_selfballooning_enabled) schedule_delayed_work(&selfballoon_worker, selfballoon_interval * HZ); return count; } static DEVICE_ATTR(selfballooning, S_IRUGO | S_IWUSR, show_selfballooning, store_selfballooning); SELFBALLOON_SHOW(selfballoon_interval, "%d\n", selfballoon_interval); static ssize_t store_selfballoon_interval(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; err = strict_strtoul(buf, 10, &val); if (err || val == 0) return -EINVAL; selfballoon_interval = val; return count; } static DEVICE_ATTR(selfballoon_interval, S_IRUGO | S_IWUSR, show_selfballoon_interval, store_selfballoon_interval); SELFBALLOON_SHOW(selfballoon_downhys, "%d\n", selfballoon_downhysteresis); static ssize_t store_selfballoon_downhys(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; err = strict_strtoul(buf, 10, &val); if (err || val == 0) return -EINVAL; selfballoon_downhysteresis = val; return count; } static DEVICE_ATTR(selfballoon_downhysteresis, S_IRUGO | S_IWUSR, show_selfballoon_downhys, store_selfballoon_downhys); SELFBALLOON_SHOW(selfballoon_uphys, "%d\n", selfballoon_uphysteresis); static ssize_t store_selfballoon_uphys(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; err = strict_strtoul(buf, 10, &val); if (err || val == 0) return -EINVAL; selfballoon_uphysteresis = val; return count; } static DEVICE_ATTR(selfballoon_uphysteresis, S_IRUGO | S_IWUSR, show_selfballoon_uphys, store_selfballoon_uphys); SELFBALLOON_SHOW(selfballoon_min_usable_mb, "%d\n", selfballoon_min_usable_mb); static ssize_t store_selfballoon_min_usable_mb(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; err = strict_strtoul(buf, 10, &val); if (err || val == 0) return -EINVAL; selfballoon_min_usable_mb = val; return count; } static DEVICE_ATTR(selfballoon_min_usable_mb, S_IRUGO | S_IWUSR, show_selfballoon_min_usable_mb, store_selfballoon_min_usable_mb); #ifdef CONFIG_FRONTSWAP SELFBALLOON_SHOW(frontswap_selfshrinking, "%d\n", frontswap_selfshrinking); static ssize_t store_frontswap_selfshrinking(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { bool was_enabled = frontswap_selfshrinking; unsigned long tmp; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; err = strict_strtoul(buf, 10, &tmp); if (err || ((tmp != 0) && (tmp != 1))) return -EINVAL; frontswap_selfshrinking = !!tmp; if (!was_enabled && !xen_selfballooning_enabled && frontswap_selfshrinking) schedule_delayed_work(&selfballoon_worker, selfballoon_interval * HZ); return count; } static DEVICE_ATTR(frontswap_selfshrinking, S_IRUGO | S_IWUSR, show_frontswap_selfshrinking, store_frontswap_selfshrinking); SELFBALLOON_SHOW(frontswap_inertia, "%d\n", frontswap_inertia); static ssize_t store_frontswap_inertia(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; err = strict_strtoul(buf, 10, &val); if (err || val == 0) return -EINVAL; frontswap_inertia = val; frontswap_inertia_counter = val; return count; } static DEVICE_ATTR(frontswap_inertia, S_IRUGO | S_IWUSR, show_frontswap_inertia, store_frontswap_inertia); SELFBALLOON_SHOW(frontswap_hysteresis, "%d\n", frontswap_hysteresis); static ssize_t store_frontswap_hysteresis(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; err = strict_strtoul(buf, 10, &val); if (err || val == 0) return -EINVAL; frontswap_hysteresis = val; return count; } static DEVICE_ATTR(frontswap_hysteresis, S_IRUGO | S_IWUSR, show_frontswap_hysteresis, store_frontswap_hysteresis); #endif /* CONFIG_FRONTSWAP */ static struct attribute *selfballoon_attrs[] = { &dev_attr_selfballooning.attr, &dev_attr_selfballoon_interval.attr, &dev_attr_selfballoon_downhysteresis.attr, &dev_attr_selfballoon_uphysteresis.attr, &dev_attr_selfballoon_min_usable_mb.attr, #ifdef CONFIG_FRONTSWAP &dev_attr_frontswap_selfshrinking.attr, &dev_attr_frontswap_hysteresis.attr, &dev_attr_frontswap_inertia.attr, #endif NULL }; static struct attribute_group selfballoon_group = { .name = "selfballoon", .attrs = selfballoon_attrs }; #endif int register_xen_selfballooning(struct device *dev) { int error = -1; #ifdef CONFIG_SYSFS error = sysfs_create_group(&dev->kobj, &selfballoon_group); #endif return error; } EXPORT_SYMBOL(register_xen_selfballooning); static int __init xen_selfballoon_init(void) { bool enable = false; if (!xen_domain()) return -ENODEV; if (xen_initial_domain()) { pr_info("xen/balloon: Xen selfballooning driver " "disabled for domain0.\n"); return -ENODEV; } xen_selfballooning_enabled = tmem_enabled && use_selfballooning; if (xen_selfballooning_enabled) { pr_info("xen/balloon: Initializing Xen " "selfballooning driver.\n"); enable = true; } #ifdef CONFIG_FRONTSWAP frontswap_selfshrinking = tmem_enabled && use_frontswap_selfshrink; if (frontswap_selfshrinking) { pr_info("xen/balloon: Initializing frontswap " "selfshrinking driver.\n"); enable = true; } #endif if (!enable) return -ENODEV; schedule_delayed_work(&selfballoon_worker, selfballoon_interval * HZ); return 0; } subsys_initcall(xen_selfballoon_init); MODULE_LICENSE("GPL");