// SPDX-License-Identifier: GPL-2.0 /* * Thunderbolt bus support * * Copyright (C) 2017, Intel Corporation * Author: Mika Westerberg <mika.westerberg@linux.intel.com> */ #include <linux/device.h> #include <linux/dmar.h> #include <linux/idr.h> #include <linux/iommu.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include <linux/random.h> #include <crypto/hash.h> #include "tb.h" static DEFINE_IDA(tb_domain_ida); static bool match_service_id(const struct tb_service_id *id, const struct tb_service *svc) { if (id->match_flags & TBSVC_MATCH_PROTOCOL_KEY) { if (strcmp(id->protocol_key, svc->key)) return false; } if (id->match_flags & TBSVC_MATCH_PROTOCOL_ID) { if (id->protocol_id != svc->prtcid) return false; } if (id->match_flags & TBSVC_MATCH_PROTOCOL_VERSION) { if (id->protocol_version != svc->prtcvers) return false; } if (id->match_flags & TBSVC_MATCH_PROTOCOL_VERSION) { if (id->protocol_revision != svc->prtcrevs) return false; } return true; } static const struct tb_service_id *__tb_service_match(struct device *dev, struct device_driver *drv) { struct tb_service_driver *driver; const struct tb_service_id *ids; struct tb_service *svc; svc = tb_to_service(dev); if (!svc) return NULL; driver = container_of(drv, struct tb_service_driver, driver); if (!driver->id_table) return NULL; for (ids = driver->id_table; ids->match_flags != 0; ids++) { if (match_service_id(ids, svc)) return ids; } return NULL; } static int tb_service_match(struct device *dev, struct device_driver *drv) { return !!__tb_service_match(dev, drv); } static int tb_service_probe(struct device *dev) { struct tb_service *svc = tb_to_service(dev); struct tb_service_driver *driver; const struct tb_service_id *id; driver = container_of(dev->driver, struct tb_service_driver, driver); id = __tb_service_match(dev, &driver->driver); return driver->probe(svc, id); } static void tb_service_remove(struct device *dev) { struct tb_service *svc = tb_to_service(dev); struct tb_service_driver *driver; driver = container_of(dev->driver, struct tb_service_driver, driver); if (driver->remove) driver->remove(svc); } static void tb_service_shutdown(struct device *dev) { struct tb_service_driver *driver; struct tb_service *svc; svc = tb_to_service(dev); if (!svc || !dev->driver) return; driver = container_of(dev->driver, struct tb_service_driver, driver); if (driver->shutdown) driver->shutdown(svc); } static const char * const tb_security_names[] = { [TB_SECURITY_NONE] = "none", [TB_SECURITY_USER] = "user", [TB_SECURITY_SECURE] = "secure", [TB_SECURITY_DPONLY] = "dponly", [TB_SECURITY_USBONLY] = "usbonly", [TB_SECURITY_NOPCIE] = "nopcie", }; static ssize_t boot_acl_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb *tb = container_of(dev, struct tb, dev); uuid_t *uuids; ssize_t ret; int i; uuids = kcalloc(tb->nboot_acl, sizeof(uuid_t), GFP_KERNEL); if (!uuids) return -ENOMEM; pm_runtime_get_sync(&tb->dev); if (mutex_lock_interruptible(&tb->lock)) { ret = -ERESTARTSYS; goto out; } ret = tb->cm_ops->get_boot_acl(tb, uuids, tb->nboot_acl); if (ret) { mutex_unlock(&tb->lock); goto out; } mutex_unlock(&tb->lock); for (ret = 0, i = 0; i < tb->nboot_acl; i++) { if (!uuid_is_null(&uuids[i])) ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%pUb", &uuids[i]); ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s", i < tb->nboot_acl - 1 ? "," : "\n"); } out: pm_runtime_mark_last_busy(&tb->dev); pm_runtime_put_autosuspend(&tb->dev); kfree(uuids); return