// SPDX-License-Identifier: GPL-2.0+ // // Copyright 2013 Freescale Semiconductor, Inc. // Copyright 2020 NXP // // Freescale DSPI driver // This file contains a driver for the Freescale DSPI #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "fsl-dspi" #define SPI_MCR 0x00 #define SPI_MCR_MASTER BIT(31) #define SPI_MCR_PCSIS(x) ((x) << 16) #define SPI_MCR_CLR_TXF BIT(11) #define SPI_MCR_CLR_RXF BIT(10) #define SPI_MCR_XSPI BIT(3) #define SPI_MCR_DIS_TXF BIT(13) #define SPI_MCR_DIS_RXF BIT(12) #define SPI_MCR_HALT BIT(0) #define SPI_TCR 0x08 #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16) #define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4)) #define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27)) #define SPI_CTAR_CPOL BIT(26) #define SPI_CTAR_CPHA BIT(25) #define SPI_CTAR_LSBFE BIT(24) #define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22)) #define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20)) #define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18)) #define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16)) #define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12)) #define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8)) #define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4)) #define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0)) #define SPI_CTAR_SCALE_BITS 0xf #define SPI_CTAR0_SLAVE 0x0c #define SPI_SR 0x2c #define SPI_SR_TCFQF BIT(31) #define SPI_SR_EOQF BIT(28) #define SPI_SR_TFUF BIT(27) #define SPI_SR_TFFF BIT(25) #define SPI_SR_CMDTCF BIT(23) #define SPI_SR_SPEF BIT(21) #define SPI_SR_RFOF BIT(19) #define SPI_SR_TFIWF BIT(18) #define SPI_SR_RFDF BIT(17) #define SPI_SR_CMDFFF BIT(16) #define SPI_SR_CLEAR (SPI_SR_TCFQF | SPI_SR_EOQF | \ SPI_SR_TFUF | SPI_SR_TFFF | \ SPI_SR_CMDTCF | SPI_SR_SPEF | \ SPI_SR_RFOF | SPI_SR_TFIWF | \ SPI_SR_RFDF | SPI_SR_CMDFFF) #define SPI_RSER_TFFFE BIT(25) #define SPI_RSER_TFFFD BIT(24) #define SPI_RSER_RFDFE BIT(17) #define SPI_RSER_RFDFD BIT(16) #define SPI_RSER 0x30 #define SPI_RSER_TCFQE BIT(31) #define SPI_RSER_EOQFE BIT(28) #define SPI_RSER_CMDTCFE BIT(23) #define SPI_PUSHR 0x34 #define SPI_PUSHR_CMD_CONT BIT(15) #define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12))) #define SPI_PUSHR_CMD_EOQ BIT(11) #define SPI_PUSHR_CMD_CTCNT BIT(10) #define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0)) #define SPI_PUSHR_SLAVE 0x34 #define SPI_POPR 0x38 #define SPI_TXFR0 0x3c #define SPI_TXFR1 0x40 #define SPI_TXFR2 0x44 #define SPI_TXFR3 0x48 #define SPI_RXFR0 0x7c #define SPI_RXFR1 0x80 #define SPI_RXFR2 0x84 #define SPI_RXFR3 0x88 #define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4)) #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16) #define SPI_CTARE_DTCP(x) ((x) & 0x7ff) #define SPI_SREX 0x13c #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1) #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4) #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000) struct chip_data { u32 ctar_val; }; enum dspi_trans_mode { DSPI_EOQ_MODE = 0, DSPI_XSPI_MODE, DSPI_DMA_MODE, }; struct fsl_dspi_devtype_data { enum dspi_trans_mode trans_mode; u8 max_clock_factor; int fifo_size; }; enum { LS1021A, LS1012A, LS1028A, LS1043A, LS1046A, LS2080A, LS2085A, LX2160A, MCF5441X, VF610, }; static const struct fsl_dspi_devtype_data devtype_data[] = { [VF610] = { .trans_mode = DSPI_DMA_MODE, .max_clock_factor = 2, .fifo_size = 4, }, [LS1021A] = { /* Has A-011218 DMA erratum */ .trans_mode = DSPI_XSPI_MODE, .max_clock_factor = 8, .fifo_size = 4, }, [LS1012A] = { /* Has A-011218 DMA erratum */ .trans_mode = DSPI_XSPI_MODE, .max_clock_factor = 8, .fifo_size = 16, }, [LS1028A] = { .trans_mode = DSPI_XSPI_MODE, .max_clock_factor = 8, .fifo_size = 4, }, [LS1043A] = { /* Has A-011218 DMA erratum */ .trans_mode = DSPI_XSPI_MODE, .max_clock_factor = 8, .fifo_size = 16, }, [LS1046A] = { /* Has A-011218 DMA erratum */ .trans_mode = DSPI_XSPI_MODE, .max_clock_factor = 8, .fifo_size = 16, }, [LS2080A] = { .trans_mode = DSPI_DMA_MODE, .max_clock_factor = 8, .fifo_size = 4, }, [LS2085A] = { .trans_mode = DSPI_DMA_MODE, .max_clock_factor = 8, .fifo_size = 4, }, [LX2160A] = { .trans_mode = DSPI_DMA_MODE, .max_clock_factor = 8, .fifo_size = 4, }, [MCF5441X] = { .trans_mode = DSPI_EOQ_MODE, .max_clock_factor = 8, .fifo_size = 16, }, }; struct fsl_dspi_dma { u32 *tx_dma_buf; struct dma_chan *chan_tx; dma_addr_t tx_dma_phys; struct completion cmd_tx_complete; struct dma_async_tx_descriptor *tx_desc; u32 *rx_dma_buf; struct dma_chan *chan_rx; dma_addr_t rx_dma_phys; struct completion cmd_rx_complete; struct dma_async_tx_descriptor *rx_desc; }; struct fsl_dspi { struct spi_controller *ctlr; struct platform_device *pdev; struct regmap *regmap; struct regmap *regmap_pushr; int irq; struct clk *clk; struct spi_transfer *cur_transfer; struct spi_message *cur_msg; struct chip_data *cur_chip; size_t progress; size_t len; const void *tx; void *rx; u16 tx_cmd; const struct fsl_dspi_devtype_data *devtype_data; struct completion xfer_done; struct fsl_dspi_dma *dma; int oper_word_size; int oper_bits_per_word; int words_in_flight; /* * Offsets for CMD and TXDATA within SPI_PUSHR when accessed * individually (in XSPI mode) */ int pushr_cmd; int pushr_tx; void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata); void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata); }; static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) { switch (dspi->oper_word_size) { case 1: *txdata = *(u8 *)dspi->tx; break; case 2: *txdata = *(u16 *)dspi->tx; break; case 4: *txdata = *(u32 *)dspi->tx; break; } dspi->tx += dspi->oper_word_size; } static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) { switch (dspi->oper_word_size) { case 1: *(u8 *)dspi->rx = rxdata; break; case 2: *(u16 *)dspi->rx = rxdata; break; case 4: *(u32 *)dspi->rx = rxdata; break; } dspi->rx += dspi->oper_word_size; } static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) { *txdata = cpu_to_be32(*(u32 *)dspi->tx); dspi->tx += sizeof(u32); } static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) { *(u32 *)dspi->rx = be32_to_cpu(rxdata); dspi->rx += sizeof(u32); } static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) { *txdata = cpu_to_be16(*(u16 *)dspi->tx); dspi->tx += sizeof(u16); } static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) { *(u16 *)dspi->rx = be16_to_cpu(rxdata); dspi->rx += sizeof(u16); } static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) { u16 hi = *(u16 *)dspi->tx; u16 lo = *(u16 *)(dspi->tx + 2); *txdata = (u32)hi << 16 | lo; dspi->tx += sizeof(u32); } static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) { u16 hi = rxdata & 0xffff; u16 lo = rxdata >> 16; *(u16 *)dspi->rx = lo; *(u16 *)(dspi->rx + 2) = hi; dspi->rx += sizeof(u32); } /* * Pop one word from the TX buffer for pushing into the * PUSHR register (TX FIFO) */ static u32 dspi_pop_tx(struct fsl_dspi *dspi) { u32 txdata = 0; if (dspi->tx) dspi->host_to_dev(dspi, &txdata); dspi->len -= dspi->oper_word_size; return txdata; } /* Prepare one TX FIFO entry (txdata plus cmd) */ static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi) { u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi); if (spi_controller_is_slave(dspi->ctlr)) return data; if (dspi->len > 0) cmd |= SPI_PUSHR_CMD_CONT; return cmd << 16 | data; } /* Push one word to the RX buffer from the POPR register (RX FIFO) */ static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata) { if (!dspi->rx) return; dspi->dev_to_host(dspi, rxdata); } static void dspi_tx_dma_callback(void *arg) { struct fsl_dspi *dspi = arg; struct fsl_dspi_dma *dma = dspi->dma; complete(&dma->cmd_tx_complete); } static void dspi_rx_dma_callback(void *arg) { struct fsl_dspi *dspi = arg; struct fsl_dspi_dma *dma = dspi->dma; int i; if (dspi->rx) { for (i = 0; i < dspi->words_in_flight; i++) dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]); } complete(&dma->cmd_rx_complete); } static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi) { struct device *dev = &dspi->pdev->dev; struct fsl_dspi_dma *dma = dspi->dma; int time_left; int i; for (i = 0; i < dspi->words_in_flight; i++) dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi); dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx, dma->tx_dma_phys, dspi->words_in_flight * DMA_SLAVE_BUSWIDTH_4_BYTES, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!dma->tx_desc) { dev_err(dev, "Not able to get desc for DMA xfer\n"); return -EIO; } dma->tx_desc->callback = dspi_tx_dma_callback; dma->tx_desc->callback_param = dspi; if (dma_submit_error(dmaengine_submit(dma->tx_desc))) { dev_err(dev, "DMA submit failed\n"); return -EINVAL; } dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx, dma->rx_dma_phys, dspi->words_in_flight * DMA_SLAVE_BUSWIDTH_4_BYTES, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!dma->rx_desc) { dev_err(dev, "Not able to get desc for DMA xfer\n"); return -EIO; } dma->rx_desc->callback = dspi_rx_dma_callback; dma->rx_desc->callback_param = dspi; if (dma_submit_error(dmaengine_submit(dma->rx_desc))) { dev_err(dev, "DMA submit failed\n"); return -EINVAL; } reinit_completion(&dspi->dma->cmd_rx_complete); reinit_completion(&dspi->dma->cmd_tx_complete); dma_async_issue_pending(dma->chan_rx); dma_async_issue_pending(dma->chan_tx); if (spi_controller_is_slave(dspi->ctlr)) { wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete); return 0; } time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete, DMA_COMPLETION_TIMEOUT); if (time_left == 0) { dev_err(dev, "DMA tx timeout\n"); dmaengine_terminate_all(dma->chan_tx); dmaengine_terminate_all(dma->chan_rx); return -ETIMEDOUT; } time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete, DMA_COMPLETION_TIMEOUT); if (time_left == 0) { dev_err(dev, "DMA rx timeout\n"); dmaengine_terminate_all(dma->chan_tx); dmaengine_terminate_all(dma->chan_rx); return -ETIMEDOUT; } return 0; } static void dspi_setup_accel(struct fsl_dspi *dspi); static int dspi_dma_xfer(struct fsl_dspi *dspi) { struct spi_message *message = dspi->cur_msg; struct device *dev = &dspi->pdev->dev; int ret = 0; /* * dspi->len gets decremented by dspi_pop_tx_pushr in * dspi_next_xfer_dma_submit */ while (dspi->len) { /* Figure out operational bits-per-word for this chunk */ dspi_setup_accel(dspi); dspi->words_in_flight = dspi->len / dspi->oper_word_size; if (dspi->words_in_flight > dspi->devtype_data->fifo_size) dspi->words_in_flight = dspi->devtype_data->fifo_size; message->actual_length += dspi->words_in_flight * dspi->oper_word_size; ret = dspi_next_xfer_dma_submit(dspi); if (ret) { dev_err(dev, "DMA transfer failed\n"); break; } } return ret; } static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr) { int dma_bufsize = dspi->devtype_data->fifo_size * 2; struct device *dev = &dspi->pdev->dev; struct dma_slave_config cfg; struct fsl_dspi_dma *dma; int ret; dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL); if (!dma) return -ENOMEM; dma->chan_rx = dma_request_chan(dev, "rx"); if (IS_ERR(dma->chan_rx)) { dev_err(dev, "rx dma channel not available\n"); ret = PTR_ERR(dma->chan_rx); return ret; } dma->chan_tx = dma_request_chan(dev, "tx"); if (IS_ERR(dma->chan_tx)) { dev_err(dev, "tx dma channel not available\n"); ret = PTR_ERR(dma->chan_tx); goto err_tx_channel; } dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev, dma_bufsize, &dma->tx_dma_phys, GFP_KERNEL); if (!dma->tx_dma_buf) { ret = -ENOMEM; goto err_tx_dma_buf; } dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev, dma_bufsize, &dma->rx_dma_phys, GFP_KERNEL); if (!dma->rx_dma_buf) { ret = -ENOMEM; goto err_rx_dma_buf; } cfg.src_addr = phy_addr + SPI_POPR; cfg.dst_addr = phy_addr + SPI_PUSHR; cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.src_maxburst = 1; cfg.dst_maxburst = 1; cfg.direction = DMA_DEV_TO_MEM; ret = dmaengine_slave_config(dma->chan_rx, &cfg); if (ret) { dev_err(dev, "can't configure rx dma channel\n"); ret = -EINVAL; goto err_slave_config; } cfg.direction = DMA_MEM_TO_DEV; ret = dmaengine_slave_config(dma->chan_tx, &cfg); if (ret) { dev_err(dev, "can't configure tx dma channel\n"); ret = -EINVAL; goto err_slave_config; } dspi->dma = dma; init_completion(&dma->cmd_tx_complete); init_completion(&dma->cmd_rx_complete); return 0; err_slave_config: dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys); err_rx_dma_buf: dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys); err_tx_dma_buf: dma_release_channel(dma->chan_tx); err_tx_channel: dma_release_channel(dma->chan_rx); devm_kfree(dev, dma); dspi->dma = NULL; return ret; } static void dspi_release_dma(struct fsl_dspi *dspi) { int dma_bufsize = dspi->devtype_data->fifo_size * 2; struct fsl_dspi_dma *dma = dspi->dma; if (!dma) return; if (dma->chan_tx) { dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys); dma_release_channel(dma->chan_tx); } if (dma->chan_rx) { dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys); dma_release_channel(dma->chan_rx); } } static void hz_to_spi_baud(char *pbr, char *br, int speed_hz, unsigned long clkrate) { /* Valid baud rate pre-scaler values */ int pbr_tbl[4] = {2, 3, 5, 7}; int brs[16] = { 2, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 }; int scale_needed, scale, minscale = INT_MAX; int i, j; scale_needed = clkrate / speed_hz; if (clkrate % speed_hz) scale_needed++; for (i = 0; i < ARRAY_SIZE(brs); i++) for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) { scale = brs[i] * pbr_tbl[j]; if (scale >= scale_needed) { if (scale < minscale) { minscale = scale; *br = i; *pbr = j; } break; } } if (minscale == INT_MAX) { pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n", speed_hz, clkrate); *pbr = ARRAY_SIZE(pbr_tbl) - 1; *br = ARRAY_SIZE(brs) - 1; } } static void ns_delay_scale(char *psc, char *sc, int delay_ns, unsigned long clkrate) { int scale_needed, scale, minscale = INT_MAX; int pscale_tbl[4] = {1, 3, 5, 7}; u32 remainder; int i, j; scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC, &remainder); if (remainder) scale_needed++; for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++) for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) { scale = pscale_tbl[i] * (2 << j); if (scale >= scale_needed) { if (scale < minscale) { minscale = scale; *psc = i; *sc = j; } break; } } if (minscale == INT_MAX) { pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value", delay_ns, clkrate); *psc = ARRAY_SIZE(pscale_tbl) - 1; *sc = SPI_CTAR_SCALE_BITS; } } static void dspi_pushr_write(struct fsl_dspi *dspi) { regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi)); } static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd) { /* * The only time when the PCS doesn't need continuation after this word * is when it's last. We need to look ahead, because we actually call * dspi_pop_tx (the function that decrements dspi->len) _after_ * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One * word is enough. If there's more to transmit than that, * dspi_xspi_write will know to split the FIFO writes in 2, and * generate a new PUSHR command with the final word that will have PCS * deasserted (not continued) here. */ if (dspi->len > dspi->oper_word_size) cmd |= SPI_PUSHR_CMD_CONT; regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd); } static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata) { regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata); } static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words) { int num_bytes = num_words * dspi->oper_word_size; u16 tx_cmd = dspi->tx_cmd; /* * If the PCS needs to de-assert (i.e. we're at the end of the buffer * and cs_change does not want the PCS to stay on), then we need a new * PUSHR command, since this one (for the body of the buffer) * necessarily has the CONT bit set. * So send one word less during this go, to force a split and a command * with a single word next time, when CONT will be unset. */ if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len) tx_cmd |= SPI_PUSHR_CMD_EOQ; /* Update CTARE */ regmap_write(dspi->regmap, SPI_CTARE(0), SPI_FRAME_EBITS(dspi->oper_bits_per_word) | SPI_CTARE_DTCP(num_words)); /* * Write the CMD FIFO entry first, and then the two * corresponding TX FIFO entries (or one...). */ dspi_pushr_cmd_write(dspi, tx_cmd); /* Fill TX FIFO with as many transfers as possible */ while (num_words--) { u32 data = dspi_pop_tx(dspi); dspi_pushr_txdata_write(dspi, data & 0xFFFF); if (dspi->oper_bits_per_word > 16) dspi_pushr_txdata_write(dspi, data >> 16); } } static void dspi_eoq_fifo_write(struct fsl_dspi *dspi, int num_words) { u16 xfer_cmd = dspi->tx_cmd; /* Fill TX FIFO with as many transfers as possible */ while (num_words--) { dspi->tx_cmd = xfer_cmd; /* Request EOQF for last transfer in FIFO */ if (num_words == 0) dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ; /* Write combined TX FIFO and CMD FIFO entry */ dspi_pushr_write(dspi); } } static u32 dspi_popr_read(struct fsl_dspi *dspi) { u32 rxdata = 0; regmap_read(dspi->regmap, SPI_POPR, &rxdata); return rxdata; } static void dspi_fifo_read(struct fsl_dspi *dspi) { int num_fifo_entries = dspi->words_in_flight; /* Read one FIFO entry and push to rx buffer */ while (num_fifo_entries--) dspi_push_rx(dspi, dspi_popr_read(dspi)); } static void dspi_setup_accel(struct fsl_dspi *dspi) { struct spi_transfer *xfer = dspi->cur_transfer; bool odd = !!