/* * VME Bridge Framework * * Author: Martyn Welch <martyn.welch@ge.com> * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc. * * Based on work by Tom Armistead and Ajit Prem * Copyright 2004 Motorola Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/mm.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/pci.h> #include <linux/poll.h> #include <linux/highmem.h> #include <linux/interrupt.h> #include <linux/pagemap.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/syscalls.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/vme.h> #include "vme_bridge.h" /* Bitmask and list of registered buses both protected by common mutex */ static unsigned int vme_bus_numbers; static LIST_HEAD(vme_bus_list); static DEFINE_MUTEX(vme_buses_lock); static void __exit vme_exit(void); static int __init vme_init(void); static struct vme_dev *dev_to_vme_dev(struct device *dev) { return container_of(dev, struct vme_dev, dev); } /* * Find the bridge that the resource is associated with. */ static struct vme_bridge *find_bridge(struct vme_resource *resource) { /* Get list to search */ switch (resource->type) { case VME_MASTER: return list_entry(resource->entry, struct vme_master_resource, list)->parent; break; case VME_SLAVE: return list_entry(resource->entry, struct vme_slave_resource, list)->parent; break; case VME_DMA: return list_entry(resource->entry, struct vme_dma_resource, list)->parent; break; case VME_LM: return list_entry(resource->entry, struct vme_lm_resource, list)->parent; break; default: printk(KERN_ERR "Unknown resource type\n"); return NULL; break; } } /* * Allocate a contiguous block of memory for use by the driver. This is used to * create the buffers for the slave windows. */ void *vme_alloc_consistent(struct vme_resource *resource, size_t size, dma_addr_t *dma) { struct vme_bridge *bridge; if (resource == NULL) { printk(KERN_ERR "No resource\n"); return NULL; } bridge = find_bridge(resource); if (bridge == NULL) { printk(KERN_ERR "Can't find bridge\n"); return NULL; } if (bridge->parent == NULL) { printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name); return NULL; } if (bridge->alloc_consistent == NULL) { printk(KERN_ERR "alloc_consistent not supported by bridge %s\n", bridge->name); return NULL; } return bridge->alloc_consistent(bridge->parent, size, dma); } EXPORT_SYMBOL(vme_alloc_consistent); /* * Free previously allocated contiguous block of memory. */ void vme_free_consistent(struct vme_resource *resource, size_t size, void *vaddr, dma_addr_t dma) { struct vme_bridge *bridge; if (resource == NULL) { printk(KERN_ERR "No resource\n"); return; } bridge = find_bridge(resource); if (bridge == NULL) { printk(KERN_ERR "Can't find bridge\n"); return; } if (bridge->parent == NULL) { printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name); return; } if (bridge->free_consistent == NULL) { printk(KERN_ERR "free_consistent not supported by bridge %s\n", bridge->name); return; } bridge->free_consistent(bridge->parent, size, vaddr, dma); } EXPORT_SYMBOL(vme_free_consistent); size_t vme_get_size(struct vme_resource *resource) { int enabled, retval; unsigned long long base, size; dma_addr_t buf_base; u32 aspace, cycle, dwidth; switch (resource->type) { case VME_MASTER: retval = vme_master_get(resource, &enabled, &base, &size, &aspace, &cycle, &dwidth); return size; break; case VME_SLAVE: retval = vme_slave_get(resource, &enabled, &base, &size, &buf_base, &aspace, &cycle); return size; break; case VME_DMA: return 0; break; default: printk(KERN_ERR "Unknown resource type\n"); return 0; break; } } EXPORT_SYMBOL(vme_get_size); int vme_check_window(u32 aspace, unsigned long long vme_base, unsigned long long size) { int retval = 0; switch (aspace) { case VME_A16: if (((vme_base + size) > VME_A16_MAX) || (vme_base > VME_A16_MAX)) retval = -EFAULT; break; case VME_A24: if (((vme_base + size) > VME_A24_MAX) || (vme_base > VME_A24_MAX)) retval = -EFAULT; break; case VME_A32: if (((vme_base + size) > VME_A32_MAX) || (vme_base > VME_A32_MAX)) retval = -EFAULT; break; case VME_A64: if ((size != 0) && (vme_base > U64_MAX + 1 - size)) retval = -EFAULT; break; case VME_CRCSR: if (((vme_base + size) > VME_CRCSR_MAX) || (vme_base > VME_CRCSR_MAX)) retval = -EFAULT; break; case VME_USER1: case VME_USER2: case VME_USER3: case VME_USER4: /* User Defined */ break; default: printk(KERN_ERR "Invalid address space\n"); retval = -EINVAL; break; } return retval; } EXPORT_SYMBOL(vme_check_window); /* * Request a slave image with specific attributes, return some unique * identifier. */ struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address, u32 cycle) { struct vme_bridge *bridge; struct list_head *slave_pos = NULL; struct vme_slave_resource *allocated_image = NULL; struct vme_slave_resource *slave_image = NULL; struct vme_resource *resource = NULL; bridge = vdev->bridge; if (bridge == NULL) { printk(KERN_ERR "Can't find VME bus\n"); goto err_bus; } /* Loop through slave resources */ list_for_each(slave_pos, &bridge->slave_resources) { slave_image = list_entry(slave_pos, struct vme_slave_resource, list); if (slave_image == NULL) { printk(KERN_ERR "Registered NULL Slave resource\n"); continue; } /* Find an unlocked and compatible image */ mutex_lock(&slave_image->mtx); if (((slave_image->address_attr & address) == address) && ((slave_image->cycle_attr & cycle) == cycle) && (slave_image->locked == 0)) { slave_image->locked = 1; mutex_unlock(&slave_image->mtx); allocated_image = slave_image; break; } mutex_unlock(&slave_image->mtx); } /* No free image */ if (allocated_image == NULL) goto err_image; resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL); if (resource == NULL) { printk(KERN_WARNING "Unable to allocate resource structure\n"); goto err_alloc; } resource->type = VME_SLAVE; resource->entry = &allocated_image->list; return resource; err_alloc: /* Unlock image */ mutex_lock(&slave_image->mtx); slave_image->locked = 0; mutex_unlock(&slave_image->mtx); err_image: err_bus: return NULL; } EXPORT_SYMBOL(vme_slave_request); int vme_slave_set(struct vme_resource *resource, int enabled, unsigned long long vme_base, unsigned long long size, dma_addr_t buf_base, u32 aspace, u32 cycle) { struct vme_bridge *bridge = find_bridge(resource); struct vme_slave_resource *image; int retval; if (resource->type != VME_SLAVE) { printk(KERN_ERR "Not a slave resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_slave_resource, list); if (bridge->slave_set == NULL) { printk(KERN_ERR "Function not supported\n"); return -ENOSYS; } if (!(((image->address_attr & aspace) == aspace) && ((image->cycle_attr & cycle) == cycle))) { printk(KERN_ERR "Invalid attributes\n"); return -EINVAL; } retval = vme_check_window(aspace, vme_base, size); if (retval) return retval; return bridge->slave_set(image, enabled, vme_base, size, buf_base, aspace, cycle); } EXPORT_SYMBOL(vme_slave_set); int vme_slave_get(struct vme_resource *resource, int *enabled, unsigned long long *vme_base, unsigned long long *size, dma_addr_t *buf_base, u32 *aspace, u32 *cycle) { struct vme_bridge *bridge = find_bridge(resource); struct vme_slave_resource *image; if (resource->type != VME_SLAVE) { printk(KERN_ERR "Not a slave resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_slave_resource, list); if (bridge->slave_get == NULL) { printk(KERN_ERR "vme_slave_get not supported\n"); return -EINVAL; } return bridge->slave_get(image, enabled, vme_base, size, buf_base, aspace, cycle); } EXPORT_SYMBOL(vme_slave_get); void vme_slave_free(struct vme_resource *resource) { struct vme_slave_resource *slave_image; if (resource->type != VME_SLAVE) { printk(KERN_ERR "Not a slave resource\n"); return; } slave_image = list_entry(resource->entry, struct vme_slave_resource, list); if (slave_image == NULL) { printk(KERN_ERR "Can't find slave resource\n"); return; } /* Unlock image */ mutex_lock(&slave_image->mtx); if (slave_image->locked == 0) printk(KERN_ERR "Image is already free\n"); slave_image->locked = 0; mutex_unlock(&slave_image->mtx); /* Free up resource memory */ kfree(resource); } EXPORT_SYMBOL(vme_slave_free); /* * Request a master image with specific attributes, return some unique * identifier. */ struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address, u32 cycle, u32 dwidth) { struct vme_bridge *bridge; struct list_head *master_pos = NULL; struct vme_master_resource *allocated_image = NULL; struct vme_master_resource *master_image = NULL; struct vme_resource *resource = NULL; bridge = vdev->bridge; if (bridge == NULL) { printk(KERN_ERR "Can't find VME bus\n"); goto err_bus; } /* Loop through master resources */ list_for_each(master_pos, &bridge->master_resources) { master_image = list_entry(master_pos, struct vme_master_resource, list); if (master_image == NULL) { printk(KERN_WARNING "Registered NULL master resource\n"); continue; } /* Find an unlocked and compatible image */ spin_lock(&master_image->lock); if (((master_image->address_attr & address) == address) && ((master_image->cycle_attr & cycle) == cycle) && ((master_image->width_attr & dwidth) == dwidth) && (master_image->locked == 0)) { master_image->locked = 1; spin_unlock(&master_image->lock); allocated_image = master_image; break; } spin_unlock(&master_image->lock); } /* Check to see if we found a resource */ if (allocated_image == NULL) { printk(KERN_ERR "Can't find a suitable resource\n"); goto err_image; } resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL); if (resource == NULL) { printk(KERN_ERR "Unable to allocate resource structure\n"); goto err_alloc; } resource->type = VME_MASTER; resource->entry = &allocated_image->list; return resource; err_alloc: /* Unlock image */ spin_lock(&master_image->lock); master_image->locked = 0; spin_unlock(&master_image->lock); err_image: err_bus: return NULL; } EXPORT_SYMBOL(vme_master_request); int vme_master_set(struct vme_resource *resource, int enabled, unsigned long long vme_base, unsigned long long size, u32 aspace, u32 cycle, u32 dwidth) { struct vme_bridge *bridge = find_bridge(resource); struct vme_master_resource *image; int retval; if (resource->type != VME_MASTER) { printk(KERN_ERR "Not a master resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_master_resource, list); if (bridge->master_set == NULL) { printk(KERN_WARNING "vme_master_set not supported\n"); return -EINVAL; } if (!(((image->address_attr & aspace) == aspace) && ((image->cycle_attr & cycle) == cycle) && ((image->width_attr & dwidth) == dwidth))) { printk(KERN_WARNING "Invalid attributes\n"); return -EINVAL; } retval = vme_check_window(aspace, vme_base, size); if (retval) return retval; return bridge->master_set(image, enabled, vme_base, size, aspace, cycle, dwidth); } EXPORT_SYMBOL(vme_master_set); int vme_master_get(struct vme_resource *resource, int *enabled, unsigned long long *vme_base, unsigned long long *size, u32 *aspace, u32 *cycle, u32 *dwidth) { struct vme_bridge *bridge = find_bridge(resource); struct vme_master_resource *image; if (resource->type != VME_MASTER) { printk(KERN_ERR "Not a master resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_master_resource, list); if (bridge->master_get == NULL) { printk(KERN_WARNING "%s not supported\n", __func__); return -EINVAL; } return bridge->master_get(image, enabled, vme_base, size, aspace, cycle, dwidth); } EXPORT_SYMBOL(vme_master_get); /* * Read data out of VME space into a buffer. */ ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count, loff_t offset) { struct vme_bridge *bridge = find_bridge(resource); struct vme_master_resource *image; size_t length; if (bridge->master_read == NULL) { printk(KERN_WARNING "Reading from resource not supported\n"); return -EINVAL; } if (resource->type != VME_MASTER) { printk(KERN_ERR "Not a master resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_master_resource, list); length = vme_get_size(resource); if (offset > length) { printk(KERN_WARNING "Invalid Offset\n"); return -EFAULT; } if ((offset + count) > length) count = length - offset; return bridge->master_read(image, buf, count, offset); } EXPORT_SYMBOL(vme_master_read); /* * Write data out to VME space from a buffer. */ ssize_t vme_master_write(struct vme_resource *resource, void *buf, size_t count, loff_t offset) { struct vme_bridge *bridge = find_bridge(resource); struct vme_master_resource *image; size_t length; if (bridge->master_write == NULL) { printk(KERN_WARNING "Writing to resource not supported\n"); return -EINVAL; } if (resource->type != VME_MASTER) { printk(KERN_ERR "Not a master resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_master_resource, list); length = vme_get_size(resource); if (offset > length) { printk(KERN_WARNING "Invalid Offset\n"); return -EFAULT; } if ((offset + count) > length) count = length - offset; return bridge->master_write(image, buf, count, offset); } EXPORT_SYMBOL(vme_master_write); /* * Perform RMW cycle to provided location. */ unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask, unsigned int compare, unsigned int swap, loff_t offset) { struct vme_bridge *bridge = find_bridge(resource); struct vme_master_resource *image; if (bridge->master_rmw == NULL) { printk(KERN_WARNING "Writing to resource not supported\n"); return -EINVAL; } if (resource->type != VME_MASTER) { printk(KERN_ERR "Not a master resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_master_resource, list); return bridge->master_rmw(image, mask, compare, swap, offset); } EXPORT_SYMBOL(vme_master_rmw); int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma) { struct vme_master_resource *image; phys_addr_t phys_addr; unsigned long vma_size; if (resource->type != VME_MASTER) { pr_err("Not a master resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_master_resource, list); phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT); vma_size = vma->vm_end - vma->vm_start; if (phys_addr + vma_size > image->bus_resource.end + 1) { pr_err("Map size cannot exceed the window size\n"); return -EFAULT; } vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start); } EXPORT_SYMBOL(vme_master_mmap); void vme_master_free(struct vme_resource *resource) { struct vme_master_resource *master_image; if (resource->type != VME_MASTER) { printk(KERN_ERR "Not a master resource\n"); return; } master_image = list_entry(resource->entry, struct vme_master_resource, list); if (master_image == NULL) { printk(KERN_ERR "Can't find master resource\n"); return; } /* Unlock image */ spin_lock(&master_image->lock); if (master_image->locked == 0) printk(KERN_ERR "Image is already free\n"); master_image->locked = 0; spin_unlock(&master_image->lock); /* Free up resource memory */ kfree(resource); } EXPORT_SYMBOL(vme_master_free); /* * Request a DMA controller with specific attributes, return some unique * identifier. */ struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route) { struct vme_bridge *bridge; struct list_head *dma_pos = NULL; struct vme_dma_resource *allocated_ctrlr = NULL; struct vme_dma_resource *dma_ctrlr = NULL; struct vme_resource *resource = NULL; /* XXX Not checking resource attributes */ printk(KERN_ERR "No VME resource Attribute tests done\n"); bridge = vdev->bridge; if (bridge == NULL) { printk(KERN_ERR "Can't find VME bus\n"); goto err_bus; } /* Loop through DMA resources */ list_for_each(dma_pos, &bridge->dma_resources) { dma_ctrlr = list_entry(dma_pos, struct vme_dma_resource, list); if (dma_ctrlr == NULL) { printk(KERN_ERR "Registered NULL DMA resource\n"); continue; } /* Find an unlocked and compatible controller */ mutex_lock(&dma_ctrlr->mtx); if (((dma_ctrlr->route_attr & route) == route) && (dma_ctrlr->locked == 0)) { dma_ctrlr->locked = 1; mutex_unlock(&dma_ctrlr->mtx); allocated_ctrlr = dma_ctrlr; break; } mutex_unlock(&dma_ctrlr->mtx); } /* Check to see if we found a resource */ if (allocated_ctrlr == NULL) goto err_ctrlr; resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL); if (resource == NULL) { printk(KERN_WARNING "Unable to allocate resource structure\n"); goto err_alloc; } resource->type = VME_DMA; resource->entry = &allocated_ctrlr->list; return resource; err_alloc: /* Unlock image */ mutex_lock(&dma_ctrlr->mtx); dma_ctrlr->locked = 0; mutex_unlock(&dma_ctrlr->mtx); err_ctrlr: err_bus: return NULL; } EXPORT_SYMBOL(vme_dma_request); /* * Start new list */ struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource) { struct vme_dma_resource *ctrlr; struct vme_dma_list *dma_list; if (resource->type != VME_DMA) { printk(KERN_ERR "Not a DMA resource\n"); return NULL; } ctrlr = list_entry(resource->entry, struct vme_dma_resource, list); dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL); if (dma_list == NULL) { printk(KERN_ERR "Unable to allocate memory for new dma list\n"); return