ret; } static ssize_t boot_acl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct tb *tb = container_of(dev, struct tb, dev); char *str, *s, *uuid_str; ssize_t ret = 0; uuid_t *acl; int i = 0; /* * Make sure the value is not bigger than tb->nboot_acl * UUID * length + commas and optional "\n". Also the smallest allowable * string is tb->nboot_acl * ",". */ if (count > (UUID_STRING_LEN + 1) * tb->nboot_acl + 1) return -EINVAL; if (count < tb->nboot_acl - 1) return -EINVAL; str = kstrdup(buf, GFP_KERNEL); if (!str) return -ENOMEM; acl = kcalloc(tb->nboot_acl, sizeof(uuid_t), GFP_KERNEL); if (!acl) { ret = -ENOMEM; goto err_free_str; } uuid_str = strim(str); while ((s = strsep(&uuid_str, ",")) != NULL && i < tb->nboot_acl) { size_t len = strlen(s); if (len) { if (len != UUID_STRING_LEN) { ret = -EINVAL; goto err_free_acl; } ret = uuid_parse(s, &acl[i]); if (ret) goto err_free_acl; } i++; } if (s || i < tb->nboot_acl) { ret = -EINVAL; goto err_free_acl; } pm_runtime_get_sync(&tb->dev); if (mutex_lock_interruptible(&tb->lock)) { ret = -ERESTARTSYS; goto err_rpm_put; } ret = tb->cm_ops->set_boot_acl(tb, acl, tb->nboot_acl); if (!ret) { /* Notify userspace about the change */ kobject_uevent(&tb->dev.kobj, KOBJ_CHANGE); } mutex_unlock(&tb->lock); err_rpm_put: pm_runtime_mark_last_busy(&tb->dev); pm_runtime_put_autosuspend(&tb->dev); err_free_acl: kfree(acl); err_free_str: kfree(str); return ret ?: count; } static DEVICE_ATTR_RW(boot_acl); static ssize_t deauthorization_show(struct device *dev, struct device_attribute *attr, char *buf) { const struct tb *tb = container_of(dev, struct tb, dev); bool deauthorization = false; /* Only meaningful if authorization is supported */ if (tb->security_level == TB_SECURITY_USER || tb->security_level == TB_SECURITY_SECURE) deauthorization = !!tb->cm_ops->disapprove_switch; return sprintf(buf, "%d\n", deauthorization); } static DEVICE_ATTR_RO(deauthorization); static ssize_t iommu_dma_protection_show(struct device *dev, struct device_attribute *attr, char *buf) { /* * Kernel DMA protection is a feature where Thunderbolt security is * handled natively using IOMMU. It is enabled when IOMMU is * enabled and ACPI DMAR table has DMAR_PLATFORM_OPT_IN set. */ return sprintf(buf, "%d\n", iommu_present(&pci_bus_type) && dmar_platform_optin()); } static DEVICE_ATTR_RO(iommu_dma_protection); static ssize_t security_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb *tb = container_of(dev, struct tb, dev); const char *name = "unknown"; if (tb->security_level < ARRAY_SIZE(tb_security_names)) name = tb_security_names[tb->security_level]; return sprintf(buf, "%s\n", name); } static DEVICE_ATTR_RO(security); static struct attribute *domain_attrs[] = { &dev_attr_boot_acl.attr, &dev_attr_deauthorization.attr, &dev_attr_iommu_dma_protection.attr, &dev_attr_security.attr, NULL, }; static umode_t domain_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = kobj_to_dev(kobj); struct tb *tb = container_of(dev, struct tb, dev); if (attr == &dev_attr_boot_acl.attr) { if (tb->nboot_acl && tb->cm_ops->get_boot_acl && tb->cm_ops->set_boot_acl) return attr->mode; return 0; } return attr->mode; } static const struct attribute_group domain_attr_group = { .is_visible = domain_attr_is_visible, .attrs = domain_attrs, }; static const struct attribute_group *domain_attr_groups[] = { &domain_attr_group, NULL, }; struct bus_type tb_bus_type = { .name = "thunderbolt", .match = tb_service_match, .probe = tb_service_probe, .remove = tb_service_remove, .shutdown = tb_service_shutdown, }; static void tb_domain_release(struct device *dev) { struct tb *tb = container_of(dev, struct tb, dev); tb_ctl_free(tb->ctl); destroy_workqueue(tb->wq); ida_simple_remove(&tb_domain_ida, tb->index); mutex_destroy(&tb->lock); kfree(tb); } struct device_type tb_domain_type = { .name = "thunderbolt_domain", .release = tb_domain_release, }; static bool tb_domain_event_cb(void *data, enum tb_cfg_pkg_type type, const void *buf, size_t size) { struct tb *tb = data; if (!tb->cm_ops->handle_event) { tb_warn(tb, "domain does not have event handler\n"); return true; } switch (type) { case TB_CFG_PKG_XDOMAIN_REQ: case TB_CFG_PKG_XDOMAIN_RESP: if (tb_is_xdomain_enabled()) return tb_xdomain_handle_request(tb, type, buf, size); break; default: tb->cm_ops->handle_event(tb, type, buf, size); } return true; } /** * tb_domain_alloc() - Allocate a domain * @nhi: Pointer to the host controller * @timeout_msec: Control channel timeout for non-raw messages * @privsize: Size of the connection manager private data * * Allocates and initializes a new Thunderbolt domain. Connection * managers are expected to call this and then fill in @cm_ops * accordingly. * * Call tb_domain_put() to release the domain before it has been added * to the system. * * Return: allocated domain structure on %NULL in case of error */ struct tb *tb_domain_alloc(struct tb_nhi *nhi, int timeout_msec, size_t privsize) { struct tb *tb; /* * Make sure the structure sizes map with that the hardware * expects because bit-fields are being used. */ BUILD_BUG_ON(sizeof(struct tb_regs_switch_header) != 5 * 4); BUILD_BUG_ON(sizeof(struct tb_regs_port_header) != 8 * 4); BUILD_BUG_ON(sizeof(struct tb_regs_hop) != 2 * 4); tb = kzalloc(sizeof(*tb) + privsize, GFP_KERNEL); if (!tb) return NULL; tb->nhi = nhi; mutex_init(&tb->lock); tb->index = ida_simple_get(&tb_domain_ida, 0, 0, GFP_KERNEL); if (tb->index < 0) goto err_free; tb->wq = alloc_ordered_workqueue("thunderbolt%d", 0, tb->index); if (!tb->wq) goto err_remove_ida; tb->ctl = tb_ctl_alloc(nhi, timeout_msec, tb_domain_event_cb, tb); if (!tb->ctl) goto err_destroy_wq; tb->dev.parent = &nhi->pdev->dev; tb->dev.bus = &tb_bus_type; tb->dev.type = &tb_domain_type; tb->dev.groups = domain_attr_groups; dev_set_name(&tb->dev, "domain%d", tb->index); device_initialize(&tb->dev); return tb; err_destroy_wq: destroy_workqueue(tb->wq); err_remove_ida: ida_simple_remove(&tb_domain_ida, tb->index); err_free: kfree(tb); return NULL; } /** * tb_domain_add() - Add domain to the system * @tb: Domain to add * * Starts the domain and adds it to the system. Hotplugging devices will * work after this has been returned successfully. In order to remove * and release the domain after this function has been called, call * tb_domain_remove(). * * Return: %0 in case of success and negative errno in case of error */ int tb_domain_add(struct tb *tb) { int ret; if (WARN_ON(!tb->cm_ops)) return -EINVAL; mutex_lock(&tb->lock); /* * tb_schedule_hotplug_handler may be called as soon as the config * channel is started. Thats why we have to hold the lock here. */ tb_ctl_start(tb->ctl); if (tb->cm_ops->driver_ready) { ret = tb->cm_ops->driver_ready(tb); if (ret) goto err_ctl_stop; } tb_dbg(tb, "security level set to %s\n", tb_security_names[tb->security_level]); ret = device_add(&tb->dev); if (ret) goto err_ctl_stop; /* Start the domain */ if (tb->cm_ops->start) { ret = tb->cm_ops->start(tb); if (ret) goto err_domain_del; } /* This starts event processing */ mutex_unlock(&tb->lock); device_init_wakeup(&tb->dev, true); pm_runtime_no_callbacks(&tb->dev); pm_runtime_set_active(&tb->dev); pm_runtime_enable(&tb->dev); pm_runtime_set_autosuspend_delay(&tb->dev, TB_AUTOSUSPEND_DELAY); pm_runtime_mark_last_busy(&tb->dev); pm_runtime_use_autosuspend(&tb->dev); return 0; err_domain_del: device_del(&tb->dev); err_ctl_stop: tb_ctl_stop(tb->ctl); mutex_unlock(&tb->lock); return ret; } /** * tb_domain_remove() - Removes and releases a domain * @tb: Domain to remove * * Stops the domain, removes it from the system and releases all * resources once the last reference has been released. */ void tb_domain_remove(struct tb *tb) { mutex_lock(&tb->lock); if (tb->cm_ops->stop) tb->cm_ops->stop(tb); /* Stop the domain control traffic */ tb_ctl_stop(tb->ctl); mutex_unlock(&tb->lock); flush_workqueue(tb->wq); device_unregister(&tb->dev); } /** * tb_domain_suspend_noirq() - Suspend a domain * @tb: Domain to suspend * * Suspends all devices in the domain and stops the control channel. */ int tb_domain_suspend_noirq(struct tb *tb) { int ret = 0; /* * The control channel interrupt is left enabled during suspend * and taking the lock here prevents any events happening before * we actually have stopped the domain and the control channel. */ mutex_lock(&tb->lock); if (tb->cm_ops->suspend_noirq) ret = tb->cm_ops->suspend_noirq(tb); if (!ret) tb_ctl_stop(tb->ctl); mutex_unlock(&tb->lock); return ret; } /** * tb_domain_resume_noirq() - Resume a domain * @tb: Domain to resume * * Re-starts the control channel, and resumes all devices connected to * the domain. */ int tb_domain_resume_noirq(struct tb *tb) { int ret = 0; mutex_lock(&tb->lock); tb_ctl_start(tb->ctl); if (tb->cm_ops->resume_noirq) ret = tb->cm_ops->resume_noirq(tb); mutex_unlock(&tb->lock); return ret; } int tb_domain_suspend(struct tb *tb) { return tb->cm_ops->suspend ? tb->cm_ops->suspend(tb) : 0; } int tb_domain_freeze_noirq(struct tb *tb) { int ret = 0; mutex_lock(&tb->lock); if (tb->cm_ops->freeze_noirq) ret = tb->cm_ops->freeze_noirq(tb); if (!ret) tb_ctl_stop(tb->ctl); mutex_unlock(&tb->lock); return ret; } int tb_domain_thaw_noirq(struct tb *tb) { int ret = 0; mutex_lock(&tb->lock); tb_ctl_start(tb->ctl); if (tb->cm_ops->thaw_noirq) ret = tb->cm_ops->thaw_noirq(tb); mutex_unlock(&tb->lock); return ret; } void tb_domain_complete(struct tb *tb) { if (tb->cm_ops->complete) tb->cm_ops->complete(tb); } int tb_domain_runtime_suspend(struct tb *tb) { if (tb->cm_ops->runtime_suspend) { int ret = tb->cm_ops->runtime_suspend(tb); if (ret) return ret; } tb_ctl_stop(tb->ctl); return 0; } int tb_domain_runtime_resume(struct tb *tb) { tb_ctl_start(tb->ctl); if (tb->cm_ops->runtime_resume) { int ret = tb->cm_ops->runtime_resume(tb); if (ret) return ret; } return 0; } /** * tb_domain_disapprove_switch() - Disapprove switch * @tb: Domain the switch belongs to * @sw: Switch to disapprove * * This will disconnect PCIe tunnel from parent to this @sw. * * Return: %0 on success and negative errno in case of failure. */ int tb_domain_disapprove_switch(struct tb *tb, struct tb_switch *sw) { if (!tb->cm_ops->disapprove_switch) return -EPERM; return tb->cm_ops->disapprove_switch(tb, sw); } /** * tb_domain_approve_switch() - Approve switch * @tb: Domain the switch belongs to * @sw: Switch to approve * * This will approve switch by connection