// SPDX-License-Identifier: GPL-2.0-only /* * Rockchip Serial Flash Controller Driver * * Copyright (c) 2017-2021, Rockchip Inc. * Author: Shawn Lin * Chris Morgan * Jon Lin */ #include #include #include #include #include #include #include #include #include #include #include #include /* System control */ #define SFC_CTRL 0x0 #define SFC_CTRL_PHASE_SEL_NEGETIVE BIT(1) #define SFC_CTRL_CMD_BITS_SHIFT 8 #define SFC_CTRL_ADDR_BITS_SHIFT 10 #define SFC_CTRL_DATA_BITS_SHIFT 12 /* Interrupt mask */ #define SFC_IMR 0x4 #define SFC_IMR_RX_FULL BIT(0) #define SFC_IMR_RX_UFLOW BIT(1) #define SFC_IMR_TX_OFLOW BIT(2) #define SFC_IMR_TX_EMPTY BIT(3) #define SFC_IMR_TRAN_FINISH BIT(4) #define SFC_IMR_BUS_ERR BIT(5) #define SFC_IMR_NSPI_ERR BIT(6) #define SFC_IMR_DMA BIT(7) /* Interrupt clear */ #define SFC_ICLR 0x8 #define SFC_ICLR_RX_FULL BIT(0) #define SFC_ICLR_RX_UFLOW BIT(1) #define SFC_ICLR_TX_OFLOW BIT(2) #define SFC_ICLR_TX_EMPTY BIT(3) #define SFC_ICLR_TRAN_FINISH BIT(4) #define SFC_ICLR_BUS_ERR BIT(5) #define SFC_ICLR_NSPI_ERR BIT(6) #define SFC_ICLR_DMA BIT(7) /* FIFO threshold level */ #define SFC_FTLR 0xc #define SFC_FTLR_TX_SHIFT 0 #define SFC_FTLR_TX_MASK 0x1f #define SFC_FTLR_RX_SHIFT 8 #define SFC_FTLR_RX_MASK 0x1f /* Reset FSM and FIFO */ #define SFC_RCVR 0x10 #define SFC_RCVR_RESET BIT(0) /* Enhanced mode */ #define SFC_AX 0x14 /* Address Bit number */ #define SFC_ABIT 0x18 /* Interrupt status */ #define SFC_ISR 0x1c #define SFC_ISR_RX_FULL_SHIFT BIT(0) #define SFC_ISR_RX_UFLOW_SHIFT BIT(1) #define SFC_ISR_TX_OFLOW_SHIFT BIT(2) #define SFC_ISR_TX_EMPTY_SHIFT BIT(3) #define SFC_ISR_TX_FINISH_SHIFT BIT(4) #define SFC_ISR_BUS_ERR_SHIFT BIT(5) #define SFC_ISR_NSPI_ERR_SHIFT BIT(6) #define SFC_ISR_DMA_SHIFT BIT(7) /* FIFO status */ #define SFC_FSR 0x20 #define SFC_FSR_TX_IS_FULL BIT(0) #define SFC_FSR_TX_IS_EMPTY BIT(1) #define SFC_FSR_RX_IS_EMPTY BIT(2) #define SFC_FSR_RX_IS_FULL BIT(3) #define SFC_FSR_TXLV_MASK GENMASK(12, 8) #define SFC_FSR_TXLV_SHIFT 8 #define SFC_FSR_RXLV_MASK GENMASK(20, 16) #define SFC_FSR_RXLV_SHIFT 16 /* FSM status */ #define SFC_SR 0x24 #define SFC_SR_IS_IDLE 0x0 #define SFC_SR_IS_BUSY 0x1 /* Raw interrupt status */ #define SFC_RISR 0x28 #define SFC_RISR_RX_FULL BIT(0) #define SFC_RISR_RX_UNDERFLOW BIT(1) #define SFC_RISR_TX_OVERFLOW BIT(2) #define SFC_RISR_TX_EMPTY BIT(3) #define SFC_RISR_TRAN_FINISH BIT(4) #define SFC_RISR_BUS_ERR BIT(5) #define SFC_RISR_NSPI_ERR BIT(6) #define SFC_RISR_DMA BIT(7) /* Version */ #define SFC_VER 0x2C #define SFC_VER_3 0x3 #define SFC_VER_4 0x4 #define SFC_VER_5 0x5 /* Delay line controller register */ #define SFC_DLL_CTRL0 0x3C #define SFC_DLL_CTRL0_SCLK_SMP_DLL BIT(15) #define