/* cyberstorm.c: Driver for CyberStorm SCSI Controller. * * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) * * The CyberStorm SCSI driver is based on David S. Miller's ESP driver * for the Sparc computers. * * This work was made possible by Phase5 who willingly (and most generously) * supported me with hardware and all the information I needed. */ /* TODO: * * 1) Figure out how to make a cleaner merge with the sparc driver with regard * to the caches and the Sparc MMU mapping. * 2) Make as few routines required outside the generic driver. A lot of the * routines in this file used to be inline! */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/types.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/proc_fs.h> #include <linux/stat.h> #include <linux/interrupt.h> #include "scsi.h" #include <scsi/scsi_host.h> #include "NCR53C9x.h" #include <linux/zorro.h> #include <asm/irq.h> #include <asm/amigaints.h> #include <asm/amigahw.h> #include <asm/pgtable.h> /* The controller registers can be found in the Z2 config area at these * offsets: */ #define CYBER_ESP_ADDR 0xf400 #define CYBER_DMA_ADDR 0xf800 /* The CyberStorm DMA interface */ struct cyber_dma_registers { volatile unsigned char dma_addr0; /* DMA address (MSB) [0x000] */ unsigned char dmapad1[1]; volatile unsigned char dma_addr1; /* DMA address [0x002] */ unsigned char dmapad2[1]; volatile unsigned char dma_addr2; /* DMA address [0x004] */ unsigned char dmapad3[1]; volatile unsigned char dma_addr3; /* DMA address (LSB) [0x006] */ unsigned char dmapad4[0x3fb]; volatile unsigned char cond_reg; /* DMA cond (ro) [0x402] */ #define ctrl_reg cond_reg /* DMA control (wo) [0x402] */ }; /* DMA control bits */ #define CYBER_DMA_LED 0x80 /* HD led control 1 = on */ #define CYBER_DMA_WRITE 0x40 /* DMA direction. 1 = write */ #define CYBER_DMA_Z3 0x20 /* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */ /* DMA status bits */ #define CYBER_DMA_HNDL_INTR 0x80 /* DMA IRQ pending? */ /* The bits below appears to be Phase5 Debug bits only; they were not * described by Phase5 so using them may seem a bit stupid... */ #define CYBER_HOST_ID 0x02 /* If set, host ID should be 7, otherwise * it should be 6. */ #define CYBER_SLOW_CABLE 0x08 /* If *not* set, assume SLOW_CABLE */ static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); static void dma_dump_state(struct NCR_ESP *esp); static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); static void dma_ints_off(struct NCR_ESP *esp); static void dma_ints_on(struct NCR_ESP *esp); static int dma_irq_p(struct NCR_ESP *esp); static void dma_led_off(struct NCR_ESP *esp); static void dma_led_on(struct NCR_ESP *esp); static int dma_ports_p(struct NCR_ESP *esp); static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); static unsigned char ctrl_data = 0; /* Keep backup of the stuff written * to ctrl_reg. Always write a copy * to this register when writing to * the hardware register! */ static volatile unsigned char cmd_buffer[16]; /* This is where all commands are put * before they are transferred to the ESP chip * via PIO. */ /***************************************************************** Detection */ int __init cyber_esp_detect(Scsi_Host_Template *tpnt) { struct NCR_ESP *esp; struct zorro_dev *z = NULL; unsigned long address; while ((z = zorro_find_device(ZORRO_WILDCARD, z))) { unsigned long board = z->resource.start; if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM || z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) && request_mem_region(board+CYBER_ESP_ADDR, sizeof(struct ESP_regs), "NCR53C9x")) { /* Figure out if this is a CyberStorm or really a * Fastlane/Blizzard Mk II by looking at the board size. * CyberStorm maps 64kB * (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway) */ if(z->resource.end-board != 0xffff) { release_mem_region(board+CYBER_ESP_ADDR, sizeof(struct ESP_regs)); return 0; } esp = esp_allocate(tpnt, (void *)board+CYBER_ESP_ADDR); /* Do command transfer with programmed I/O */ esp->do_pio_cmds = 1; /* Required functions */ esp->dma_bytes_sent = &dma_bytes_sent; esp->dma_can_transfer = &dma_can_transfer; esp->dma_dump_state = &dma_dump_state; esp->dma_init_read = &dma_init_read; esp->dma_init_write = &dma_init_write; esp->dma_ints_off = &dma_ints_off; esp->dma_ints_on = &dma_ints_on; esp->dma_irq_p = &dma_irq_p; esp->dma_ports_p = &dma_ports_p; esp->dma_setup = &dma_setup; /* Optional functions */ esp->dma_barrier = 0; esp->dma_drain = 0; esp->dma_invalidate = 0; esp->dma_irq_entry = 0; esp->dma_irq_exit = 0; esp->dma_led_on = &dma_led_on; esp->dma_led_off = &dma_led_off; esp->dma_poll = 0; esp->dma_reset = 0; /* SCSI chip speed */ esp->cfreq = 40000000; /* The DMA registers on the CyberStorm are mapped * relative to the device (i.e. in the same Zorro * I/O block). */ address = (unsigned long)ZTWO_VADDR(board); esp->dregs = (void *)(address + CYBER_DMA_ADDR); /* ESP register base */ esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR); /* Set the command buffer */ esp->esp_command = cmd_buffer; esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); esp->irq = IRQ_AMIGA_PORTS; request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ, "CyberStorm SCSI", esp->ehost); /* Figure out our scsi ID on the bus */ /* The DMA cond flag contains a hardcoded jumper bit * which can be used to select host number 6 or 7. * However, even though it may change, we use a hardcoded * value of 7. */ esp->scsi_id = 7; /* We don't have a differential SCSI-bus. */ esp->diff = 0; esp_initialize(esp); printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); esps_running = esps_in_use; return esps_in_use; } } return 0; } /************************************************************* DMA Functions */ static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) { /* Since the CyberStorm DMA is fully dedicated to the ESP chip, * the number of bytes sent (to the ESP chip) equals the number * of bytes in the FIFO - there is no buffering in the DMA controller. * XXXX Do I read this right? It is from host to ESP, right? */ return fifo_count; } static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) { /* I don't think there's any limit on the CyberDMA. So we use what * the ESP chip can handle (24 bit). */ unsigned long sz = sp->SCp.this_residual; if(sz > 0x1000000) sz = 0x1000000; return sz; } static void dma_dump_state(struct NCR_ESP *esp) { ESPLOG(("esp%d: dma -- cond_reg<%02x>\n", esp->esp_id, ((struct cyber_dma_registers *) (esp->dregs))->cond_reg)); ESPLOG(("intreq:<%04x>, intena:<%04x>\n", custom.intreqr, custom.intenar)); } static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) { struct cyber_dma_registers *dregs = (struct cyber_dma_registers *) esp->dregs; cache_clear(addr, length); addr &= ~(1); dregs->dma_addr0 = (addr >> 24) & 0xff; dregs->dma_addr1 = (addr >> 16) & 0xff; dregs->dma_addr2 = (addr >> 8) & 0xff; dregs->dma_addr3 = (addr ) & 0xff; ctrl_data &= ~(CYBER_DMA_WRITE); /* Check if physical address is outside Z2 space and of * block length/block aligned in memory. If this is the * case, enable 32 bit transfer. In all other cases, fall back * to 16 bit transfer. * Obviously 32 bit transfer should be enabled if the DMA address * and length are 32 bit aligned. However, this leads to some * strange behavior. Even 64 bit aligned addr/length fails. * Until I've found a reason for this, 32 bit transfer is only * used for full-block transfers (1kB). * -jskov */ #if 0 if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && (addr < 0xff0000))) ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ else ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ #else ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ #endif dregs->ctrl_reg = ctrl_data; } static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) { struct cyber_dma_registers *dregs = (struct cyber_dma_registers *) esp->dregs; cache_push(addr, length); addr |= 1; dregs->dma_addr0 = (addr >> 24) & 0xff; dregs->dma_addr1 = (addr >> 16) & 0xff; dregs->dma_addr2 = (addr >> 8) & 0xff; dregs->dma_addr3 = (addr ) & 0xff; ctrl_data |= CYBER_DMA_WRITE; /* See comment above */ #if 0 if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && (addr < 0xff0000))) ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ else ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ #else ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ #endif dregs->ctrl_reg = ctrl_data; } static void dma_ints_off(struct NCR_ESP *esp) { disable_irq(esp->irq); } static void dma_ints_on(struct NCR_ESP *esp) { enable_irq(esp->irq); } static int dma_irq_p(struct NCR_ESP *esp) { /* It's important to check the DMA IRQ bit in the correct way! */ return ((esp_read(esp->eregs->esp_status) & ESP_STAT_INTR) && ((((struct cyber_dma_registers *)(esp->dregs))->cond_reg) & CYBER_DMA_HNDL_INTR)); } static void dma_led_off(struct NCR_ESP *esp) { ctrl_data &= ~CYBER_DMA_LED; ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; } static void dma_led_on(struct NCR_ESP *esp) { ctrl_data |= CYBER_DMA_LED; ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; } static int dma_ports_p(struct NCR_ESP *esp) { return ((custom.intenar) & IF_PORTS); } static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) { /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" * so when (write) is true, it actually means READ! */ if(write){ dma_init_read(esp, addr, count); } else { dma_init_write(esp, addr, count); } } #define HOSTS_C int cyber_esp_release(struct Scsi_Host *instance) { #ifdef MODULE unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; esp_deallocate((struct NCR_ESP *)instance->hostdata); esp_release(); release_mem_region(address, sizeof(struct ESP_regs)); free_irq(IRQ_AMIGA_PORTS, esp_intr); #endif return 1; } static Scsi_Host_Template driver_template = { .proc_name = "esp-cyberstorm", .proc_info = esp_proc_info, .name = "CyberStorm SCSI", .detect = cyber_esp_detect, .slave_alloc = esp_slave_alloc, .slave_destroy = esp_slave_destroy, .release = cyber_esp_release, .queuecommand = esp_queue, .eh_abort_handler = esp_abort, .eh_bus_reset_handler = esp_reset, .can_queue = 7, .this_id = 7, .sg_tablesize = SG_ALL, .cmd_per_lun = 1, .use_clustering = ENABLE_CLUSTERING }; #include "scsi_module.c" MODULE_LICENSE("GPL");