manager specific means. In * case of success the connection manager will create PCIe tunnel from * parent to @sw. */ int tb_domain_approve_switch(struct tb *tb, struct tb_switch *sw) { struct tb_switch *parent_sw; if (!tb->cm_ops->approve_switch) return -EPERM; /* The parent switch must be authorized before this one */ parent_sw = tb_to_switch(sw->dev.parent); if (!parent_sw || !parent_sw->authorized) return -EINVAL; return tb->cm_ops->approve_switch(tb, sw); } /** * tb_domain_approve_switch_key() - Approve switch and add key * @tb: Domain the switch belongs to * @sw: Switch to approve * * For switches that support secure connect, this function first adds * key to the switch NVM using connection manager specific means. If * adding the key is successful, the switch is approved and connected. * * Return: %0 on success and negative errno in case of failure. */ int tb_domain_approve_switch_key(struct tb *tb, struct tb_switch *sw) { struct tb_switch *parent_sw; int ret; if (!tb->cm_ops->approve_switch || !tb->cm_ops->add_switch_key) return -EPERM; /* The parent switch must be authorized before this one */ parent_sw = tb_to_switch(sw->dev.parent); if (!parent_sw || !parent_sw->authorized) return -EINVAL; ret = tb->cm_ops->add_switch_key(tb, sw); if (ret) return ret; return tb->cm_ops->approve_switch(tb, sw); } /** * tb_domain_challenge_switch_key() - Challenge and approve switch * @tb: Domain the switch belongs to * @sw: Switch to approve * * For switches that support secure connect, this function generates * random challenge and sends it to the switch. The switch responds to * this and if the response matches our random challenge, the switch is * approved and connected. * * Return: %0 on success and negative errno in case of failure. */ int tb_domain_challenge_switch_key(struct tb *tb, struct tb_switch *sw) { u8 challenge[TB_SWITCH_KEY_SIZE]; u8 response[TB_SWITCH_KEY_SIZE]; u8 hmac[TB_SWITCH_KEY_SIZE]; struct tb_switch *parent_sw; struct crypto_shash *tfm; struct shash_desc *shash; int ret; if (!tb->cm_ops->approve_switch || !tb->cm_ops->challenge_switch_key) return -EPERM; /* The parent switch must be authorized before this one */ parent_sw = tb_to_switch(sw->dev.parent); if (!parent_sw || !parent_sw->authorized) return -EINVAL; get_random_bytes(challenge, sizeof(challenge)); ret = tb->cm_ops->challenge_switch_key(tb, sw, challenge, response); if (ret) return ret; tfm = crypto_alloc_shash("hmac(sha256)", 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); ret = crypto_shash_setkey(tfm, sw->key, TB_SWITCH_KEY_SIZE); if (ret) goto err_free_tfm; shash = kzalloc(sizeof(*shash) + crypto_shash_descsize(tfm), GFP_KERNEL); if (!shash) { ret = -ENOMEM; goto err_free_tfm; } shash->tfm = tfm; memset(hmac, 0, sizeof(hmac)); ret = crypto_shash_digest(shash, challenge, sizeof(hmac), hmac); if (ret) goto err_free_shash; /* The returned HMAC must match the one we calculated */ if (memcmp(response, hmac, sizeof(hmac))) { ret = -EKEYREJECTED; goto err_free_shash; } crypto_free_shash(tfm); kfree(shash); return tb->cm_ops->approve_switch(tb, sw); err_free_shash: kfree(shash); err_free_tfm: crypto_free_shash(tfm); return ret; } /** * tb_domain_disconnect_pcie_paths() - Disconnect all PCIe paths * @tb: Domain whose PCIe paths to disconnect * * This needs to be called in preparation for NVM upgrade of the host * controller. Makes sure all PCIe paths are disconnected. * * Return %0 on success and negative errno