/* * Virtio-based remote processor messaging bus * * Copyright (C) 2011 Texas Instruments, Inc. * Copyright (C) 2011 Google, Inc. * * Ohad Ben-Cohen * Brian Swetland * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * struct virtproc_info - virtual remote processor state * @vdev: the virtio device * @rvq: rx virtqueue * @svq: tx virtqueue * @rbufs: kernel address of rx buffers * @sbufs: kernel address of tx buffers * @last_sbuf: index of last tx buffer used * @bufs_dma: dma base addr of the buffers * @tx_lock: protects svq, sbufs and sleepers, to allow concurrent senders. * sending a message might require waking up a dozing remote * processor, which involves sleeping, hence the mutex. * @endpoints: idr of local endpoints, allows fast retrieval * @endpoints_lock: lock of the endpoints set * @sendq: wait queue of sending contexts waiting for a tx buffers * @sleepers: number of senders that are waiting for a tx buffer * @ns_ept: the bus's name service endpoint * * This structure stores the rpmsg state of a given virtio remote processor * device (there might be several virtio proc devices for each physical * remote processor). */ struct virtproc_info { struct virtio_device *vdev; struct virtqueue *rvq, *svq; void *rbufs, *sbufs; int last_sbuf; dma_addr_t bufs_dma; struct mutex tx_lock; struct idr endpoints; struct mutex endpoints_lock; wait_queue_head_t sendq; atomic_t sleepers; struct rpmsg_endpoint *ns_ept; }; /** * struct rpmsg_channel_info - internal channel info representation * @name: name of service * @src: local address * @dst: destination address */ struct rpmsg_channel_info { char name[RPMSG_NAME_SIZE]; u32 src; u32 dst; }; #define to_rpmsg_channel(d) container_of(d, struct rpmsg_channel, dev) #define to_rpmsg_driver(d) container_of(d, struct rpmsg_driver, drv) /* * We're allocating 512 buffers of 512 bytes for communications, and then * using the first 256 buffers for RX, and the last 256 buffers for TX. * * Each buffer will have 16 bytes for the msg header and 496 bytes for * the payload. * * This will require a total space of 256KB for the buffers. * * We might also want to add support for user-provided buffers in time. * This will allow bigger buffer size flexibility, and can also be used * to achieve zero-copy messaging. * * Note that these numbers are purely a decision of this driver - we * can change this without changing anything in the firmware of the remote * processor. */ #define RPMSG_NUM_BUFS (512) #define RPMSG_BUF_SIZE (512) #define RPMSG_TOTAL_BUF_SPACE (RPMSG_NUM_BUFS * RPMSG_BUF_SIZE) /* * Local addresses are dynamically allocated on-demand. * We do not dynamically assign addresses from the low 1024 range, * in order to reserve that address range for predefined services. */ #define RPMSG_RESERVED_ADDRESSES (1024) /* Address 53 is reserved for advertising remote services */ #define RPMSG_NS_ADDR (53) /* sysfs show configuration fields */ #define rpmsg_show_attr(field, path, format_string) \ static ssize_t \ field##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); \ \ return sprintf(buf, format_string, rpdev->path); \ } /* for more info, see Documentation/ABI/testing/sysfs-bus-rpmsg */ rpmsg_show_attr(name, id.name, "%s\n"); rpmsg_show_attr(src, src, "0x%x\n"); rpmsg_show_attr(dst, dst, "0x%x\n"); rpmsg_show_attr(announce, announce ? "true" : "false", "%s\n"); /* * Unique (and free running) index for rpmsg devices. * * Yeah, we're not recycling those numbers (yet?). will be easy * to change if/when we want to. */ static unsigned int rpmsg_dev_index; static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); return sprintf(buf, RPMSG_DEVICE_MODALIAS_FMT "\n", rpdev->id.name); } static struct device_attribute rpmsg_dev_attrs[] = { __ATTR_RO(name), __ATTR_RO(modalias), __ATTR_RO(dst), __ATTR_RO(src), __ATTR_RO(announce), __ATTR_NULL }; /* rpmsg devices and drivers are matched using the service name */ static inline int rpmsg_id_match(const struct rpmsg_channel *rpdev, const struct rpmsg_device_id *id) { return strncmp(id->name, rpdev->id.name, RPMSG_NAME_SIZE) == 0; } /* match rpmsg channel and rpmsg driver */ static int rpmsg_dev_match(struct device *dev, struct device_driver *drv) { struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); struct rpmsg_driver *rpdrv = to_rpmsg_driver(drv); const struct rpmsg_device_id *ids = rpdrv->id_table; unsigned int i; for (i = 0; ids[i].name[0]; i++) if (rpmsg_id_match(rpdev, &ids[i])) return 1; return 0; } static int rpmsg_uevent(struct device *dev, struct kobj_uevent_env *env) { struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); return add_uevent_var(env, "MODALIAS=" RPMSG_DEVICE_MODALIAS_FMT, rpdev->id.name); } /* for more info, see below documentation of rpmsg_create_ept() */ static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp, struct rpmsg_channel *rpdev, rpmsg_rx_cb_t cb, void *priv, u32 addr) { int err, tmpaddr, request; struct rpmsg_endpoint *ept; struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev; if (!idr_pre_get(&vrp->endpoints, GFP_KERNEL)) return NULL; ept = kzalloc(sizeof(*ept), GFP_KERNEL); if (!ept) { dev_err(dev, "failed to kzalloc a new ept\n"); return NULL; } ept->rpdev = rpdev; ept->cb = cb; ept->priv = priv; /* do we need to allocate a local address ? */ request = addr == RPMSG_ADDR_ANY ? RPMSG_RESERVED_ADDRESSES : addr; mutex_lock(&vrp->endpoints_lock); /* bind the endpoint to an rpmsg address (and allocate one if needed) */ err = idr_get_new_above(&vrp->endpoints, ept, request, &tmpaddr); if (err) { dev_err(dev, "idr_get_new_above failed: %d\n", err); goto free_ept; } /* make sure the user's address request is fulfilled, if relevant */ if (addr != RPMSG_ADDR_ANY && tmpaddr != addr) { dev_err(dev, "address 0x%x already in use\n", addr); goto rem_idr; } ept->addr = tmpaddr; mutex_unlock(&vrp->endpoints_lock); return ept; rem_idr: idr_remove(&vrp->endpoints, request); free_ept: mutex_unlock(&vrp->endpoints_lock); kfree(ept); return NULL; } /** * rpmsg_create_ept() - create a new rpmsg_endpoint * @rpdev: rpmsg channel device * @cb: rx callback handler * @priv: private data for the driver's use * @addr: local rpmsg address to bind with @cb * * Every rpmsg address in the system is bound to an rx callback (so when * inbound messages arrive, they are dispatched by the rpmsg bus using the * appropriate callback handler) by means of an rpmsg_endpoint struct. * * This function allows drivers to create such an endpoint, and by that, * bind a callback, and possibly some private data too, to an rpmsg address * (either one that is known in advance, or one that will be dynamically * assigned for them). * * Simple rpmsg drivers need not call rpmsg_create_ept, because an endpoint * is already created for them when they are probed by the rpmsg bus * (using the rx callback provided when they registered to the rpmsg bus). * * So things should just work for simple drivers: they already have an * endpoint, their rx callback is bound to their rpmsg address, and when * relevant inbound messages arrive (i.e. messages which their dst address * equals to the src address of their rpmsg channel), the driver's handler * is invoked to process it. * * That said, more complicated drivers might do need to allocate * additional rpmsg addresses, and bind them to different rx callbacks. * To accomplish that, those drivers need to call this function. * * Drivers should provide their @rpdev channel (so the new endpoint would belong * to the same remote processor their channel belongs to), an rx callback * function, an optional private data (which is provided back when the * rx