/* * composite.c - infrastructure for Composite USB Gadgets * * Copyright (C) 2006-2008 David Brownell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ /* #define VERBOSE_DEBUG */ #include #include #include #include #include #include #include #include #include #include "u_os_desc.h" /** * struct usb_os_string - represents OS String to be reported by a gadget * @bLength: total length of the entire descritor, always 0x12 * @bDescriptorType: USB_DT_STRING * @qwSignature: the OS String proper * @bMS_VendorCode: code used by the host for subsequent requests * @bPad: not used, must be zero */ struct usb_os_string { __u8 bLength; __u8 bDescriptorType; __u8 qwSignature[OS_STRING_QW_SIGN_LEN]; __u8 bMS_VendorCode; __u8 bPad; } __packed; /* * The code in this file is utility code, used to build a gadget driver * from one or more "function" drivers, one or more "configuration" * objects, and a "usb_composite_driver" by gluing them together along * with the relevant device-wide data. */ static struct usb_gadget_strings **get_containers_gs( struct usb_gadget_string_container *uc) { return (struct usb_gadget_strings **)uc->stash; } /** * function_descriptors() - get function descriptors for speed * @f: the function * @speed: the speed * * Returns the descriptors or NULL if not set. */ static struct usb_descriptor_header ** function_descriptors(struct usb_function *f, enum usb_device_speed speed) { struct usb_descriptor_header **descriptors; /* * NOTE: we try to help gadget drivers which might not be setting * max_speed appropriately. */ switch (speed) { case USB_SPEED_SUPER_PLUS: descriptors = f->ssp_descriptors; if (descriptors) break; /* FALLTHROUGH */ case USB_SPEED_SUPER: descriptors = f->ss_descriptors; if (descriptors) break; /* FALLTHROUGH */ case USB_SPEED_HIGH: descriptors = f->hs_descriptors; if (descriptors) break; /* FALLTHROUGH */ default: descriptors = f->fs_descriptors; } /* * if we can't find any descriptors at all, then this gadget deserves to * Oops with a NULL pointer dereference */ return descriptors; } /** * next_ep_desc() - advance to the next EP descriptor * @t: currect pointer within descriptor array * * Return: next EP descriptor or NULL * * Iterate over @t until either EP descriptor found or * NULL (that indicates end of list) encountered */ static struct usb_descriptor_header** next_ep_desc(struct usb_descriptor_header **t) { for (; *t; t++) { if ((*t)->bDescriptorType == USB_DT_ENDPOINT) return t; } return NULL; } /* * for_each_ep_desc()- iterate over endpoint descriptors in the * descriptors list * @start: pointer within descriptor array. * @ep_desc: endpoint descriptor to use as the loop cursor */ #define for_each_ep_desc(start, ep_desc) \ for (ep_desc = next_ep_desc(start); \ ep_desc; ep_desc = next_ep_desc(ep_desc+1)) /** * config_ep_by_speed() - configures the given endpoint * according to gadget speed. * @g: pointer to the gadget * @f: usb function * @_ep: the endpoint to configure * * Return: error code, 0 on success * * This function chooses the right descriptors for a given * endpoint according to gadget speed and saves it in the * endpoint desc field. If the endpoint already has a descriptor * assigned to it - overwrites it with currently corresponding * descriptor. The endpoint maxpacket field is updated according * to the chosen descriptor. * Note: the supplied function should hold all the descriptors * for supported speeds */ int config_ep_by_speed(struct usb_gadget *g, struct usb_function *f, struct usb_ep *_ep) { struct usb_composite_dev *cdev = get_gadget_data(g); struct usb_endpoint_descriptor *chosen_desc = NULL; struct usb_descriptor_header **speed_desc = NULL; struct usb_ss_ep_comp_descriptor *comp_desc = NULL; int want_comp_desc = 0; struct usb_descriptor_header **d_spd; /* cursor for speed desc */ if (!g || !f || !_ep) return -EIO; /* select desired speed */ switch (g->speed) { case USB_SPEED_SUPER_PLUS: if (gadget_is_superspeed_plus(g)) { speed_desc = f->ssp_descriptors; want_comp_desc = 1; break; } /* else: Fall trough */ case USB_SPEED_SUPER: if (gadget_is_superspeed(g)) { speed_desc = f->ss_descriptors; want_comp_desc = 1; break; } /* else: Fall trough */ case USB_SPEED_HIGH: if (gadget_is_dualspeed(g)) { speed_desc = f->hs_descriptors; break; } /* else: fall through */ default: speed_desc = f->fs_descriptors; } /* find descriptors */ for_each_ep_desc(speed_desc, d_spd) { chosen_desc = (struct usb_endpoint_descriptor *)*d_spd; if (chosen_desc->bEndpointAddress == _ep->address) goto ep_found; } return -EIO; ep_found: /* commit results */ _ep->maxpacket = usb_endpoint_maxp(chosen_desc); _ep->desc = chosen_desc; _ep->comp_desc = NULL; _ep->maxburst = 0; _ep->mult = 1; if (g->speed == USB_SPEED_HIGH && (usb_endpoint_xfer_isoc(_ep->desc) || usb_endpoint_xfer_int(_ep->desc))) _ep->mult = usb_endpoint_maxp_mult(_ep->desc); if (!want_comp_desc) return 0; /* * Companion descriptor should follow EP descriptor * USB 3.0 spec, #9.6.7 */ comp_desc = (struct usb_ss_ep_comp_descriptor *)*(++d_spd); if (!comp_desc || (comp_desc->bDescriptorType != USB_DT_SS_ENDPOINT_COMP)) return -EIO; _ep->comp_desc = comp_desc; if (g->speed >= USB_SPEED_SUPER) { switch (usb_endpoint_type(_ep->desc)) { case USB_ENDPOINT_XFER_ISOC: /* mult: bits 1:0 of bmAttributes */ _ep->mult = (comp_desc->bmAttributes & 0x3) + 1; case USB_ENDPOINT_XFER_BULK: case USB_ENDPOINT_XFER_INT: _ep->maxburst = comp_desc->bMaxBurst + 1; break; default: if (comp_desc->bMaxBurst != 0) ERROR(cdev, "ep0 bMaxBurst must be 0\n"); _ep->maxburst = 1; break; } } return 0; } EXPORT_SYMBOL_GPL(config_ep_by_speed); /** * usb_add_function() - add a function to a configuration * @config: the configuration * @function: the function being added * Context: single threaded during gadget setup * * After initialization, each configuration must have one or more * functions added to it. Adding a function involves calling its @bind() * method to allocate resources such as interface and string identifiers * and endpoints. * * This function returns the value of the function's bind(), which is * zero for success else a negative errno value. */ int usb_add_function(struct usb_configuration *config, struct usb_function *function) { int value = -EINVAL; DBG(config->cdev, "adding '%s'/%p to config '%s'/%p\n", function->name, function, config->label, config); if (!function->set_alt || !function->disable) goto done; function->config = config; list_add_tail(&function->list, &config->functions); if (function->bind_deactivated) { value = usb_function_deactivate(function); if (value) goto done; } /* REVISIT *require* function->bind? */ if (function->bind) { value = function->bind(config, function); if (value < 0) { list_del(&function->list); function->config = NULL; } } else value = 0; /* We allow configurations that don't work at both speeds. * If we run into a lowspeed Linux system, treat it the same * as full speed ... it's the function drivers that will need * to avoid bulk and ISO transfers. */ if (!config->fullspeed && function->fs_descriptors) config->fullspeed = true; if (!config->highspeed && function->hs_descriptors) config->highspeed = true; if (!config->superspeed && function->ss_descriptors) config->superspeed = true; if (!config->superspeed_plus && function->ssp_descriptors) config->superspeed_plus = true; done: if (value) DBG(config->cdev, "adding '%s'/%p --> %d\n", function->name, function, value); return value; } EXPORT_SYMBOL_GPL(usb_add_function); void usb_remove_function(struct usb_configuration *c, struct usb_function *f) { if (f->disable) f->disable(f); bitmap_zero(f->endpoints, 32); list_del(&f->list); if (f->unbind) f->unbind(c, f); } EXPORT_SYMBOL_GPL(usb_remove_function); /** * usb_function_deactivate - prevent function and gadget enumeration * @function: the function that isn't yet ready to respond * * Blocks response of the gadget driver to host enumeration by * preventing the data line pullup from being activated. This is * normally called during @bind() processing to change from the * initial "ready to respond" state, or when a required resource * becomes available. * * For example, drivers that serve as a passthrough to a userspace * daemon can block enumeration unless that daemon (such as an OBEX, * MTP, or print server) is ready to handle host requests. * * Not all systems support software control of their USB peripheral * data pullups. * * Returns zero on success, else negative errno. */ int usb_function_deactivate(struct usb_function *function) { struct usb_composite_dev *cdev = function->config->cdev; unsigned long flags; int status = 0; spin_lock_irqsave(&cdev->lock, flags); if (cdev->deactivations == 0) status = usb_gadget_deactivate(cdev->gadget); if (status == 0) cdev->deactivations++; spin_unlock_irqrestore(&cdev->lock, flags); return status; } EXPORT_SYMBOL_GPL(usb_function_deactivate); /** * usb_function_activate - allow function and gadget enumeration * @function: function on which usb_function_activate() was called * * Reverses effect of usb_function_deactivate(). If no more functions * are delaying their activation, the gadget driver will respond to * host enumeration procedures. * * Returns zero on success, else negative errno. */ int usb_function_activate(struct usb_function *function) { struct usb_composite_dev *cdev = function->config->cdev; unsigned long flags; int status = 0; spin_lock_irqsave(&cdev->lock, flags); if (WARN_ON(cdev->deactivations == 0)) status = -EINVAL; else { cdev->deactivations--; if (cdev->deactivations == 0) status = usb_gadget_activate(cdev->gadget); } spin_unlock_irqrestore(&cdev->lock, flags); return status; } EXPORT_SYMBOL_GPL(usb_function_activate); /** * usb_interface_id() - allocate an unused interface ID * @config: configuration associated with the interface * @function: function handling the interface * Context: single threaded during gadget setup * * usb_interface_id() is called from usb_function.bind() callbacks to * allocate new interface IDs. The function driver will then store that * ID in interface, association, CDC union, and other descriptors. It * will also handle any control requests targeted at that interface, * particularly changing its altsetting via set_alt(). There may * also be class-specific or vendor-specific requests to handle. * * All interface identifier should be allocated using this routine, to * ensure that for example different functions don't wrongly assign * different meanings to the same identifier. Note that since interface * identifiers are configuration-specific, functions used in more than * one configuration (or more than once in a given configuration) need * multiple versions of the relevant descriptors. * * Returns the interface ID which was allocated; or -ENODEV if no * more interface IDs can be allocated. */ int usb_interface_id(struct usb_configuration *config, struct usb_function *function) { unsigned id = config->next_interface_id; if (id < MAX_CONFIG_INTERFACES) { config->interface[id] = function; config->next_interface_id = id + 1; return id; } return -ENODEV; } EXPORT_SYMBOL_GPL(usb_interface_id); static u8 encode_bMaxPower(enum usb_device_speed speed, struct usb_configuration *c) { unsigned val; if (c->MaxPower) val = c->MaxPower; else val = CONFIG_USB_GADGET_VBUS_DRAW; if (!val) return 0; switch (speed) { case USB_SPEED_SUPER: return DIV_ROUND_UP(val, 8); default: return DIV_ROUND_UP(val, 2); } } static int config_buf(struct usb_configuration *config, enum usb_device_speed speed, void *buf, u8 type) { struct usb_config_descriptor *c = buf; void *next = buf + USB_DT_CONFIG_SIZE; int len; struct usb_function *f; int status; len = USB_COMP_EP0_BUFSIZ - USB_DT_CONFIG_SIZE; /* write the config descriptor */ c = buf; c->bLength = USB_DT_CONFIG_SIZE; c->bDescriptorType = type; /* wTotalLength is written later */ c->bNumInterfaces = config->next_interface_id; c->bConfigurationValue = config->bConfigurationValue; c->iConfiguration = config->iConfiguration; c->bmAttributes = USB_CONFIG_ATT_ONE | config->bmAttributes; c->bMaxPower = encode_bMaxPower(speed, config); /* There may be e.g. OTG descriptors */ if (config->descriptors) { status = usb_descriptor_fillbuf(next, len, config->descriptors); if (status < 0) return status; len -= status; next += status; } /* add each function's descriptors */ list_for_each_entry(f, &config->functions, list) { struct usb_descriptor_header **descriptors; descriptors = function_descriptors(f, speed); if (!descriptors) continue; status = usb_descriptor_fillbuf(next, len, (const struct usb_descriptor_header **) descriptors); if (status < 0) return status; len -= status; next += status; } len = next - buf; c->wTotalLength = cpu_to_le16(len); return len; } static int config_desc(struct usb_composite_dev *cdev, unsigned w_value) { struct usb_gadget *gadget = cdev->gadget; struct usb_configuration *c; struct list_head *pos; u8 type = w_value >> 8; enum usb_device_speed speed = USB_SPEED_UNKNOWN; if (gadget->speed >= USB_SPEED_SUPER) speed = gadget->speed; else if (gadget_is_dualspeed(gadget)) { int hs = 0; if (gadget->speed == USB_SPEED_HIGH) hs = 1; if (type == USB_DT_OTHER_SPEED_CONFIG) hs = !hs; if (hs) speed = USB_SPEED_HIGH; } /* This is a lookup by config *INDEX* */ w_value &= 0xff; pos = &cdev->configs; c = cdev->os_desc_config; if (c) goto check_config; while ((pos = pos->next) != &cdev->configs) { c = list_entry(pos, typeof(*c), list); /* skip OS Descriptors config which is handled separately */ if (c == cdev->os_desc_config) continue; check_config: /* ignore configs that won't work at this speed */ switch (speed) { case USB_SPEED_SUPER_PLUS: if (!c->superspeed_plus) continue; break; case USB_SPEED_SUPER: if (!c->superspeed) continue; break; case USB_SPEED_HIGH: if (!c->highspeed) continue; break; default: if (!c->fullspeed) continue; } if (w_value == 0) return config_buf(c, speed, cdev->req->buf, type); w_value--; } return -EINVAL; } static int count_configs(struct usb_composite_dev *cdev, unsigned type) { struct usb_gadget *gadget = cdev->gadget; struct usb_configuration *c; unsigned count = 0; int hs = 0; int ss = 0; int ssp = 0; if (gadget_is_dualspeed(gadget)) { if (gadget->speed == USB_SPEED_HIGH) hs = 1; if (gadget->speed == USB_SPEED_SUPER) ss = 1; if (gadget->speed == USB_SPEED_SUPER_PLUS) ssp = 1; if (type == USB_DT_DEVICE_QUALIFIER) hs = !hs; } list_for_each_entry(c, &cdev->configs, list) { /* ignore configs that won't work at this speed */ if (ssp) { if (!c->superspeed_plus) continue; } else if (ss) { if (!c->superspeed) continue; } else if (hs) { if (!c->highspeed) continue; } else { if (!c->fullspeed) continue; } count++; } return count; } /** * bos_desc() - prepares the BOS descriptor. * @cdev: pointer to usb_composite device to generate the bos * descriptor for * * This function generates the BOS (Binary Device Object) * descriptor and its device capabilities descriptors. The BOS * descriptor should be supported by a SuperSpeed device. */ static int bos_desc(struct usb_composite_dev *cdev) { struct usb_ext_cap_descriptor *usb_ext; struct usb_dcd_config_params dcd_config_params; struct usb_bos_descriptor *bos = cdev->req->buf; bos->bLength = USB_DT_BOS_SIZE; bos->bDescriptorType = USB_DT_BOS; bos->wTotalLength = cpu_to_le16(USB_DT_BOS_SIZE); bos->bNumDeviceCaps = 0; /* * A SuperSpeed device shall include the USB2.0 extension descriptor * and shall support LPM when operating in USB2.0 HS mode. */ usb_ext = cdev->req->buf + le16_to_cpu(bos->wTotalLength); bos->bNumDeviceCaps++; le16_add_cpu(&bos->wTotalLength, USB_DT_USB_EXT_CAP_SIZE); usb_ext->bLength = USB_DT_USB_EXT_CAP_SIZE; usb_ext->bDescriptorType = USB_DT_DEVICE_CAPABILITY; usb_ext->bDevCapabilityType = USB_CAP_TYPE_EXT; usb_ext->bmAttributes = cpu_to_le32(USB_LPM_SUPPORT | USB_BESL_SUPPORT); /* * The Superspeed USB Capability descriptor shall be implemented by all * SuperSpeed devices. */ if (gadget_is_superspeed(cdev->gadget)) { struct usb_ss_cap_descriptor *ss_cap; ss_cap = cdev->req->buf + le16_to_cpu(bos->wTotalLength); bos->bNumDeviceCaps++; le16_add_cpu(&bos->wTotalLength, USB_DT_USB_SS_CAP_SIZE); ss_cap->bLength = USB_DT_USB_SS_CAP_SIZE; ss_cap->bDescriptorType = USB_DT_DEVICE_CAPABILITY; ss_cap->bDevCapabilityType = USB_SS_CAP_TYPE; ss_cap->bmAttributes = 0; /* LTM is not supported yet */ ss_cap->wSpeedSupported = cpu_to_le16(USB_LOW_SPEED_OPERATION | USB_FULL_SPEED_OPERATION | USB_HIGH_SPEED_OPERATION | USB_5GBPS_OPERATION); ss_cap->bFunctionalitySupport = USB_LOW_SPEED_OPERATION; /* Get Controller configuration */ if (cdev->gadget->ops->get_config_params) { cdev->gadget->ops->get_config_params( &dcd_config_params); } else { dcd_config_params.bU1devExitLat = USB_DEFAULT_U1_DEV_EXIT_LAT; dcd_config_params.bU2DevExitLat = cpu_to_le16(USB_DEFAULT_U2_DEV_EXIT_LAT); } ss_cap->bU1devExitLat = dcd_config_params.bU1devExitLat; ss_cap->bU2DevExitLat = dcd_config_params.bU2DevExitLat; } /* The SuperSpeedPlus USB Device Capability descriptor */ if (gadget_is_superspeed_plus(cdev->gadget)) { struct usb_ssp_cap_descriptor *ssp_cap; ssp_cap = cdev->req->buf + le16_to_cpu(bos->wTotalLength); bos->bNumDeviceCaps++; /* * Report typical values. */ le16_add_cpu(&bos->wTotalLength, USB_DT_USB_SSP_CAP_SIZE(1)); ssp_cap->bLength = USB_DT_USB_SSP_CAP_SIZE(1); ssp_cap->bDescriptorType = USB_DT_DEVICE_CAPABILITY; ssp_cap->bDevCapabilityType = USB_SSP_CAP_TYPE; ssp_cap->bReserved = 0; ssp_cap->wReserved = 0; /* SSAC = 1 (2 attributes) */ ssp_cap->bmAttributes = cpu_to_le32(1); /* Min RX/TX Lane Count = 1 */ ssp_cap->wFunctionalitySupport = cpu_to_le16((1 << 8) | (1 << 12)); /* * bmSublinkSpeedAttr[0]: * ST = Symmetric, RX * LSE = 3 (Gbps) * LP = 1 (SuperSpeedPlus) * LSM = 10 (10 Gbps) */ ssp_cap->bmSublinkSpeedAttr[0] = cpu_to_le32((3 << 4) | (1 << 14) | (0xa << 16)); /* * bmSublinkSpeedAttr[1] = * ST = Symmetric, TX * LSE = 3 (Gbps) * LP = 1 (SuperSpeedPlus) * LSM = 10 (10 Gbps) */ ssp_cap->bmSublinkSpeedAttr[1] = cpu_to_le32((3 << 4) | (1 << 14) | (0xa << 16) | (1 << 7)); } return le16_to_cpu(bos->wTotalLength); } static void device_qual(struct usb_composite_dev *cdev) { struct usb_qualifier_descriptor *qual = cdev->req->buf; qual->bLength = sizeof(*qual); qual->bDescriptorType = USB_DT_DEVICE_QUALIFIER; /* POLICY: same bcdUSB and device type info at both speeds */ qual->bcdUSB = cdev->desc.bcdUSB; qual->bDeviceClass = cdev->desc.bDeviceClass; qual->bDeviceSubClass = cdev->desc.bDeviceSubClass; qual->bDeviceProtocol = cdev->desc.bDeviceProtocol; /* ASSUME same EP0 fifo size at both speeds */ qual->bMaxPacketSize0 = cdev->gadget->ep0->maxpacket; qual->bNumConfigurations = count_configs(cdev, USB_DT_DEVICE_QUALIFIER); qual->bRESERVED = 0; } /*-------------------------------------------------------------------------*/ static void reset_config(struct usb_composite_dev *cdev) { struct usb_function *f; DBG(cdev, "reset config\n"); list_for_each_entry(f, &cdev->config->functions, list) { if (f->disable) f->disable(f); bitmap_zero(f->endpoints, 32); } cdev->config = NULL; cdev->delayed_status = 0; } static int set_config(struct usb_composite_dev *cdev, const struct usb_ctrlrequest *ctrl, unsigned number) { struct usb_gadget *gadget = cdev->gadget; struct usb_configuration *c = NULL; int result = -EINVAL; unsigned power = gadget_is_otg(gadget) ? 8 : 100; int tmp; if (number) { list_for_each_entry(c, &cdev->configs, list) { if (c->bConfigurationValue == number) { /* * We disable the FDs of the previous * configuration only if the new configuration * is a valid one */ if (cdev->config) reset_config(cdev); result = 0; break; } } if (result < 0) goto done; } else { /* Zero configuration value - need to reset the config */ if (cdev->config) reset_config(cdev); result = 0; } INFO(cdev, "%s config #%d: %s\n", usb_speed_string(gadget->speed), number, c ? c->label : "unconfigured"); if (!c) goto done; usb_gadget_set_state(gadget, USB_STATE_CONFIGURED); cdev->config = c; /* Initialize all interfaces by setting them to altsetting zero. */ for (tmp = 0; tmp < MAX_CONFIG_INTERFACES; tmp++) { struct usb_function *f = c->interface[tmp]; struct usb_descriptor_header **descriptors; if (!f) break; /* * Record which endpoints are used by the function. This is used * to dispatch control requests targeted at that endpoint to the * function's setup callback instead of the current * configuration's setup callback. */ descriptors = function_descriptors(f, gadget->speed); for (; *descriptors; ++descriptors) { struct usb_endpoint_descriptor *ep; int addr; if ((*descriptors)->bDescriptorType != USB_DT_ENDPOINT) continue; ep = (struct usb_endpoint_descriptor *)*descriptors; addr = ((ep->bEndpointAddress & 0x80) >> 3) | (ep->bEndpointAddress & 0x0f); set_bit(addr, f->endpoints); } result = f->set_alt(f, tmp, 0); if (result < 0) { DBG(cdev, "interface %d (%s/%p) alt 0 --> %d\n", tmp, f->name, f, result); reset_config(cdev); goto done; } if (result == USB_GADGET_DELAYED_STATUS) { DBG(cdev, "%s: interface %d (%s) requested delayed status\n", __func__, tmp, f->name); cdev->delayed_status++; DBG(cdev, "delayed_status count %d\n", cdev->delayed_status); } } /* when we return, be sure our power usage is valid */ power = c->MaxPower ? c->MaxPower : CONFIG_USB_GADGET_VBUS_DRAW; done: usb_gadget_vbus_draw(gadget, power); if (result >= 0 && cdev->delayed_status) result = USB_GADGET_DELAYED_STATUS; return result; } int usb_add_config_only(struct usb_composite_dev *cdev, struct usb_configuration *config) { struct usb_configuration *c; if (!config->bConfigurationValue) return -EINVAL; /* Prevent duplicate configuration identifiers */ list_for_each_entry(c, &cdev->configs, list) { if (c->bConfigurationValue == config->bConfigurationValue) return -EBUSY; } config->cdev = cdev; list_add_tail(&config->list, &cdev->configs); INIT_LIST_HEAD(&config->functions); config->next_interface_id = 0; memset(config->interface, 0, sizeof(config->interface)); return 0; } EXPORT_SYMBOL_GPL(usb_add_config_only); /** * usb_add_config() - add a configuration to a device. * @cdev: wraps the USB gadget * @config: the configuration, with bConfigurationValue assigned * @bind: the configuration's bind function * Context: single threaded during gadget setup * * One of the main tasks of a composite @bind() routine is to * add each of the configurations it supports, using this routine. * * This function returns the value of the configuration's @bind(), which * is zero for success else a negative errno value. Binding configurations * assigns global resources including string IDs, and per-configuration * resources such as interface IDs and endpoints. */ int usb_add_config(struct usb_composite_dev *cdev, struct usb_configuration *config, int (*bind)(struct usb_configuration *)) { int status = -EINVAL; if (!bind) goto done; DBG(cdev, "adding config #%u '%s'/%p\n", config->bConfigurationValue, config->label, config); status = usb_add_config_only(cdev, config); if (status) goto done; status = bind(config); if (status < 0) { while (!list_empty(&config->functions)) { struct usb_function *f; f = list_first_entry(&config->functions, struct usb_function, list); list_del(&f->list); if (f->unbind) { DBG(cdev, "unbind function '%s'/%p\n", f->name, f); f->unbind(config, f); /* may free memory for "f" */ } } list_del(&config->list); config->cdev = NULL; } else { unsigned i; DBG(cdev, "cfg %d/%p speeds:%s%s%s%s\n", config->bConfigurationValue, config, config->superspeed_plus ? " superplus" : "", config->superspeed ? " super" : "", config->highspeed ? " high" : "", config->fullspeed ? (gadget_is_dualspeed(cdev->gadget) ? " full" : " full/low") : ""); for (i = 0; i < MAX_CONFIG_INTERFACES; i++) { struct usb_function *f = config->interface[i]; if (!f) continue; DBG(cdev, " interface %d = %s/%p\n", i, f->name, f); } } /* set_alt(), or next bind(), sets up ep->claimed as needed */ usb_ep_autoconfig_reset(cdev->gadget); done: if (status) DBG(cdev, "added config '%s'/%u --> %d\n", config->label, config->bConfigurationValue, status); return status; } EXPORT_SYMBOL_GPL(usb_add_config); static void remove_config(struct usb_composite_dev *cdev, struct usb_configuration *config) { while (!list_empty(&config->functions)) { struct usb_function *f; f = list_first_entry(&config->functions, struct usb_function, list); list_del(&f->list); if (f->unbind) { DBG(cdev, "unbind function '%s'/%p\n", f->name, f); f->unbind(config, f); /* may free memory for "f" */ } } list_del(&config->list); if (config->unbind) { DBG(cdev, "unbind config '%s'/%p\n", config->label, config); config->unbind(config); /* may free memory for "c" */ } } /** * usb_remove_config() - remove a configuration from a device. * @cdev: wraps the USB gadget * @config: the configuration * * Drivers must call usb_gadget_disconnect before calling this function * to disconnect the device from the host and make sure the host will not * try to enumerate the device while we are changing the config list. */ void usb_remove_config(struct usb_composite_dev *cdev, struct usb_configuration *config) { unsigned long flags; spin_lock_irqsave(&cdev->lock, flags); if (cdev->config == config) reset_config(cdev); spin_unlock_irqrestore(&cdev->lock, flags); remove_config(cdev, config); } /*-------------------------------------------------------------------------*/ /* We support strings in multiple languages ... string descriptor zero * says which languages are supported. The typical case will be that * only one language (probably English) is used, with i18n handled on * the host side. */ static void collect_langs(struct usb_gadget_strings **sp, __le16 *buf) { const struct usb_gadget_strings *s; __le16 language; __le16 *tmp; while (*sp) { s = *sp; language = cpu_to_le16(s->language); for (tmp = buf; *tmp && tmp < &buf[126]; tmp++) { if (*tmp == language) goto repeat; } *tmp++ = language; repeat: sp++; } } static int lookup_string( struct usb_gadget_strings **sp, void *buf, u16 language, int id ) { struct usb_gadget_strings *s; int value; while (*sp) { s = *sp++; if (s->language != language) continue; value = usb_gadget_get_string(s, id, buf); if (value > 0) return value; } return -EINVAL; } static int get_string(struct usb_composite_dev *cdev, void *buf, u16 language, int id) { struct usb_composite_driver *composite = cdev->driver; struct usb_gadget_string_container *uc; struct usb_configuration *c; struct usb_function *f; int len; /* Yes, not only is USB's i18n support probably more than most * folk will ever care about ... also, it's all supported here. * (Except for UTF8 support for Unicode's "Astral Planes".) */ /* 0 == report all available language codes */ if (id == 0) { struct usb_string_descriptor *s = buf; struct usb_gadget_strings **sp; memset(s, 0, 256); s->bDescriptorType = USB_DT_STRING; sp = composite->strings; if (sp) collect_langs(sp, s->wData); list_for_each_entry(c, &cdev->configs, list) { sp = c->strings; if (sp) collect_langs(sp, s->wData); list_for_each_entry(f, &c->functions, list) { sp = f->strings; if (sp) collect_langs(sp, s->wData); } } list_for_each_entry(uc, &cdev->gstrings, list) { struct usb_gadget_strings **sp; sp = get_containers_gs(uc); collect_langs(sp, s->wData); } for (len = 0; len <= 126 && s->wData[len]; len++) continue; if (!len) return -EINVAL; s->bLength = 2 * (len + 1); return s->bLength; } if (cdev->use_os_string && language == 0 && id == OS_STRING_IDX) { struct usb_os_string *b = buf; b->bLength = sizeof(*b); b->bDescriptorType = USB_DT_STRING; compiletime_assert( sizeof(b->qwSignature) == sizeof(cdev->qw_sign), "qwSignature size must be equal to qw_sign"); memcpy(&b->qwSignature, cdev->qw_sign, sizeof(b->qwSignature)); b->bMS_VendorCode = cdev->b_vendor_code; b->bPad = 0; return sizeof(*b); } list_for_each_entry(uc, &cdev->gstrings, list) { struct usb_gadget_strings **sp; sp = get_containers_gs(uc); len = lookup_string(sp, buf, language, id); if (len > 0) return len; } /* String IDs are device-scoped, so we look up each string * table we're told about. These lookups are infrequent; * simpler-is-better here. */ if (composite->strings) { len = lookup_string(composite->strings, buf, language, id); if (len > 0) return len; } list_for_each_entry(c, &cdev->configs, list) { if (c->strings) { len = lookup_string(c->strings, buf, language, id); if (len > 0) return len; } list_for_each_entry(f, &c->functions, list) { if (!f->strings) continue; len = lookup_string(f->strings, buf, language, id); if (len > 0) return len; } } return -EINVAL; } /** * usb_string_id() - allocate an unused string ID * @cdev: the device whose string descriptor IDs are being allocated * Context: single threaded during gadget setup * * @usb_string_id() is called from bind() callbacks to allocate * string IDs. Drivers for functions, configurations, or gadgets will * then store that ID in the appropriate descriptors and string table. * * All string identifier should be allocated using this, * @usb_string_ids_tab() or @usb_string_ids_n() routine, to ensure * that for example different functions don't wrongly assign different * meanings to the same identifier. */ int usb_string_id(struct usb_composite_dev *cdev) { if (cdev->next_string_id < 254) { /* string id 0 is reserved by USB spec for list of * supported languages */ /* 255 reserved as well? -- mina86 */ cdev->next_string_id++; return cdev->next_string_id; } return -ENODEV; } EXPORT_SYMBOL_GPL(usb_string_id); /** * usb_string_ids() - allocate unused string IDs in batch * @cdev: the device whose string descriptor IDs are being allocated * @str: an array of usb_string objects to assign numbers to * Context: single threaded during gadget setup * * @usb_string_ids() is called from bind() callbacks to allocate * string IDs. Drivers for functions, configurations, or gadgets will * then copy IDs from the string table to the appropriate descriptors * and string table for other languages. * * All string identifier should be allocated using this, * @usb_string_id() or @usb_string_ids_n() routine, to ensure that for * example different functions don't wrongly assign different meanings * to the same identifier. */ int usb_string_ids_tab(struct usb_composite_dev *cdev, struct usb_string *str) { int next = cdev->next_string_id; for (; str->s; ++str) { if (unlikely(next >= 254)) return -ENODEV; str->id = ++next; } cdev->next_string_id = next; return 0; } EXPORT_SYMBOL_GPL(usb_string_ids_tab); static struct usb_gadget_string_container *copy_gadget_strings( struct usb_gadget_strings **sp, unsigned n_gstrings, unsigned n_strings) { struct usb_gadget_string_container *uc; struct usb_gadget_strings **gs_array; struct usb_gadget_strings *gs; struct usb_string *s; unsigned mem; unsigned n_gs; unsigned n_s; void *stash; mem = sizeof(*uc); mem += sizeof(void *) * (n_gstrings + 1); mem += sizeof(struct usb_gadget_strings) * n_gstrings; mem += sizeof(struct usb_string) * (n_strings + 1) * (n_gstrings); uc = kmalloc(mem, GFP_KERNEL); if (!uc) return ERR_PTR(-ENOMEM); gs_array = get_containers_gs(uc); stash = uc->stash; stash += sizeof(void *) * (n_gstrings + 1); for (n_gs = 0; n_gs < n_gstrings; n_gs++) { struct usb_string *org_s; gs_array[n_gs] = stash; gs = gs_array[n_gs]; stash += sizeof(struct usb_gadget_strings); gs->language = sp[n_gs]->language; gs->strings = stash; org_s = sp[n_gs]->strings; for (n_s = 0; n_s < n_strings; n_s++) { s = stash; stash += sizeof(struct usb_string); if (org_s->s) s->s = org_s->s; else s->s = ""; org_s++; } s = stash; s->s = NULL; stash += sizeof(struct usb_string); } gs_array[n_gs] = NULL; return uc; } /** * usb_gstrings_attach() - attach gadget strings to a cdev and assign ids * @cdev: the device whose string descriptor IDs are being allocated * and attached. * @sp: an array of usb_gadget_strings to attach. * @n_strings: number of entries in each usb_strings array (sp[]->strings) * * This function will create a deep copy of usb_gadget_strings and usb_string * and attach it to the cdev. The actual string (usb_string.s) will not be * copied but only a referenced will be made. The struct usb_gadget_strings * array may contain multiple languages and should be NULL terminated. * The ->language pointer of each struct usb_gadget_strings has to contain the * same amount of entries. * For instance: sp[0] is en-US, sp[1] is es-ES. It is expected that the first * usb_string entry of es-ES contains the translation of the first usb_string * entry of en-US. Therefore both entries become the same id assign. */ struct usb_string *usb_gstrings_attach(struct usb_composite_dev *cdev, struct usb_gadget_strings **sp, unsigned n_strings) { struct usb_gadget_string_container *uc; struct usb_gadget_strings **n_gs; unsigned n_gstrings = 0; unsigned i; int ret; for (i = 0; sp[i]; i++) n_gstrings++; if (!n_gstrings) return ERR_PTR(-EINVAL); uc = copy_gadget_strings(sp, n_gstrings, n_strings); if (IS_ERR(uc)) return ERR_CAST(uc); n_gs = get_containers_gs(uc); ret = usb_string_ids_tab(cdev, n_gs[0]->strings); if (ret) goto err; for (i = 1; i < n_gstrings; i++) { struct usb_string *m_s; struct usb_string *s; unsigned n; m_s = n_gs[0]->strings; s = n_gs[i]->strings; for (n = 0; n < n_strings; n++) { s->id = m_s->id; s++; m_s++; } } list_add_tail(&uc->list, &cdev->gstrings); return n_gs[0]->strings; err: kfree(uc); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(usb_gstrings_attach); /** * usb_string_ids_n() - allocate unused string IDs in batch * @c: the device whose string descriptor IDs are being allocated * @n: number of string IDs to allocate * Context: single threaded during gadget setup * * Returns the first requested ID. This ID and next @n-1 IDs are now * valid IDs. At least provided that @n is non-zero because if it * is, returns last requested ID which is now very useful information. * * @usb_string_ids_n() is called from bind() callbacks to allocate * string IDs. Drivers for functions, configurations, or gadgets will * then store that ID in the appropriate descriptors and string table. * * All string identifier should be allocated using this, * @usb_string_id() or @usb_string_ids_n() routine, to ensure that for * example different functions don't wrongly assign different meanings * to the same identifier. */ int usb_string_ids_n(struct usb_composite_dev *c, unsigned n) { unsigned next = c->next_string_id; if (unlikely(n > 254 || (unsigned)next + n > 254)) return -ENODEV; c->next_string_id += n; return next + 1; } EXPORT_SYMBOL_GPL(usb_string_ids_n); /*-------------------------------------------------------------------------*/ static void composite_setup_complete(struct usb_ep *ep, struct usb_request *req) { struct usb_composite_dev *cdev; if (req->status || req->actual != req->length) DBG((struct usb_composite_dev *) ep->driver_data, "setup complete --> %d, %d/%d\n", req->status, req->actual, req->length); /* * REVIST The same ep0 requests are shared with function drivers * so they don't have to maintain the same ->complete() stubs. * * Because of that, we need to check for the validity of ->context * here, even though we know we've set it to something useful. */ if (!req->context) return; cdev = req->context; if (cdev->req == req) cdev->setup_pending = false; else if (cdev->os_desc_req == req) cdev->os_desc_pending = false; else WARN(1, "unknown request %p\n", req); } static int composite_ep0_queue(struct usb_composite_dev *cdev, struct usb_request *req, gfp_t gfp_flags) { int ret; ret = usb_ep_queue(cdev->gadget->ep0, req, gfp_flags); if (ret == 0) { if (cdev->req == req) cdev->setup_pending = true; else if (cdev->os_desc_req == req) cdev->os_desc_pending = true; else WARN(1, "unknown request %p\n", req); } return ret; } static int count_ext_compat(struct usb_configuration *c) { int i, res; res = 0; for (i = 0; i < c->next_interface_id; ++i) { struct usb_function *f; int j; f = c->interface[i]; for (j = 0; j < f->os_desc_n; ++j) { struct usb_os_desc *d; if (i != f->os_desc_table[j].if_id) continue; d = f->os_desc_table[j].os_desc; if (d && d->ext_compat_id) ++res; } } BUG_ON(res > 255); return res; } static void fill_ext_compat(struct usb_configuration *c, u8 *buf) { int i, count; count = 16; for (i = 0; i < c->next_interface_id; ++i) { struct usb_function *f; int j; f = c->interface[i]; for (j = 0; j < f->os_desc_n; ++j) { struct usb_os_desc *d; if (i != f->os_desc_table[j].if_id) continue; d = f->os_desc_table[j].os_desc; if (d && d->ext_compat_id) { *buf++ = i; *buf++ = 0x01; memcpy(buf, d->ext_compat_id, 16); buf += 22; } else { ++buf; *buf = 0x01; buf += 23; } count += 24; if (count >= 4096) return; } } } static int count_ext_prop(struct usb_configuration *c, int interface) { struct usb_function *f; int j; f = c->interface[interface]; for (j = 0; j < f->os_desc_n; ++j) { struct usb_os_desc *d; if (interface != f->os_desc_table[j].if_id) continue; d = f->os_desc_table[j].os_desc; if (d && d->ext_compat_id) return d->ext_prop_count; } return 0; } static int len_ext_prop(struct usb_configuration *c, int interface) { struct usb_function *f; struct usb_os_desc *d; int j, res; res = 10; /* header length */ f = c->interface[interface]; for (j = 0; j < f->os_desc_n; ++j) { if (interface != f->os_desc_table[j].if_id) continue; d = f->os_desc_table[j].os_desc; if (d) return min(res + d->ext_prop_len, 4096); } return res; } static int fill_ext_prop(struct usb_configuration *c, int interface, u8 *buf) { struct usb_function *f; struct usb_os_desc *d; struct usb_os_desc_ext_prop *ext_prop; int j, count, n, ret; u8 *start = buf; f = c->interface[interface]; for (j = 0; j < f->os_desc_n; ++j) { if (interface != f->os_desc_table[j].if_id) continue; d = f->os_desc_table[j].os_desc; if (d) list_for_each_entry(ext_prop, &d->ext_prop, entry) { /* 4kB minus header length */ n = buf - start; if (n >= 4086) return 0; count = ext_prop->data_len + ext_prop->name_len + 14; if (count > 4086 - n) return -EINVAL; usb_ext_prop_put_size(buf, count); usb_ext_prop_put_type(buf, ext_prop->type); ret = usb_ext_prop_put_name(buf, ext_prop->name, ext_prop->name_len); if (ret < 0) return ret; switch (ext_prop->type) { case USB_EXT_PROP_UNICODE: case USB_EXT_PROP_UNICODE_ENV: case USB_EXT_PROP_UNICODE_LINK: usb_ext_prop_put_unicode(buf, ret, ext_prop->data, ext_prop->data_len); break; case USB_EXT_PROP_BINARY: usb_ext_prop_put_binary(buf, ret, ext_prop->data, ext_prop->data_len); break; case USB_EXT_PROP_LE32: /* not implemented */ case USB_EXT_PROP_BE32: /* not implemented */ default: return -EINVAL; } buf += count; } } return 0; } /* * The setup() callback implements all the ep0 functionality that's * not handled lower down, in hardware or the hardware driver(like * device and endpoint feature flags, and their status). It's all * housekeeping for the gadget function we're implementing. Most of * the work is in config and function specific setup. */ int composite_setup(struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = get_gadget_data(gadget); struct usb_request *req = cdev->req; int value = -EOPNOTSUPP; int status = 0; u16 w_index = le16_to_cpu(ctrl->wIndex); u8 intf = w_index & 0xFF; u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); struct usb_function *f = NULL; u8 endp; /* partial re-init of the response message; the function or the * gadget might need to intercept e.g. a control-OUT completion * when we delegate to it. */ req->zero = 0; req->context = cdev; req->complete = composite_setup_complete; req->length = 0; gadget->ep0->driver_data = cdev; /* * Don't let non-standard requests match any of the cases below * by accident. */ if ((ctrl->bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) goto unknown; switch (ctrl->bRequest) { /* we handle all standard USB descriptors */ case USB_REQ_GET_DESCRIPTOR: if (ctrl->bRequestType != USB_DIR_IN) goto unknown; switch (w_value >> 8) { case USB_DT_DEVICE: cdev->desc.bNumConfigurations = count_configs(cdev, USB_DT_DEVICE); cdev->desc.bMaxPacketSize0 = cdev->gadget->ep0->maxpacket; if (gadget_is_superspeed(gadget)) { if (gadget->speed >= USB_SPEED_SUPER) { cdev->desc.bcdUSB = cpu_to_le16(0x0310); cdev->desc.bMaxPacketSize0 = 9; } else { cdev->desc.bcdUSB = cpu_to_le16(0x0210); } } else { if (gadget->lpm_capable) cdev->desc.bcdUSB = cpu_to_le16(0x0201); else cdev->desc.bcdUSB = cpu_to_le16(0x0200); } value = min(w_length, (u16) sizeof cdev->desc); memcpy(req->buf, &cdev->desc, value); break; case USB_DT_DEVICE_QUALIFIER: if (!gadget_is_dualspeed(gadget) || gadget->speed >= USB_SPEED_SUPER) break; device_qual(cdev); value = min_t(int, w_length, sizeof(struct usb_qualifier_descriptor)); break; case USB_DT_OTHER_SPEED_CONFIG: if (!gadget_is_dualspeed(gadget) || gadget->speed >= USB_SPEED_SUPER) break; /* FALLTHROUGH */ case USB_DT_CONFIG: value = config_desc(cdev, w_value); if (value >= 0) value = min(w_length, (u16) value); break; case USB_DT_STRING: value = get_string(cdev, req->buf, w_index, w_value & 0xff); if (value >= 0) value = min(w_length, (u16) value); break; case USB_DT_BOS: if (gadget_is_superspeed(gadget) || gadget->lpm_capable) { value = bos_desc(cdev); value = min(w_length, (u16) value); } break; case USB_DT_OTG: if (gadget_is_otg(gadget)) { struct usb_configuration *config; int otg_desc_len = 0; if (cdev->config) config = cdev->config; else config = list_first_entry( &cdev->configs, struct usb_configuration, list); if (!config) goto done; if (gadget->otg_caps && (gadget->otg_caps->otg_rev >= 0x0200)) otg_desc_len += sizeof( struct usb_otg20_descriptor); else otg_desc_len += sizeof( struct usb_otg_descriptor); value = min_t(int, w_length, otg_desc_len); memcpy(req->buf, config->descriptors[0], value); } break; } break; /* any number of configs can work */ case USB_REQ_SET_CONFIGURATION: if (ctrl->bRequestType != 0) goto unknown; if (gadget_is_otg(gadget)) { if (gadget->a_hnp_support) DBG(cdev, "HNP available\n"); else if (gadget->a_alt_hnp_support) DBG(cdev, "HNP on another port\n"); else VDBG(cdev, "HNP inactive\n"); } spin_lock(&cdev->lock); value = set_config(cdev, ctrl, w_value); spin_unlock(&cdev->lock); break; case USB_REQ_GET_CONFIGURATION: if (ctrl->bRequestType != USB_DIR_IN) goto unknown; if (cdev->config) *(u8 *)req->buf = cdev->config->bConfigurationValue; else *(u8 *)req->buf = 0; value = min(w_length, (u16) 1); break; /* function drivers must handle get/set altsetting */ case USB_REQ_SET_INTERFACE: if (ctrl->bRequestType != USB_RECIP_INTERFACE) goto unknown; if (!cdev->config || intf >= MAX_CONFIG_INTERFACES) break; f = cdev->config->interface[intf]; if (!f) break; /* * If there's no get_alt() method, we know only altsetting zero * works. There is no need to check if set_alt() is not NULL * as we check this in usb_add_function(). */ if (w_value && !f->get_alt) break; value = f->set_alt(f, w_index, w_value); if (value == USB_GADGET_DELAYED_STATUS) { DBG(cdev, "%s: interface %d (%s) requested delayed status\n", __func__, intf, f->name); cdev->delayed_status++; DBG(cdev, "delayed_status count %d\n", cdev->delayed_status); } break; case USB_REQ_GET_INTERFACE: if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE)) goto unknown; if (!cdev->config || intf >= MAX_CONFIG_INTERFACES) break; f = cdev->config->interface[intf]; if (!f) break; /* lots of interfaces only need altsetting zero... */ value = f->get_alt ? f->get_alt(f, w_index) : 0; if (value < 0) break; *((u8 *)req->buf) = value; value = min(w_length, (u16) 1); break; case USB_REQ_GET_STATUS: if (gadget_is_otg(gadget) && gadget->hnp_polling_support && (w_index == OTG_STS_SELECTOR)) { if (ctrl->bRequestType != (USB_DIR_IN | USB_RECIP_DEVICE)) goto unknown; *((u8 *)req->buf) = gadget->host_request_flag; value = 1; break; } /* * USB 3.0 additions: * Function driver should handle get_status request. If such cb * wasn't supplied we respond with default value = 0 * Note: function driver should supply such cb only for the * first interface of the function */ if (!gadget_is_superspeed(gadget)) goto unknown; if (ctrl->bRequestType != (USB_DIR_IN | USB_RECIP_INTERFACE)) goto unknown; value = 2; /* This is the length of the get_status reply */ put_unaligned_le16(0, req->buf); if (!cdev->config || intf >= MAX_CONFIG_INTERFACES) break; f = cdev->config->interface[intf]; if (!f) break; status = f->get_status ? f->get_status(f) : 0; if (status < 0) break; put_unaligned_le16(status & 0x0000ffff, req->buf); break; /* * Function drivers should handle SetFeature/ClearFeature * (FUNCTION_SUSPEND) request. function_suspend cb should be supplied * only for the first interface of the function */ case USB_REQ_CLEAR_FEATURE: case USB_REQ_SET_FEATURE: if (!gadget_is_superspeed(gadget)) goto unknown; if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_INTERFACE)) goto unknown; switch (w_value) { case USB_INTRF_FUNC_SUSPEND: if (!cdev->config || intf >= MAX_CONFIG_INTERFACES) break; f = cdev->config->interface[intf]; if (!f) break; value = 0; if (f->func_suspend) value = f->func_suspend(f, w_index >> 8); if (value < 0) { ERROR(cdev, "func_suspend() returned error %d\n", value); value = 0; } break; } break; default: unknown: /* * OS descriptors handling */ if (cdev->use_os_string && cdev->os_desc_config && (ctrl->bRequestType & USB_TYPE_VENDOR) && ctrl->bRequest == cdev->b_vendor_code) { struct usb_request *req; struct usb_configuration *os_desc_cfg; u8 *buf; int interface; int count = 0; req = cdev->os_desc_req; req->context = cdev; req->complete = composite_setup_complete; buf = req->buf; os_desc_cfg = cdev->os_desc_config; memset(buf, 0, w_length); buf[5] = 