SFC_DLL_CTRL0_DLL_MAX_VER4 0xFFU #define SFC_DLL_CTRL0_DLL_MAX_VER5 0x1FFU /* Master trigger */ #define SFC_DMA_TRIGGER 0x80 #define SFC_DMA_TRIGGER_START 1 /* Src or Dst addr for master */ #define SFC_DMA_ADDR 0x84 /* Length control register extension 32GB */ #define SFC_LEN_CTRL 0x88 #define SFC_LEN_CTRL_TRB_SEL 1 #define SFC_LEN_EXT 0x8C /* Command */ #define SFC_CMD 0x100 #define SFC_CMD_IDX_SHIFT 0 #define SFC_CMD_DUMMY_SHIFT 8 #define SFC_CMD_DIR_SHIFT 12 #define SFC_CMD_DIR_RD 0 #define SFC_CMD_DIR_WR 1 #define SFC_CMD_ADDR_SHIFT 14 #define SFC_CMD_ADDR_0BITS 0 #define SFC_CMD_ADDR_24BITS 1 #define SFC_CMD_ADDR_32BITS 2 #define SFC_CMD_ADDR_XBITS 3 #define SFC_CMD_TRAN_BYTES_SHIFT 16 #define SFC_CMD_CS_SHIFT 30 /* Address */ #define SFC_ADDR 0x104 /* Data */ #define SFC_DATA 0x108 /* The controller and documentation reports that it supports up to 4 CS * devices (0-3), however I have only been able to test a single CS (CS 0) * due to the configuration of my device. */ #define SFC_MAX_CHIPSELECT_NUM 4 /* The SFC can transfer max 16KB - 1 at one time * we set it to 15.5KB here for alignment. */ #define SFC_MAX_IOSIZE_VER3 (512 * 31) /* DMA is only enabled for large data transmission */ #define SFC_DMA_TRANS_THRETHOLD (0x40) /* Maximum clock values from datasheet suggest keeping clock value under * 150MHz. No minimum or average value is suggested. */ #define SFC_MAX_SPEED (150 * 1000 * 1000) struct rockchip_sfc { struct device *dev; void __iomem *regbase; struct clk *hclk; struct clk *clk; u32 frequency; /* virtual mapped addr for dma_buffer */ void *buffer; dma_addr_t dma_buffer; struct completion cp; bool use_dma; u32 max_iosize; u16 version; }; static int rockchip_sfc_reset(struct rockchip_sfc *sfc) { int err; u32 status; writel_relaxed(SFC_RCVR_RESET, sfc->regbase + SFC_RCVR); err = readl_poll_timeout(sfc->regbase + SFC_RCVR, status, !(status & SFC_RCVR_RESET), 20, jiffies_to_usecs(HZ)); if (err) dev_err(sfc->dev, "SFC reset never finished\n"); /* Still need to clear the masked interrupt from RISR */ writel_relaxed(0xFFFFFFFF, sfc->regbase + SFC_ICLR); dev_dbg(sfc->dev, "reset\n"); return err; } static u16 rockchip_sfc_get_version(struct rockchip_sfc *sfc) { return (u16)(readl(sfc->regbase + SFC_VER) & 0xffff); } static u32 rockchip_sfc_get_max_iosize(struct rockchip_sfc *sfc) { return SFC_MAX_IOSIZE_VER3; } static void rockchip_sfc_irq_unmask(struct rockchip_sfc *sfc, u32 mask) { u32 reg; /* Enable transfer complete interrupt */ reg = readl(sfc->regbase + SFC_IMR); reg &= ~mask; writel(reg, sfc->regbase + SFC_IMR); } static void rockchip_sfc_irq_mask(struct rockchip_sfc *sfc, u32 mask) { u32 reg; /* Disable transfer finish interrupt */ reg = readl(sfc->regbase + SFC_IMR); reg |= mask; writel(reg, sfc->regbase + SFC_IMR); } static int rockchip_sfc_init(struct rockchip_sfc *sfc) { writel(0, sfc->regbase + SFC_CTRL); writel(0xFFFFFFFF, sfc->regbase + SFC_ICLR); rockchip_sfc_irq_mask(sfc, 0xFFFFFFFF); if (rockchip_sfc_get_version(sfc) >= SFC_VER_4) writel(SFC_LEN_CTRL_TRB_SEL, sfc->regbase + SFC_LEN_CTRL); return 0; } static int rockchip_sfc_wait_txfifo_ready(struct rockchip_sfc *sfc, u32 timeout_us) { int ret = 0; u32 status; ret = readl_poll_timeout(sfc->regbase + SFC_FSR, status, status & SFC_FSR_TXLV_MASK, 0, timeout_us); if (ret) { dev_dbg(sfc->dev, "sfc wait tx fifo timeout\n"); return -ETIMEDOUT; } return (status & SFC_FSR_TXLV_MASK) >> SFC_FSR_TXLV_SHIFT; } static int rockchip_sfc_wait_rxfifo_ready(struct rockchip_sfc *sfc, u32 timeout_us) { int ret = 0; u32 status; ret = readl_poll_timeout(sfc->regbase + SFC_FSR, status, status & SFC_FSR_RXLV_MASK, 0, timeout_us); if (ret) { dev_dbg(sfc->dev, "sfc wait rx fifo timeout\n"); return -ETIMEDOUT; } return (status & SFC_FSR_RXLV_MASK) >> SFC_FSR_RXLV_SHIFT; } static void rockchip_sfc_adjust_op_work(struct spi_mem_op *op) { if (unlikely(op->dummy.nbytes && !op->addr.nbytes)) { /* * SFC not support output DUMMY cycles right after CMD cycles, so * treat it as ADDR cycles. */ op->addr.nbytes = op->dummy.nbytes; op->addr.buswidth = op->dummy.buswidth; op->addr.val = 0xFFFFFFFFF; op->dummy.nbytes = 0; } } static int rockchip_sfc_xfer_setup(struct rockchip_sfc *sfc, struct spi_mem *mem, const struct spi_mem_op *op, u32 len) { u32 ctrl = 0, cmd = 0; /* set CMD */ cmd = op->cmd.opcode; ctrl |= ((op->cmd.buswidth >> 1) << SFC_CTRL_CMD_BITS_SHIFT); /* set ADDR */ if (op->addr.nbytes) { if (op->addr.nbytes == 4) { cmd |= SFC_CMD_ADDR_32BITS << SFC_CMD_ADDR_SHIFT; } else if (op->addr.nbytes == 3) { cmd |= SFC_CMD_ADDR_24BITS << SFC_CMD_ADDR_SHIFT; } else { cmd |= SFC_CMD_ADDR_XBITS << SFC_CMD_ADDR_SHIFT; writel(op->addr.nbytes * 8 - 1, sfc->regbase + SFC_ABIT); } ctrl |= ((op->addr.buswidth >> 1) << SFC_CTRL_ADDR_BITS_SHIFT); } /* set DUMMY */ if (op->dummy.nbytes) { if (op->dummy.buswidth == 4) cmd |= op->dummy.nbytes * 2 << SFC_CMD_DUMMY_SHIFT; else if (op->dummy.buswidth == 2) cmd |= op->dummy.nbytes * 4 << SFC_CMD_DUMMY_SHIFT; else cmd |= op->dummy.nbytes * 8 << SFC_CMD_DUMMY_SHIFT; } /* set DATA */ if (sfc->version >= SFC_VER_4) /* Clear it if no data to transfer */ writel(len, sfc->regbase + SFC_LEN_EXT); else cmd |= len << SFC_CMD_TRAN_BYTES_SHIFT; if (len) { if (op->data.dir == SPI_MEM_DATA_OUT) cmd |= SFC_CMD_DIR_WR << SFC_CMD_DIR_SHIFT; ctrl |= ((op->data.buswidth >> 1) << SFC_CTRL_DATA_BITS_SHIFT); } if (!len && op->addr.nbytes) cmd |= SFC_CMD_DIR_WR << SFC_CMD_DIR_SHIFT; /* set the Controller */ ctrl |= SFC_CTRL_PHASE_SEL_NEGETIVE; cmd |= spi_get_chipselect(mem->spi, 0) << SFC_CMD_CS_SHIFT; dev_dbg(sfc->dev, "sfc addr.nbytes=%x(x%d) dummy.nbytes=%x(x%d)\n", op->addr.nbytes, op->addr.buswidth, op->dummy.nbytes, op->dummy.buswidth); dev_dbg(sfc->dev, "sfc ctrl=%x cmd=%x addr=%llx len=%x\n", ctrl, cmd, op->addr.val, len); writel(ctrl, sfc->regbase + SFC_CTRL); writel(cmd, sfc->regbase + SFC_CMD); if (op->addr.nbytes) writel(op->addr.val, sfc->regbase + SFC_ADDR); return 0; } static int rockchip_sfc_write_fifo(struct rockchip_sfc *sfc, const u8 *buf, int len) { u8 bytes = len & 0x3; u32 dwords; int tx_level; u32 write_words; u32 tmp = 0; dwords = len >> 2; while (dwords) { tx_level = rockchip_sfc_wait_txfifo_ready(sfc, 1000); if (tx_level < 0) return tx_level; write_words = min_t(u32, tx_level, dwords); iowrite32_rep(sfc->regbase + SFC_DATA, buf, write_words); buf += write_words << 2; dwords -= write_words; } /* write the rest non word aligned bytes */ if (bytes) { tx_level = rockchip_sfc_wait_txfifo_ready(sfc, 1000); if (tx_level < 0) return tx_level; memcpy(&tmp, buf, bytes); writel(tmp, sfc->regbase + SFC_DATA); } return len; } static int rockchip_sfc_read_fifo(struct rockchip_sfc *sfc, u8 *buf, int len) { u8 bytes = len & 0x3; u32 dwords; u8 read_words; int rx_level; int tmp; /* word aligned access only */ dwords = len >> 2; while (dwords) { rx_level = rockchip_sfc_wait_rxfifo_ready(sfc, 1000); if (rx_level < 0) return rx_level; read_words = min_t(u32, rx_level, dwords); ioread32_rep(sfc->regbase + SFC_DATA, buf, read_words); buf += read_words << 2; dwords -= read_words; } /* read the rest non word aligned bytes */ if (bytes) { rx_level = rockchip_sfc_wait_rxfifo_ready(sfc, 1000); if (rx_level < 0) return rx_level; tmp = readl(sfc->regbase + SFC_DATA); memcpy(buf, &tmp, bytes); } return len; } static int rockchip_sfc_fifo_transfer_dma(struct rockchip_sfc *sfc, dma_addr_t dma_buf, size_t len) { writel(0xFFFFFFFF, sfc->regbase + SFC_ICLR); writel((u32)dma_buf, sfc->regbase + SFC_DMA_ADDR); writel(SFC_DMA_TRIGGER_START, sfc->regbase + SFC_DMA_TRIGGER); return len; } static int rockchip_sfc_xfer_data_poll(struct rockchip_sfc *sfc, const struct spi_mem_op *op, u32 len) { dev_dbg(sfc->dev, "sfc xfer_poll len=%x\n", len); if (op->data.dir == SPI_MEM_DATA_OUT) return rockchip_sfc_write_fifo(sfc, op->data.buf.out, len); else return rockchip_sfc_read_fifo(sfc, op->data.buf.in, len); } static int rockchip_sfc_xfer_data_dma(struct rockchip_sfc *sfc, const struct spi_mem_op *op, u32 len) { int ret; dev_dbg(sfc->dev, "sfc xfer_dma len=%x\n", len); if (op->data.dir == SPI_MEM_DATA_OUT) memcpy(sfc->buffer, op->data.buf.out, len); ret = rockchip_sfc_fifo_transfer_dma(sfc, sfc->dma_buffer, len); if (!wait_for_completion_timeout(&sfc->cp, msecs_to_jiffies(2000))) { dev_err(sfc->dev, "DMA wait for transfer finish timeout\n"); ret = -ETIMEDOUT; } rockchip_sfc_irq_mask(sfc, SFC_IMR_DMA); if (op->data.dir == SPI_MEM_DATA_IN) memcpy(op->data.buf.in, sfc->buffer, len); return ret; } static int rockchip_sfc_xfer_done(struct rockchip_sfc *sfc, u32 timeout_us) { int ret = 0; u32 status; ret = readl_poll_timeout(sfc->regbase + SFC_SR, status, !(status & SFC_SR_IS_BUSY), 20, timeout_us); if (ret) { dev_err(sfc->dev, "wait sfc idle timeout\n"); rockchip_sfc_reset(sfc); ret = -EIO; } return ret; } static int rockchip_sfc_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct rockchip_sfc *sfc = spi_controller_get_devdata(mem->spi->controller); u32 len = op->data.nbytes; int ret; if (unlikely(mem->spi->max_speed_hz != sfc->frequency)) { ret = clk_set_rate(sfc->clk, mem->spi->max_speed_hz); if (ret) return ret; sfc->frequency = mem->spi->max_speed_hz; dev_dbg(sfc->dev, "set_freq=%dHz real_freq=%ldHz\n", sfc->frequency, clk_get_rate(sfc->clk)); } rockchip_sfc_adjust_op_work((struct spi_mem_op *)op); rockchip_sfc_xfer_setup(sfc, mem, op, len); if (len) { if (likely(sfc->use_dma) && len >= SFC_DMA_TRANS_THRETHOLD) { init_completion(&sfc->cp); rockchip_sfc_irq_unmask(sfc, SFC_IMR_DMA); ret = rockchip_sfc_xfer_data_dma(sfc, op, len); } else { ret = rockchip_sfc_xfer_data_poll(sfc, op, len); } if (ret != len) { dev_err(sfc->dev, "xfer data failed ret %d dir %d\n", ret, op->data.dir); return -EIO; } } return rockchip_sfc_xfer_done(sfc, 100000); } static int rockchip_sfc_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { struct rockchip_sfc *sfc = spi_controller_get_devdata(mem->spi->controller); op->data.nbytes = min(op->data.nbytes, sfc->max_iosize); return 0; } static const struct spi_controller_mem_ops rockchip_sfc_mem_ops = { .exec_op = rockchip_sfc_exec_mem_op, .adjust_op_size = rockchip_sfc_adjust_op_size, }; static irqreturn_t rockchip_sfc_irq_handler(int irq, void *dev_id) { struct rockchip_sfc *sfc = dev_id; u32 reg; reg = readl(sfc->regbase + SFC_RISR); /* Clear interrupt */ writel_relaxed(reg, sfc->regbase + SFC_ICLR); if (reg & SFC_RISR_DMA) { complete(&sfc->cp); return IRQ_HANDLED; } return IRQ_NONE; } static int rockchip_sfc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct spi_controller *host; struct rockchip_sfc *sfc; int ret; host = devm_spi_alloc_host(&pdev->dev, sizeof(*sfc)); if (!host) return -ENOMEM; host->flags = SPI_CONTROLLER_HALF_DUPLEX; host->mem_ops = &rockchip_sfc_mem_ops; host->dev.of_node = pdev->dev.of_node; host->mode_bits = SPI_TX_QUAD | SPI_TX_DUAL | SPI_RX_QUAD | SPI_RX_DUAL; host->max_speed_hz = SFC_MAX_SPEED; host->num_chipselect = SFC_MAX_CHIPSELECT_NUM; sfc = spi_controller_get_devdata(host); sfc->dev = dev; sfc->regbase = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(sfc->regbase)) return PTR_ERR(sfc->regbase); sfc->clk = devm_clk_get(&pdev->dev, "clk_sfc"); if (IS_ERR(sfc->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(sfc->clk), "Failed to get sfc interface clk\n"); sfc->hclk = devm_clk_get(&pdev->dev, "hclk_sfc"); if (IS_ERR(sfc->hclk)) return dev_err_probe(&pdev->dev, PTR_ERR(sfc->hclk), "Failed to get sfc ahb clk\n"); sfc->use_dma = !of_property_read_bool(sfc->dev->of_node, "rockchip,sfc-no-dma"); if (sfc->use_dma) { ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (ret) { dev_warn(dev, "Unable to set dma mask\n"); return ret; } sfc->buffer = dmam_alloc_coherent(dev, SFC_MAX_IOSIZE_VER3, &sfc->dma_buffer, GFP_KERNEL); if (!sfc->buffer) return -ENOMEM; } ret = clk_prepare_enable(sfc->hclk); if (ret) { dev_err(&pdev->dev, "Failed to enable ahb clk\n"); goto err_hclk; } ret = clk_prepare_enable(sfc->clk); if (ret) { dev_err(&pdev->dev, "Failed to enable interface clk\n"); goto err_clk; } /* Find the irq */ ret = platform_get_irq(pdev, 0); if (ret < 0) goto err_irq; ret = devm_request_irq(dev, ret, rockchip_sfc_irq_handler, 0, pdev->name, sfc); if (ret) { dev_err(dev, "Failed to request irq\n"); goto err_irq; } ret = rockchip_sfc_init(sfc); if (ret) goto err_irq; sfc->max_iosize = rockchip_sfc_get_max_iosize(sfc); sfc->version = rockchip_sfc_get_version(sfc); ret = spi_register_controller(host); if (ret) goto err_irq; return 0; err_irq: clk_disable_unprepare(sfc->clk); err_clk: clk_disable_unprepare(sfc->hclk); err_hclk: return ret; } static void rockchip_sfc_remove(struct platform_device *pdev) { struct spi_controller *host = platform_get_drvdata(pdev); struct rockchip_sfc *sfc = platform_get_drvdata(pdev); spi_unregister_controller(host); clk_disable_unprepare(sfc->clk); clk_disable_unprepare(sfc->hclk); } static const struct of_device_id rockchip_sfc_dt_ids[] = { { .compatible = "rockchip,sfc"}, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, rockchip_sfc_dt_ids); static struct platform_driver rockchip_sfc_driver = { .driver = { .name = "rockchip-sfc", .of_match_table = rockchip_sfc_dt_ids, }, .probe = rockchip_sfc_probe, .remove = rockchip_sfc_remove, }; module_platform_driver(rockchip_sfc_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Rockchip Serial Flash Controller Driver"); MODULE_AUTHOR("Shawn Lin "); MODULE_AUTHOR("Chris Morgan "); MODULE_AUTHOR("Jon Lin ");