(dspi->len & 1); /* No accel for frames not multiple of 8 bits at the moment */ if (xfer->bits_per_word % 8) goto no_accel; if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) { dspi->oper_bits_per_word = 16; } else if (odd && dspi->len <= dspi->devtype_data->fifo_size) { dspi->oper_bits_per_word = 8; } else { /* Start off with maximum supported by hardware */ if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) dspi->oper_bits_per_word = 32; else dspi->oper_bits_per_word = 16; /* * And go down only if the buffer can't be sent with * words this big */ do { if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8)) break; dspi->oper_bits_per_word /= 2; } while (dspi->oper_bits_per_word > 8); } if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) { dspi->dev_to_host = dspi_8on32_dev_to_host; dspi->host_to_dev = dspi_8on32_host_to_dev; } else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) { dspi->dev_to_host = dspi_8on16_dev_to_host; dspi->host_to_dev = dspi_8on16_host_to_dev; } else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) { dspi->dev_to_host = dspi_16on32_dev_to_host; dspi->host_to_dev = dspi_16on32_host_to_dev; } else { no_accel: dspi->dev_to_host = dspi_native_dev_to_host; dspi->host_to_dev = dspi_native_host_to_dev; dspi->oper_bits_per_word = xfer->bits_per_word; } dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8); /* * Update CTAR here (code is common for EOQ, XSPI and DMA modes). * We will update CTARE in the portion specific to XSPI, when we * also know the preload value (DTCP). */ regmap_write(dspi->regmap, SPI_CTAR(0), dspi->cur_chip->ctar_val | SPI_FRAME_BITS(dspi->oper_bits_per_word)); } static void dspi_fifo_write(struct fsl_dspi *dspi) { int num_fifo_entries = dspi->devtype_data->fifo_size; struct spi_transfer *xfer = dspi->cur_transfer; struct spi_message *msg = dspi->cur_msg; int num_words, num_bytes; dspi_setup_accel(dspi); /* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */ if (dspi->oper_word_size == 4) num_fifo_entries /= 2; /* * Integer division intentionally trims off odd (or non-multiple of 4) * numbers of bytes at the end of the buffer, which will be sent next * time using a smaller oper_word_size. */ num_words = dspi->len / dspi->oper_word_size; if (num_words > num_fifo_entries) num_words = num_fifo_entries; /* Update total number of bytes that were transferred */ num_bytes = num_words * dspi->oper_word_size; msg->actual_length += num_bytes; dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8); /* * Update shared variable for use in the next interrupt (both in * dspi_fifo_read and in dspi_fifo_write). */ dspi->words_in_flight = num_words; spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq); if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE) dspi_eoq_fifo_write(dspi, num_words); else dspi_xspi_fifo_write(dspi, num_words); /* * Everything after this point is in a potential race with the next * interrupt, so we must never use dspi->words_in_flight again since it * might already be modified by the next dspi_fifo_write. */ spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer, dspi->progress, !dspi->irq); } static int dspi_rxtx(struct fsl_dspi *dspi) { dspi_fifo_read(dspi); if (!dspi->len) /* Success! */ return 0; dspi_fifo_write(dspi); return -EINPROGRESS; } static int dspi_poll(struct fsl_dspi *dspi) { int tries = 1000; u32 spi_sr; do { regmap_read(dspi->regmap, SPI_SR, &spi_sr); regmap_write(dspi->regmap, SPI_SR, spi_sr); if (spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF)) break; } while (--tries); if (!tries) return -ETIMEDOUT; return dspi_rxtx(dspi); } static irqreturn_t dspi_interrupt(int irq, void *dev_id) { struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id; u32 spi_sr; regmap_read(dspi->regmap, SPI_SR, &spi_sr); regmap_write(dspi->regmap, SPI_SR, spi_sr); if (!(spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF))) return IRQ_NONE; if (dspi_rxtx(dspi) == 0) complete(&dspi->xfer_done); return IRQ_HANDLED; } static int dspi_transfer_one_message(struct spi_controller *ctlr, struct spi_message *message) { struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr); struct spi_device *spi = message->spi; struct spi_transfer *transfer; int status = 0; message->actual_length = 0; list_for_each_entry(transfer, &message->transfers, transfer_list) { dspi->cur_transfer = transfer; dspi->cur_msg = message; dspi->cur_chip = spi_get_ctldata(spi); /* Prepare command word for CMD FIFO */ dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) | SPI_PUSHR_CMD_PCS(spi->chip_select); if (list_is_last(&dspi->cur_transfer->transfer_list, &dspi->cur_msg->transfers)) { /* Leave PCS activated after last transfer when * cs_change is set. */ if (transfer->cs_change) dspi->tx_cmd |= SPI_PUSHR_CMD_CONT; } else { /* Keep PCS active between transfers in same message * when cs_change is not set, and de-activate PCS * between transfers in the same message when * cs_change is set. */ if (!transfer->cs_change) dspi->tx_cmd |= SPI_PUSHR_CMD_CONT; } dspi->tx = transfer->tx_buf; dspi->rx = transfer->rx_buf; dspi->len = transfer->len; dspi->progress = 0; regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF, SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF); spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer, dspi->progress, !dspi->irq); if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) { status = dspi_dma_xfer(dspi); } else { dspi_fifo_write(dspi); if (dspi->irq) { wait_for_completion(&dspi->xfer_done); reinit_completion(&dspi->xfer_done); } else { do { status = dspi_poll(dspi); } while (status == -EINPROGRESS); } } if (status) break; spi_transfer_delay_exec(transfer); } message->status = status; spi_finalize_current_message(ctlr); return status; } static int dspi_setup(struct spi_device *spi) { struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller); unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0; u32 cs_sck_delay = 0, sck_cs_delay = 0; struct fsl_dspi_platform_data *pdata; unsigned char pasc = 0, asc = 0; struct chip_data *chip; unsigned long clkrate; /* Only alloc on first setup */ chip = spi_get_ctldata(spi); if (chip == NULL) { chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); if (!chip) return -ENOMEM; } pdata = dev_get_platdata(&dspi->pdev->dev); if (!pdata) { of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay", &cs_sck_delay); of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay", &sck_cs_delay); } else { cs_sck_delay = pdata->cs_sck_delay; sck_cs_delay = pdata->sck_cs_delay; } clkrate = clk_get_rate(dspi->clk); hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate); /* Set PCS to SCK delay scale values */ ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate); /* Set After SCK delay scale values */ ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate); chip->ctar_val = 0; if (spi->mode & SPI_CPOL) chip->ctar_val |= SPI_CTAR_CPOL; if (spi->mode & SPI_CPHA) chip->ctar_val |= SPI_CTAR_CPHA; if (!spi_controller_is_slave(dspi->ctlr)) { chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) | SPI_CTAR_CSSCK(cssck) | SPI_CTAR_PASC(pasc) | SPI_CTAR_ASC(asc) | SPI_CTAR_PBR(pbr) | SPI_CTAR_BR(br); if (spi->mode & SPI_LSB_FIRST) chip->ctar_val |= SPI_CTAR_LSBFE; } spi_set_ctldata(spi, chip); return 0; } static void dspi_cleanup(struct spi_device *spi) { struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi); dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n", spi->controller->bus_num, spi->chip_select); kfree(chip); } static const struct of_device_id fsl_dspi_dt_ids[] = { { .compatible = "fsl,vf610-dspi", .data = &devtype_data[VF610], }, { .compatible = "fsl,ls1021a-v1.0-dspi", .data = &devtype_data[LS1021A], }, { .compatible = "fsl,ls1012a-dspi", .data = &devtype_data[LS1012A], }, { .compatible = "fsl,ls1028a-dspi", .data = &devtype_data[LS1028A], }, { .compatible = "fsl,ls1043a-dspi", .data = &devtype_data[LS1043A], }, { .compatible = "fsl,ls1046a-dspi", .data = &devtype_data[LS1046A], }, { .compatible = "fsl,ls2080a-dspi", .data = &devtype_data[LS2080A], }, { .compatible = "fsl,ls2085a-dspi", .data = &devtype_data[LS2085A], }, { .compatible = "fsl,lx2160a-dspi", .data = &devtype_data[LX2160A], }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids); #ifdef