in case of error. */ int tb_domain_disconnect_pcie_paths(struct tb *tb) { if (!tb->cm_ops->disconnect_pcie_paths) return -EPERM; return tb->cm_ops->disconnect_pcie_paths(tb); } /** * tb_domain_approve_xdomain_paths() - Enable DMA paths for XDomain * @tb: Domain enabling the DMA paths * @xd: XDomain DMA paths are created to * @transmit_path: HopID we are using to send out packets * @transmit_ring: DMA ring used to send out packets * @receive_path: HopID the other end is using to send packets to us * @receive_ring: DMA ring used to receive packets from @receive_path * * Calls connection manager specific method to enable DMA paths to the * XDomain in question. * * Return: 0% in case of success and negative errno otherwise. In * particular returns %-ENOTSUPP if the connection manager * implementation does not support XDomains. */ int tb_domain_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, int transmit_path, int transmit_ring, int receive_path, int receive_ring) { if (!tb->cm_ops->approve_xdomain_paths) return -ENOTSUPP; return tb->cm_ops->approve_xdomain_paths(tb, xd, transmit_path, transmit_ring, receive_path, receive_ring); } /** * tb_domain_disconnect_xdomain_paths() - Disable DMA paths for XDomain * @tb: Domain disabling the DMA paths * @xd: XDomain whose DMA paths are disconnected * @transmit_path: HopID we are using to send out packets * @transmit_ring: DMA ring used to send out packets * @receive_path: HopID the other end is using to send packets to us * @receive_ring: DMA ring used to receive packets from @receive_path * * Calls connection manager specific method to disconnect DMA paths to * the XDomain in question. * * Return: 0% in case of success and negative errno otherwise. In * particular returns %-ENOTSUPP if the connection manager * implementation does not support XDomains. */ int tb_domain_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, int transmit_path, int transmit_ring, int receive_path, int receive_ring) { if (!tb->cm_ops->disconnect_xdomain_paths) return -ENOTSUPP; return tb->cm_ops->disconnect_xdomain_paths(tb, xd, transmit_path, transmit_ring, receive_path, receive_ring); } static int disconnect_xdomain(struct device *dev, void *data) { struct tb_xdomain *xd; struct tb *tb = data; int ret = 0; xd = tb_to_xdomain(dev); if (xd && xd->tb == tb) ret = tb_xdomain_disable_all_paths(xd); return ret; } /** * tb_domain_disconnect_all_paths() - Disconnect all paths for the domain * @tb: Domain whose paths are disconnected * * This function can be used to disconnect all paths (PCIe, XDomain) for * example in preparation for host NVM firmware upgrade. After this is * called the paths cannot be established without resetting the switch. * * Return: %0 in case of success and negative errno otherwise. */ int tb_domain_disconnect_all_paths(struct tb *tb) { int ret; ret = tb_domain_disconnect_pcie_paths(tb); if (ret) return ret; return bus_for_each_dev(&tb_bus_type, NULL, tb, disconnect_xdomain); } int tb_domain_init(void) { int ret; tb_test_init(); tb_debugfs_init(); tb_acpi_init(); ret = tb_xdomain_init(); if (ret) goto err_acpi; ret = bus_register(&tb_bus_type); if (ret) goto err_xdomain; return 0; err_xdomain: tb_xdomain_exit(); err_acpi: tb_acpi_exit(); tb_debugfs_exit(); tb_test_exit(); return ret; } void tb_domain_exit(void) { bus_unregister(&tb_bus_type); ida_destroy(&tb_domain_ida); tb_nvm_exit(); tb_xdomain_exit(); tb_acpi_exit(); tb_debugfs_exit(); tb_test_exit(); }