NULL; } INIT_LIST_HEAD(&dma_list->entries); dma_list->parent = ctrlr; mutex_init(&dma_list->mtx); return dma_list; } EXPORT_SYMBOL(vme_new_dma_list); /* * Create "Pattern" type attributes */ struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type) { struct vme_dma_attr *attributes; struct vme_dma_pattern *pattern_attr; attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL); if (attributes == NULL) { printk(KERN_ERR "Unable to allocate memory for attributes structure\n"); goto err_attr; } pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL); if (pattern_attr == NULL) { printk(KERN_ERR "Unable to allocate memory for pattern attributes\n"); goto err_pat; } attributes->type = VME_DMA_PATTERN; attributes->private = (void *)pattern_attr; pattern_attr->pattern = pattern; pattern_attr->type = type; return attributes; err_pat: kfree(attributes); err_attr: return NULL; } EXPORT_SYMBOL(vme_dma_pattern_attribute); /* * Create "PCI" type attributes */ struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address) { struct vme_dma_attr *attributes; struct vme_dma_pci *pci_attr; /* XXX Run some sanity checks here */ attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL); if (attributes == NULL) { printk(KERN_ERR "Unable to allocate memory for attributes structure\n"); goto err_attr; } pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL); if (pci_attr == NULL) { printk(KERN_ERR "Unable to allocate memory for pci attributes\n"); goto err_pci; } attributes->type = VME_DMA_PCI; attributes->private = (void *)pci_attr; pci_attr->address = address; return attributes; err_pci: kfree(attributes); err_attr: return NULL; } EXPORT_SYMBOL(vme_dma_pci_attribute); /* * Create "VME" type attributes */ struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address, u32 aspace, u32 cycle, u32 dwidth) { struct vme_dma_attr *attributes; struct vme_dma_vme *vme_attr; attributes = kmalloc( sizeof(struct vme_dma_attr), GFP_KERNEL); if (attributes == NULL) { printk(KERN_ERR "Unable to allocate memory for attributes structure\n"); goto err_attr; } vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL); if (vme_attr == NULL) { printk(KERN_ERR "Unable to allocate memory for vme attributes\n"); goto err_vme; } attributes->type = VME_DMA_VME; attributes->private = (void *)vme_attr; vme_attr->address = address; vme_attr->aspace = aspace; vme_attr->cycle = cycle; vme_attr->dwidth = dwidth; return attributes; err_vme: kfree(attributes); err_attr: return NULL; } EXPORT_SYMBOL(vme_dma_vme_attribute); /* * Free attribute */ void vme_dma_free_attribute(struct vme_dma_attr *attributes) { kfree(attributes->private); kfree(attributes); } EXPORT_SYMBOL(vme_dma_free_attribute); int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src, struct vme_dma_attr *dest, size_t count) { struct vme_bridge *bridge = list->parent->parent; int retval; if (bridge->dma_list_add == NULL) { printk(KERN_WARNING "Link List DMA generation not supported\n"); return -EINVAL; } if (!mutex_trylock(&list->mtx)) { printk(KERN_ERR "Link List already submitted\n"); return -EINVAL; } retval = bridge->dma_list_add(list, src, dest, count); mutex_unlock(&list->mtx); return retval; } EXPORT_SYMBOL(vme_dma_list_add); int vme_dma_list_exec(struct vme_dma_list *list) { struct vme_bridge *bridge = list->parent->parent; int retval; if (bridge->dma_list_exec == NULL) { printk(KERN_ERR "Link List DMA execution not supported\n"); return -EINVAL; } mutex_lock(&list->mtx); retval = bridge->dma_list_exec(list); mutex_unlock(&list->mtx); return retval; } EXPORT_SYMBOL(vme_dma_list_exec); int vme_dma_list_free(struct vme_dma_list *list) { struct vme_bridge *bridge = list->parent->parent; int retval; if (bridge->dma_list_empty == NULL) { printk(KERN_WARNING "Emptying of Link Lists not supported\n"); return -EINVAL; } if (!mutex_trylock(&list->mtx)) { printk(KERN_ERR "Link List in use\n"); return -EINVAL; } /* * Empty out all of the entries from the dma list. We need to go to the * low level driver as dma entries are driver specific. */ retval = bridge->dma_list_empty(list); if (retval) { printk(KERN_ERR "Unable to empty link-list entries\n"); mutex_unlock(&list->mtx); return