CONFIG_PM_SLEEP static int dspi_suspend(struct device *dev) { struct spi_controller *ctlr = dev_get_drvdata(dev); struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr); spi_controller_suspend(ctlr); clk_disable_unprepare(dspi->clk); pinctrl_pm_select_sleep_state(dev); return 0; } static int dspi_resume(struct device *dev) { struct spi_controller *ctlr = dev_get_drvdata(dev); struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr); int ret; pinctrl_pm_select_default_state(dev); ret = clk_prepare_enable(dspi->clk); if (ret) return ret; spi_controller_resume(ctlr); return 0; } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume); static const struct regmap_range dspi_volatile_ranges[] = { regmap_reg_range(SPI_MCR, SPI_TCR), regmap_reg_range(SPI_SR, SPI_SR), regmap_reg_range(SPI_PUSHR, SPI_RXFR3), }; static const struct regmap_access_table dspi_volatile_table = { .yes_ranges = dspi_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges), }; static const struct regmap_config dspi_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = 0x88, .volatile_table = &dspi_volatile_table, }; static const struct regmap_range dspi_xspi_volatile_ranges[] = { regmap_reg_range(SPI_MCR, SPI_TCR), regmap_reg_range(SPI_SR, SPI_SR), regmap_reg_range(SPI_PUSHR, SPI_RXFR3), regmap_reg_range(SPI_SREX, SPI_SREX), }; static const struct regmap_access_table dspi_xspi_volatile_table = { .yes_ranges = dspi_xspi_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges), }; static const struct regmap_config dspi_xspi_regmap_config[] = { { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = 0x13c, .volatile_table = &dspi_xspi_volatile_table, }, { .name = "pushr", .reg_bits = 16, .val_bits = 16, .reg_stride = 2, .max_register = 0x2, }, }; static int dspi_init(struct fsl_dspi *dspi) { unsigned int mcr; /* Set idle states for all chip select signals to high */ mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->num_chipselect - 1, 0)); if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) mcr |= SPI_MCR_XSPI; if (!spi_controller_is_slave(dspi->ctlr)) mcr |= SPI_MCR_MASTER; regmap_write(dspi->regmap, SPI_MCR, mcr); regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR); switch (dspi->devtype_data->trans_mode) { case DSPI_EOQ_MODE: regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE); break; case DSPI_XSPI_MODE: regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE); break; case DSPI_DMA_MODE: regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TFFFE | SPI_RSER_TFFFD | SPI_RSER_RFDFE | SPI_RSER_RFDFD); break; default: dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n", dspi->devtype_data->trans_mode); return -EINVAL; } return 0; } static int dspi_slave_abort(struct spi_master *master) { struct fsl_dspi *dspi = spi_master_get_devdata(master); /* * Terminate all pending DMA transactions for the SPI working * in SLAVE mode. */ if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) { dmaengine_terminate_sync(dspi->dma->chan_rx); dmaengine_terminate_sync(dspi->dma->chan_tx); } /* Clear the internal DSPI RX and TX FIFO buffers */ regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF, SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF); return 0; } /* * EOQ mode will inevitably deassert its PCS signal on last word in a queue * (hardware limitation), so we need to inform the spi_device that larger * buffers than the FIFO size are going to have the chip select randomly * toggling, so it has a chance to adapt its message sizes. */ static size_t dspi_max_message_size(struct spi_device *spi) { struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller); if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE) return dspi->devtype_data->fifo_size; return SIZE_MAX; } static int dspi_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; const struct regmap_config *regmap_config; struct fsl_dspi_platform_data *pdata; struct spi_controller *ctlr; int ret, cs_num, bus_num = -1; struct fsl_dspi *dspi; struct resource *res; void __iomem *base; bool big_endian; ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi)); if (!ctlr) return -ENOMEM; dspi = spi_controller_get_devdata(ctlr); dspi->pdev = pdev; dspi->ctlr = ctlr; ctlr->setup = dspi_setup; ctlr->transfer_one_message = dspi_transfer_one_message; ctlr->max_message_size = dspi_max_message_size; ctlr->dev.of_node = pdev->dev.of_node; ctlr->cleanup = dspi_cleanup; ctlr->slave_abort = dspi_slave_abort; ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; pdata = dev_get_platdata(&pdev->dev); if (pdata) { ctlr->num_chipselect = pdata->cs_num; ctlr->bus_num = pdata->bus_num; /* Only Coldfire uses platform data */ dspi->devtype_data = &devtype_data[MCF5441X]; big_endian = true; } else { ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num); if (ret < 0) { dev_err(&pdev->dev, "can't get spi-num-chipselects\n"); goto out_ctlr_put; } ctlr->num_chipselect = cs_num; of_property_read_u32(np, "bus-num", &bus_num); ctlr->bus_num = bus_num; if (of_property_read_bool(np, "spi-slave")) ctlr->slave = true; dspi->devtype_data = of_device_get_match_data(&pdev->dev); if (!dspi->devtype_data) { dev_err(&pdev->dev, "can't get devtype_data\n"); ret = -EFAULT; goto out_ctlr_put; } big_endian = of_device_is_big_endian(np); } if (big_endian) { dspi->pushr_cmd = 0; dspi->pushr_tx = 2; } else { dspi->pushr_cmd = 2; dspi->pushr_tx = 0; } if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); else ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) { ret = PTR_ERR(base); goto out_ctlr_put; } if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) regmap_config = &dspi_xspi_regmap_config[0]; else regmap_config = &dspi_regmap_config; dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config); if (IS_ERR(dspi->regmap)) { dev_err(&pdev->dev, "failed to init regmap: %ld\n", PTR_ERR(dspi->regmap)); ret = PTR_ERR(dspi->regmap); goto out_ctlr_put; } if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) { dspi->regmap_pushr = devm_regmap_init_mmio( &pdev->dev, base + SPI_PUSHR, &dspi_xspi_regmap_config[1]); if (IS_ERR(dspi->regmap_pushr)) { dev_err(&pdev->dev, "failed to init pushr regmap: %ld\n", PTR_ERR(dspi->regmap_pushr)); ret = PTR_ERR(dspi->regmap_pushr); goto out_ctlr_put; } } dspi->clk = devm_clk_get(&pdev->dev, "dspi"); if (IS_ERR(dspi->clk)) { ret = PTR_ERR(dspi->clk); dev_err(&pdev->dev, "unable to get clock\n"); goto out_ctlr_put; } ret = clk_prepare_enable(dspi->clk); if (ret) goto out_ctlr_put; ret = dspi_init(dspi); if (ret) goto out_clk_put; dspi->irq = platform_get_irq(pdev, 0); if (dspi->irq <= 0) { dev_info(&pdev->dev, "can't get platform irq, using poll mode\n"); dspi->irq = 0; goto poll_mode; } ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, IRQF_SHARED, pdev->name, dspi); if (ret < 0) { dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n"); goto out_clk_put; } init_completion(&dspi->xfer_done); poll_mode: if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) { ret = dspi_request_dma(dspi, res->start); if (ret < 0) { dev_err(&pdev->dev, "can't get dma channels\n"); goto out_clk_put; } } ctlr->max_speed_hz = clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor; if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE) ctlr->ptp_sts_supported = true; platform_set_drvdata(pdev, ctlr); ret = spi_register_controller(ctlr); if (ret != 0) { dev_err(&pdev->dev, "Problem registering DSPI ctlr\n"); goto out_clk_put; } return ret; out_clk_put: clk_disable_unprepare(dspi->clk); out_ctlr_put: spi_controller_put(ctlr); return ret; } static int dspi_remove(struct platform_device *pdev) { struct spi_controller *ctlr = platform_get_drvdata(pdev); struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr); /* Disconnect from the SPI framework */ spi_unregister_controller(dspi->ctlr); /* Disable RX and TX */ regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF, SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF); /* Stop Running */ regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT); dspi_release_dma(dspi); clk_disable_unprepare(dspi->clk); return 0; } static void dspi_shutdown(struct platform_device *pdev) { dspi_remove(pdev); } static struct platform_driver fsl_dspi_driver = { .driver.name = DRIVER_NAME, .driver.of_match_table = fsl_dspi_dt_ids, .driver.owner = THIS_MODULE, .driver.pm = &dspi_pm, .probe = dspi_probe, .remove = dspi_remove, .shutdown = dspi_shutdown, }; module_platform_driver(fsl_dspi_driver); MODULE_DESCRIPTION("Freescale DSPI Controller Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRIVER_NAME);