0x01; switch (ctrl->bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: if (w_index != 0x4 || (w_value >> 8)) break; buf[6] = w_index; if (w_length == 0x10) { /* Number of ext compat interfaces */ count = count_ext_compat(os_desc_cfg); buf[8] = count; count *= 24; /* 24 B/ext compat desc */ count += 16; /* header */ put_unaligned_le32(count, buf); value = w_length; } else { /* "extended compatibility ID"s */ count = count_ext_compat(os_desc_cfg); buf[8] = count; count *= 24; /* 24 B/ext compat desc */ count += 16; /* header */ put_unaligned_le32(count, buf); buf += 16; fill_ext_compat(os_desc_cfg, buf); value = w_length; } break; case USB_RECIP_INTERFACE: if (w_index != 0x5 || (w_value >> 8)) break; interface = w_value & 0xFF; buf[6] = w_index; if (w_length == 0x0A) { count = count_ext_prop(os_desc_cfg, interface); put_unaligned_le16(count, buf + 8); count = len_ext_prop(os_desc_cfg, interface); put_unaligned_le32(count, buf); value = w_length; } else { count = count_ext_prop(os_desc_cfg, interface); put_unaligned_le16(count, buf + 8); count = len_ext_prop(os_desc_cfg, interface); put_unaligned_le32(count, buf); buf += 10; value = fill_ext_prop(os_desc_cfg, interface, buf); if (value < 0) return value; value = w_length; } break; } if (value >= 0) { req->length = value; req->context = cdev; req->zero = value < w_length; value = composite_ep0_queue(cdev, req, GFP_ATOMIC); if (value < 0) { DBG(cdev, "ep_queue --> %d\n", value); req->status = 0; composite_setup_complete(gadget->ep0, req); } } return value; } VDBG(cdev, "non-core control req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); /* functions always handle their interfaces and endpoints... * punt other recipients (other, WUSB, ...) to the current * configuration code. */ if (cdev->config) { list_for_each_entry(f, &cdev->config->functions, list) if (f->req_match && f->req_match(f, ctrl, false)) goto try_fun_setup; } else { struct usb_configuration *c; list_for_each_entry(c, &cdev->configs, list) list_for_each_entry(f, &c->functions, list) if (f->req_match && f->req_match(f, ctrl, true)) goto try_fun_setup; } f = NULL; switch (ctrl->bRequestType & USB_RECIP_MASK) { case USB_RECIP_INTERFACE: if (!cdev->config || intf >= MAX_CONFIG_INTERFACES) break; f = cdev->config->interface[intf]; break; case USB_RECIP_ENDPOINT: if (!cdev->config) break; endp = ((w_index & 0x80) >> 3) | (w_index & 0x0f); list_for_each_entry(f, &cdev->config->functions, list) { if (test_bit(endp, f->endpoints)) break; } if (&f->list == &cdev->config->functions) f = NULL; break; } try_fun_setup: if (f && f->setup) value = f->setup(f, ctrl); else { struct usb_configuration *c; c = cdev->config; if (!c) goto done; /* try current config's setup */ if (c->setup) { value = c->setup(c, ctrl); goto done; } /* try the only function in the current config */ if (!list_is_singular(&c->functions)) goto done; f = list_first_entry(&c->functions, struct usb_function, list); if (f->setup) value = f->setup(f, ctrl); } goto done; } /* respond with data transfer before status phase? */ if (value >= 0 && value != USB_GADGET_DELAYED_STATUS) { req->length = value; req->context = cdev; req->zero = value < w_length; value = composite_ep0_queue(cdev, req, GFP_ATOMIC); if (value < 0) { DBG(cdev, "ep_queue --> %d\n", value); req->status = 0; composite_setup_complete(gadget->ep0, req); } } else if (value == USB_GADGET_DELAYED_STATUS && w_length != 0) { WARN(cdev, "%s: Delayed status not supported for w_length != 0", __func__); } done: /* device either stalls (value < 0) or reports success */ return value; } void composite_disconnect(struct usb_gadget *gadget) { struct usb_composite_dev *cdev = get_gadget_data(gadget); unsigned long flags; /* REVISIT: should we have config and device level * disconnect callbacks? */ spin_lock_irqsave(&cdev->lock, flags); if (cdev->config) reset_config(cdev); if (cdev->driver->disconnect) cdev->driver->disconnect(cdev); spin_unlock_irqrestore(&cdev->lock, flags); } /*-------------------------------------------------------------------------*/ static ssize_t suspended_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_gadget *gadget = dev_to_usb_gadget(dev); struct usb_composite_dev *cdev = get_gadget_data(gadget); return sprintf(buf, "%d\n", cdev->suspended); } static DEVICE_ATTR_RO(suspended); static void __composite_unbind(struct usb_gadget *gadget, bool unbind_driver) { struct usb_composite_dev *cdev = get_gadget_data(gadget); /* composite_disconnect() must already have been called * by the underlying peripheral controller driver! * so there's no i/o concurrency that could affect the * state protected by cdev->lock. */ WARN_ON(cdev->config); while (!list_empty(&cdev->configs)) { struct usb_configuration *c; c = list_first_entry(&cdev->configs, struct usb_configuration, list); remove_config(cdev, c); } if (cdev->driver->unbind && unbind_driver) cdev->driver->unbind(cdev); composite_dev_cleanup(cdev); kfree(cdev->def_manufacturer); kfree(cdev); set_gadget_data(gadget, NULL); } static void composite_unbind(struct usb_gadget *gadget) { __composite_unbind(gadget, true); } static void update_unchanged_dev_desc(struct usb_device_descriptor *new, const struct usb_device_descriptor *old) { __le16 idVendor; __le16 idProduct; __le16 bcdDevice; u8 iSerialNumber; u8 iManufacturer; u8 iProduct; /* * these variables may have been set in * usb_composite_overwrite_options() */ idVendor = new->idVendor; idProduct = new->idProduct; bcdDevice = new->bcdDevice; iSerialNumber = new->iSerialNumber; iManufacturer = new->iManufacturer; iProduct = new->iProduct; *new = *old; if (idVendor) new->idVendor = idVendor; if (idProduct) new->idProduct = idProduct; if (bcdDevice) new->bcdDevice = bcdDevice; else new->bcdDevice = cpu_to_le16(get_default_bcdDevice()); if (iSerialNumber) new->iSerialNumber = iSerialNumber; if (iManufacturer) new->iManufacturer = iManufacturer; if (iProduct) new->iProduct = iProduct; } int composite_dev_prepare(struct usb_composite_driver *composite, struct usb_composite_dev *cdev) { struct usb_gadget *gadget = cdev->gadget; int ret = -ENOMEM; /* preallocate control response and buffer */ cdev->req = usb_ep_alloc_request(gadget->ep0, GFP_KERNEL); if (!cdev->req) return -ENOMEM; cdev->req->buf = kmalloc(USB_COMP_EP0_BUFSIZ, GFP_KERNEL); if (!cdev->req->buf) goto fail; ret = device_create_file(&gadget->dev, &dev_attr_suspended); if (ret) goto fail_dev; cdev->req->complete = composite_setup_complete; cdev->req->context = cdev; gadget->ep0->driver_data = cdev; cdev->driver = composite; /* * As per USB compliance update, a device that is actively drawing * more than 100mA from USB must report itself as bus-powered in * the GetStatus(DEVICE) call. */ if (CONFIG_USB_GADGET_VBUS_DRAW <= USB_SELF_POWER_VBUS_MAX_DRAW) usb_gadget_set_selfpowered(gadget); /* interface and string IDs start at zero via kzalloc. * we force endpoints to start unassigned; few controller * drivers will zero ep->driver_data. */ usb_ep_autoconfig_reset(gadget); return 0; fail_dev: kfree(cdev->req->buf); fail: usb_ep_free_request(gadget->ep0, cdev->req); cdev->req = NULL; return ret; } int composite_os_desc_req_prepare(struct usb_composite_dev *cdev, struct usb_ep *ep0) { int ret = 0; cdev->os_desc_req = usb_ep_alloc_request(ep0, GFP_KERNEL); if (!cdev->os_desc_req) { ret = -ENOMEM; goto end; } /* OS feature descriptor length <= 4kB */ cdev->os_desc_req->buf = kmalloc(4096, GFP_KERNEL); if (!cdev->os_desc_req->buf) { ret = -ENOMEM; usb_ep_free_request(ep0, cdev->os_desc_req); goto end; } cdev->os_desc_req->context = cdev; cdev->os_desc_req->complete = composite_setup_complete; end: return ret; } void composite_dev_cleanup(struct usb_composite_dev *cdev) { struct usb_gadget_string_container *uc, *tmp; list_for_each_entry_safe(uc, tmp, &cdev->gstrings, list) { list_del(&uc->list); kfree(uc); } if (cdev->os_desc_req) { if (cdev->os_desc_pending) usb_ep_dequeue(cdev->gadget->ep0, cdev->os_desc_req); kfree(cdev->os_desc_req->buf); usb_ep_free_request(cdev->gadget->ep0, cdev->os_desc_req); } if (cdev->req) { if (cdev->setup_pending) usb_ep_dequeue(cdev->gadget->ep0, cdev->req); kfree(cdev->req->buf); usb_ep_free_request(cdev->gadget->ep0, cdev->req); } cdev->next_string_id = 0; device_remove_file(&cdev->gadget->dev, &dev_attr_suspended); } static int composite_bind(struct usb_gadget *gadget, struct usb_gadget_driver *gdriver) { struct usb_composite_dev *cdev; struct usb_composite_driver *composite = to_cdriver(gdriver); int status = -ENOMEM; cdev = kzalloc(sizeof *cdev, GFP_KERNEL); if (!cdev) return status; spin_lock_init(&cdev->lock); cdev->gadget = gadget; set_gadget_data(gadget, cdev); INIT_LIST_HEAD(&cdev->configs); INIT_LIST_HEAD(&cdev->gstrings); status = composite_dev_prepare(composite, cdev); if (status) goto fail; /* composite gadget needs to assign strings for whole device (like * serial number), register function drivers, potentially update * power state and consumption, etc */ status = composite->bind(cdev); if (status < 0) goto fail; if (cdev->use_os_string) { status = composite_os_desc_req_prepare(cdev, gadget->ep0); if (status) goto fail; } update_unchanged_dev_desc(&cdev->desc, composite->dev); /* has userspace failed to provide a serial number? */ if (composite->needs_serial && !cdev->desc.iSerialNumber) WARNING(cdev, "userspace failed to provide iSerialNumber\n"); INFO(cdev, "%s ready\n", composite->name); return 0; fail: __composite_unbind(gadget, false); return status; } /*-------------------------------------------------------------------------*/ void composite_suspend(struct usb_gadget *gadget) { struct usb_composite_dev *cdev = get_gadget_data(gadget); struct usb_function *f; /* REVISIT: should we have config level * suspend/resume callbacks? */ DBG(cdev, "suspend\n"); if (cdev->config) { list_for_each_entry(f, &cdev->config->functions, list) { if (f->suspend) f->suspend(f); } } if (cdev->driver->suspend) cdev->driver->suspend(cdev); cdev->suspended = 1; usb_gadget_vbus_draw(gadget, 2); } void composite_resume(struct usb_gadget *gadget) { struct usb_composite_dev *cdev = get_gadget_data(gadget); struct usb_function *f; u16 maxpower; /* REVISIT: should we have config level * suspend/resume callbacks? */ DBG(cdev, "resume\n"); if (cdev->driver->resume) cdev->driver->resume(cdev); if (cdev->config) { list_for_each_entry(f, &cdev->config->functions, list) { if (f->resume) f->resume(f); } maxpower = cdev->config->MaxPower; usb_gadget_vbus_draw(gadget, maxpower ? maxpower : CONFIG_USB_GADGET_VBUS_DRAW); } cdev->suspended = 0; } /*-------------------------------------------------------------------------*/ static const struct usb_gadget_driver composite_driver_template = { .bind = composite_bind, .unbind = composite_unbind, .setup = composite_setup, .reset = composite_disconnect, .disconnect = composite_disconnect, .suspend = composite_suspend, .resume = composite_resume, .driver = { .owner = THIS_MODULE, }, }; /** * usb_composite_probe() - register a composite driver * @driver: the driver to register * * Context: single threaded during gadget setup * * This function is used to register drivers using the composite driver * framework. The return value is zero, or a negative errno value. * Those values normally come from the driver's @bind method, which does * all the work of setting up the driver to match the hardware. * * On successful return, the gadget is ready to respond to requests from * the host, unless one of its components invokes usb_gadget_disconnect() * while it was binding. That would usually be done in order to wait for * some userspace participation. */ int usb_composite_probe(struct usb_composite_driver *driver) { struct usb_gadget_driver *gadget_driver; if (!driver || !driver->dev || !driver->bind) return -EINVAL; if (!driver->name) driver->name = "composite"; driver->gadget_driver = composite_driver_template; gadget_driver = &driver->gadget_driver; gadget_driver->function = (char *) driver->name; gadget_driver->driver.name = driver->name; gadget_driver->max_speed = driver->max_speed; return usb_gadget_probe_driver(gadget_driver); } EXPORT_SYMBOL_GPL(usb_composite_probe); /** * usb_composite_unregister() - unregister a composite driver * @driver: the driver to unregister * * This function is used to unregister drivers using the composite * driver framework. */ void usb_composite_unregister(struct usb_composite_driver *driver) { usb_gadget_unregister_driver(&driver->gadget_driver); } EXPORT_SYMBOL_GPL(usb_composite_unregister); /** * usb_composite_setup_continue() - Continue with the control transfer * @cdev: the composite device who's control transfer was kept waiting * * This function must be called by the USB function driver to continue * with the control transfer's data/status stage in case it had requested to * delay the data/status stages. A USB function's setup handler (e.g. set_alt()) * can request the composite framework to delay the setup request's data/status * stages by returning USB_GADGET_DELAYED_STATUS. */ void usb_composite_setup_continue(struct usb_composite_dev *cdev) { int value; struct usb_request *req = cdev->req; unsigned long flags; DBG(cdev, "%s\n", __func__); spin_lock_irqsave(&cdev->lock, flags); if (cdev->delayed_status == 0) { WARN(cdev, "%s: Unexpected call\n", __func__); } else if (--cdev->delayed_status == 0) { DBG(cdev, "%s: Completing delayed status\n", __func__); req->length = 0; req->context = cdev; value = composite_ep0_queue(cdev, req, GFP_ATOMIC); if (value < 0) { DBG(cdev, "ep_queue --> %d\n", value); req->status = 0; composite_setup_complete(cdev->gadget->ep0, req); } } spin_unlock_irqrestore(&cdev->lock, flags); } EXPORT_SYMBOL_GPL(usb_composite_setup_continue); static char *composite_default_mfr(struct usb_gadget *gadget) { return kasprintf(GFP_KERNEL, "%s %s with %s", init_utsname()->sysname, init_utsname()->release, gadget->name); } void usb_composite_overwrite_options(struct usb_composite_dev *cdev, struct usb_composite_overwrite *covr) { struct usb_device_descriptor *desc = &cdev->desc; struct usb_gadget_strings *gstr = cdev->driver->strings[0]; struct usb_string *dev_str = gstr->strings; if (covr->idVendor) desc->idVendor = cpu_to_le16(covr->idVendor); if (covr->idProduct) desc->idProduct = cpu_to_le16(covr->idProduct); if (covr->bcdDevice) desc->bcdDevice = cpu_to_le16(covr->bcdDevice); if (covr->serial_number) { desc->iSerialNumber = dev_str[USB_GADGET_SERIAL_IDX].id; dev_str[USB_GADGET_SERIAL_IDX].s = covr->serial_number; } if (covr->manufacturer) { desc->iManufacturer = dev_str[USB_GADGET_MANUFACTURER_IDX].id; dev_str[USB_GADGET_MANUFACTURER_IDX].s = covr->manufacturer; } else if (!strlen(dev_str[USB_GADGET_MANUFACTURER_IDX].s)) { desc->iManufacturer = dev_str[USB_GADGET_MANUFACTURER_IDX].id; cdev->def_manufacturer = composite_default_mfr(cdev->gadget); dev_str[USB_GADGET_MANUFACTURER_IDX].s = cdev->def_manufacturer; } if (covr->product) { desc->iProduct = dev_str[USB_GADGET_PRODUCT_IDX].id; dev_str[USB_GADGET_PRODUCT_IDX].s = covr->product; } } EXPORT_SYMBOL_GPL(usb_composite_overwrite_options); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Brownell");