retval; } mutex_unlock(&list->mtx); kfree(list); return retval; } EXPORT_SYMBOL(vme_dma_list_free); int vme_dma_free(struct vme_resource *resource) { struct vme_dma_resource *ctrlr; if (resource->type != VME_DMA) { printk(KERN_ERR "Not a DMA resource\n"); return -EINVAL; } ctrlr = list_entry(resource->entry, struct vme_dma_resource, list); if (!mutex_trylock(&ctrlr->mtx)) { printk(KERN_ERR "Resource busy, can't free\n"); return -EBUSY; } if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) { printk(KERN_WARNING "Resource still processing transfers\n"); mutex_unlock(&ctrlr->mtx); return -EBUSY; } ctrlr->locked = 0; mutex_unlock(&ctrlr->mtx); kfree(resource); return 0; } EXPORT_SYMBOL(vme_dma_free); void vme_irq_handler(struct vme_bridge *bridge, int level, int statid) { void (*call)(int, int, void *); void *priv_data; call = bridge->irq[level - 1].callback[statid].func; priv_data = bridge->irq[level - 1].callback[statid].priv_data; if (call != NULL) call(level, statid, priv_data); else printk(KERN_WARNING "Spurilous VME interrupt, level:%x, vector:%x\n", level, statid); } EXPORT_SYMBOL(vme_irq_handler); int vme_irq_request(struct vme_dev *vdev, int level, int statid, void (*callback)(int, int, void *), void *priv_data) { struct vme_bridge *bridge; bridge = vdev->bridge; if (bridge == NULL) { printk(KERN_ERR "Can't find VME bus\n"); return -EINVAL; } if ((level < 1) || (level > 7)) { printk(KERN_ERR "Invalid interrupt level\n"); return -EINVAL; } if (bridge->irq_set == NULL) { printk(KERN_ERR "Configuring interrupts not supported\n"); return -EINVAL; } mutex_lock(&bridge->irq_mtx); if (bridge->irq[level - 1].callback[statid].func) { mutex_unlock(&bridge->irq_mtx); printk(KERN_WARNING "VME Interrupt already taken\n"); return -EBUSY; } bridge->irq[level - 1].count++; bridge->irq[level - 1].callback[statid].priv_data = priv_data; bridge->irq[level - 1].callback[statid].func = callback; /* Enable IRQ level */ bridge->irq_set(bridge, level, 1, 1); mutex_unlock(&bridge->irq_mtx); return 0; } EXPORT_SYMBOL(vme_irq_request); void vme_irq_free(struct vme_dev *vdev, int level, int statid) { struct vme_bridge *bridge; bridge = vdev->bridge; if (bridge == NULL) { printk(KERN_ERR "Can't find VME bus\n"); return; } if ((level < 1) || (level > 7)) { printk(KERN_ERR "Invalid interrupt level\n"); return; } if (bridge->irq_set == NULL) { printk(KERN_ERR "Configuring interrupts not supported\n"); return; } mutex_lock(&bridge->irq_mtx); bridge->irq[level - 1].count--; /* Disable IRQ level if no more interrupts attached at this level*/ if (bridge->irq[level - 1].count == 0) bridge->irq_set(bridge, level, 0, 1); bridge->irq[level - 1].callback[statid].func = NULL; bridge->irq[level - 1].callback[statid].priv_data = NULL; mutex_unlock(&bridge->irq_mtx); } EXPORT_SYMBOL(vme_irq_free); int vme_irq_generate(struct vme_dev *vdev, int level, int statid) { struct vme_bridge *bridge; bridge = vdev->bridge; if (bridge == NULL) { printk(KERN_ERR "Can't find VME bus\n"); return -EINVAL; } if ((level < 1) || (level > 7)) { printk(KERN_WARNING "Invalid interrupt level\n"); return -EINVAL; } if (bridge->irq_generate == NULL) { printk(KERN_WARNING "Interrupt generation not supported\n"); return -EINVAL; } return bridge->irq_generate(bridge, level, statid); } EXPORT_SYMBOL(vme_irq_generate); /* * Request the location monitor, return resource or NULL */ struct vme_resource *vme_lm_request(struct vme_dev *vdev) { struct vme_bridge *bridge; struct list_head *lm_pos = NULL; struct vme_lm_resource *allocated_lm = NULL; struct vme_lm_resource *lm = NULL; struct vme_resource *resource = NULL; bridge = vdev->bridge; if (bridge == NULL) { printk(KERN_ERR "Can't find VME bus\n"); goto err_bus; } /* Loop through DMA resources */ list_for_each(lm_pos, &bridge->lm_resources) { lm = list_entry(lm_pos, struct vme_lm_resource, list); if (lm == NULL) { printk(KERN_ERR "Registered NULL Location Monitor resource\n"); continue; } /* Find an unlocked controller */ mutex_lock(&lm->mtx); if (lm->locked == 0) { lm->locked = 1; mutex_unlock(&lm->mtx); allocated_lm = lm; break; } mutex_unlock(&lm->mtx); } /* Check to see if we found a resource */ if (allocated_lm == NULL) goto err_lm; resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL); if (resource == NULL) { printk(KERN_ERR "Unable to allocate resource structure\n"); goto err_alloc; } resource->type = VME_LM; resource->entry = &allocated_lm->list; return resource; err_alloc: /* Unlock image */ mutex_lock(&lm->mtx); lm->locked = 0; mutex_unlock(&lm->mtx); err_lm: err_bus: return NULL; } EXPORT_SYMBOL(vme_lm_request); int vme_lm_count(struct vme_resource *resource) { struct vme_lm_resource *lm; if (resource->type != VME_LM) { printk(KERN_ERR "Not a Location Monitor resource\n"); return -EINVAL; } lm = list_entry(resource->entry, struct vme_lm_resource, list); return lm->monitors; } EXPORT_SYMBOL(vme_lm_count); int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base, u32 aspace, u32 cycle) { struct vme_bridge *bridge = find_bridge(resource); struct vme_lm_resource *lm; if (resource->type != VME_LM) { printk(KERN_ERR "Not a Location Monitor resource\n"); return -EINVAL; } lm = list_entry(resource->entry, struct vme_lm_resource, list); if (bridge->lm_set == NULL) { printk(KERN_ERR "vme_lm_set not supported\n"); return -EINVAL; } return bridge->lm_set(lm, lm_base, aspace, cycle); } EXPORT_SYMBOL(vme_lm_set); int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base, u32 *aspace, u32 *cycle) { struct vme_bridge *bridge = find_bridge(resource); struct vme_lm_resource *lm; if (resource->type != VME_LM) { printk(KERN_ERR "Not a Location Monitor resource\n"); return -EINVAL; } lm = list_entry(resource->entry, struct vme_lm_resource, list); if (bridge->lm_get == NULL) { printk(KERN_ERR "vme_lm_get not supported\n"); return -EINVAL; } return bridge->lm_get(lm, lm_base, aspace, cycle); } EXPORT_SYMBOL(vme_lm_get); int vme_lm_attach(struct vme_resource *resource, int monitor, void (*callback)(int)) { struct vme_bridge *bridge = find_bridge(resource); struct vme_lm_resource *lm; if (resource->type != VME_LM) { printk(KERN_ERR "Not a Location Monitor resource\n"); return -EINVAL; } lm = list_entry(resource->entry, struct vme_lm_resource, list); if (bridge->lm_attach == NULL) { printk(KERN_ERR "vme_lm_attach not supported\n"); return -EINVAL; } return bridge->lm_attach(lm, monitor, callback); } EXPORT_SYMBOL(vme_lm_attach); int vme_lm_detach(struct vme_resource *resource, int monitor) { struct vme_bridge *bridge = find_bridge(resource); struct vme_lm_resource *lm; if (resource->type != VME_LM) { printk(KERN_ERR "Not a Location Monitor resource\n"); return -EINVAL; } lm = list_entry(resource->entry, struct vme_lm_resource, list); if (bridge->lm_detach == NULL) { printk(KERN_ERR "vme_lm_detach not supported\n"); return -EINVAL; } return bridge->lm_detach(lm, monitor); } EXPORT_SYMBOL(vme_lm_detach); void vme_lm_free(struct vme_resource *resource) { struct vme_lm_resource *lm; if (resource->type != VME_LM) { printk(KERN_ERR "Not a Location Monitor resource\n"); return; } lm = list_entry(resource->entry, struct vme_lm_resource, list); mutex_lock(&lm->mtx); /* XXX * Check to see that there aren't any callbacks still attached, if * there are we should probably be detaching them! */ lm->locked = 0; mutex_unlock(&lm->mtx); kfree(resource); } EXPORT_SYMBOL(vme_lm_free); int vme_slot_num(struct vme_dev *vdev) { struct vme_bridge *bridge; bridge = vdev->bridge; if (bridge == NULL) { printk(KERN_ERR "Can't find VME bus\n"); return -EINVAL; } if (bridge->slot_get == NULL) { printk(KERN_WARNING "vme_slot_num not supported\n"); return -EINVAL; } return bridge->slot_get(bridge); } EXPORT_SYMBOL(vme_slot_num); int vme_bus_num(struct vme_dev *vdev) { struct vme_bridge *bridge; bridge = vdev->bridge; if (bridge == NULL) { pr_err("Can't find VME bus\n"); return -EINVAL; } return bridge->num; } EXPORT_SYMBOL(vme_bus_num); /* - Bridge Registration --------------------------------------------------- */ static void vme_dev_release(struct device *dev) { kfree(dev_to_vme_dev(dev)); } int vme_register_bridge(struct vme_bridge *bridge) { int i; int ret = -1; mutex_lock(&vme_buses_lock); for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) { if ((vme_bus_numbers & (1 << i)) == 0) { vme_bus_numbers |= (1 << i); bridge->num = i; INIT_LIST_HEAD(&bridge->devices); list_add_tail(&bridge->bus_list, &vme_bus_list); ret = 0; break; } } mutex_unlock(&vme_buses_lock); return ret; } EXPORT_SYMBOL(vme_register_bridge); void vme_unregister_bridge(struct vme_bridge *bridge) { struct vme_dev *vdev; struct vme_dev *tmp; mutex_lock(&vme_buses_lock); vme_bus_numbers &= ~(1 << bridge->num); list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) { list_del(&vdev->drv_list); list_del(&vdev->bridge_list); device_unregister(&vdev->dev); } list_del(&bridge->bus_list); mutex_unlock(&vme_buses_lock); } EXPORT_SYMBOL(vme_unregister_bridge); /* - Driver Registration --------------------------------------------------- */ static int __vme_register_driver_bus(struct vme_driver *drv, struct vme_bridge *bridge, unsigned int ndevs) { int err; unsigned int i; struct vme_dev *vdev; struct vme_dev *tmp; for (i = 0; i < ndevs; i++) { vdev = kzalloc(sizeof(struct vme_dev), GFP_KERNEL); if (!vdev) { err = -ENOMEM; goto err_devalloc; } vdev->num = i; vdev->bridge = bridge; vdev->dev.platform_data = drv; vdev->dev.release = vme_dev_release; vdev->dev.parent = bridge->parent; vdev->dev.bus = &vme_bus_type; dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num, vdev->num); err = device_register(&vdev->dev); if (err) goto err_reg; if (vdev->dev.platform_data) { list_add_tail(&vdev->drv_list, &drv->devices); list_add_tail(&vdev->bridge_list, &bridge->devices); } else device_unregister(&vdev->dev); } return 0; err_reg: put_device(&vdev->dev); kfree(vdev); err_devalloc: list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) { list_del(&vdev->drv_list); list_del(&vdev->bridge_list); device_unregister(&vdev->dev); } return err; } static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs) { struct vme_bridge *bridge; int err = 0; mutex_lock(&vme_buses_lock); list_for_each_entry(bridge, &vme_bus_list, bus_list) { /* * This cannot cause trouble as we already have vme_buses_lock * and if the bridge is removed, it will have to go through * vme_unregister_bridge() to do it (which calls remove() on * the bridge which in turn tries to acquire vme_buses_lock and * will have to wait). */ err = __vme_register_driver_bus(drv, bridge, ndevs); if (err) break; } mutex_unlock(&vme_buses_lock); return err; } int vme_register_driver(struct vme_driver *drv, unsigned int ndevs) { int err; drv->driver.name = drv->name; drv->driver.bus = &vme_bus_type; INIT_LIST_HEAD(&drv->devices); err = driver_register(&drv->driver); if (err) return err; err = __vme_register_driver(drv, ndevs); if (err) driver_unregister(&drv->driver); return err; } EXPORT_SYMBOL(vme_register_driver); void vme_unregister_driver(struct vme_driver *drv) { struct vme_dev *dev, *dev_tmp; mutex_lock(&vme_buses_lock); list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) { list_del(&dev->drv_list); list_del(&dev->bridge_list); device_unregister(&dev->dev); } mutex_unlock(&vme_buses_lock); driver_unregister(&drv->driver); } EXPORT_SYMBOL(vme_unregister_driver); /* - Bus Registration ------------------------------------------------------ */ static int vme_bus_match(struct device *dev, struct device_driver *drv) { struct vme_driver *vme_drv; vme_drv = container_of(drv, struct vme_driver, driver); if (dev->platform_data == vme_drv) { struct vme_dev *vdev = dev_to_vme_dev(dev); if (vme_drv->match && vme_drv->match(vdev)) return 1; dev->platform_data = NULL; } return 0; } static int vme_bus_probe(struct device *dev) { int retval = -ENODEV; struct vme_driver *driver; struct vme_dev *vdev = dev_to_vme_dev(dev); driver = dev->platform_data; if (driver->probe != NULL) retval = driver->probe(vdev); return retval; } static int vme_bus_remove(struct device *dev) { int retval = -ENODEV; struct vme_driver *driver; struct vme_dev *vdev = dev_to_vme_dev(dev); driver = dev->platform_data; if (driver->remove != NULL) retval = driver->remove(vdev); return retval; } struct bus_type vme_bus_type = { .name = "vme", .match = vme_bus_match, .probe = vme_bus_probe, .remove = vme_bus_remove, }; EXPORT_SYMBOL(vme_bus_type); static int __init vme_init(void) { return bus_register(&vme_bus_type); } static void __exit vme_exit(void) { bus_unregister(&vme_bus_type); } subsys_initcall(vme_init); module_exit(vme_exit);