callback is invoked), and an address they want to bind with the * callback. If @addr is RPMSG_ADDR_ANY, then rpmsg_create_ept will * dynamically assign them an available rpmsg address (drivers should have * a very good reason why not to always use RPMSG_ADDR_ANY here). * * Returns a pointer to the endpoint on success, or NULL on error. */ struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rpdev, rpmsg_rx_cb_t cb, void *priv, u32 addr) { return __rpmsg_create_ept(rpdev->vrp, rpdev, cb, priv, addr); } EXPORT_SYMBOL(rpmsg_create_ept); /** * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint * @vrp: virtproc which owns this ept * @ept: endpoing to destroy * * An internal function which destroy an ept without assuming it is * bound to an rpmsg channel. This is needed for handling the internal * name service endpoint, which isn't bound to an rpmsg channel. * See also __rpmsg_create_ept(). */ static void __rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept) { mutex_lock(&vrp->endpoints_lock); idr_remove(&vrp->endpoints, ept->addr); mutex_unlock(&vrp->endpoints_lock); kfree(ept); } /** * rpmsg_destroy_ept() - destroy an existing rpmsg endpoint * @ept: endpoing to destroy * * Should be used by drivers to destroy an rpmsg endpoint previously * created with rpmsg_create_ept(). */ void rpmsg_destroy_ept(struct rpmsg_endpoint *ept) { __rpmsg_destroy_ept(ept->rpdev->vrp, ept); } EXPORT_SYMBOL(rpmsg_destroy_ept); /* * when an rpmsg driver is probed with a channel, we seamlessly create * it an endpoint, binding its rx callback to a unique local rpmsg * address. * * if we need to, we also announce about this channel to the remote * processor (needed in case the driver is exposing an rpmsg service). */ static int rpmsg_dev_probe(struct device *dev) { struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver); struct virtproc_info *vrp = rpdev->vrp; struct rpmsg_endpoint *ept; int err; ept = rpmsg_create_ept(rpdev, rpdrv->callback, NULL, rpdev->src); if (!ept) { dev_err(dev, "failed to create endpoint\n"); err = -ENOMEM; goto out; } rpdev->ept = ept; rpdev->src = ept->addr; err = rpdrv->probe(rpdev); if (err) { dev_err(dev, "%s: failed: %d\n", __func__, err); rpmsg_destroy_ept(ept); goto out; } /* need to tell remote processor's name service about this channel ? */ if (rpdev->announce && virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { struct rpmsg_ns_msg nsm; strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); nsm.addr = rpdev->src; nsm.flags = RPMSG_NS_CREATE; err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR); if (err) dev_err(dev, "failed to announce service %d\n", err); } out: return err; } static int rpmsg_dev_remove(struct device *dev) { struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver); struct virtproc_info *vrp = rpdev->vrp; int err = 0; /* tell remote processor's name service we're removing this channel */ if (rpdev->announce && virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { struct rpmsg_ns_msg nsm; strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); nsm.addr = rpdev->src; nsm.flags = RPMSG_NS_DESTROY; err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR); if (err) dev_err(dev, "failed to announce service %d\n", err); } rpdrv->remove(rpdev); rpmsg_destroy_ept(rpdev->ept); return err; } static struct bus_type rpmsg_bus = { .name = "rpmsg", .match = rpmsg_dev_match, .dev_attrs = rpmsg_dev_attrs, .uevent = rpmsg_uevent, .probe = rpmsg_dev_probe, .remove = rpmsg_dev_remove, }; /** * register_rpmsg_driver() - register an rpmsg driver with the rpmsg bus * @rpdrv: pointer to a struct rpmsg_driver * * Returns 0 on success, and an appropriate error value on failure. */ int register_rpmsg_driver(struct rpmsg_driver *rpdrv) { rpdrv->drv.bus = &rpmsg_bus; return driver_register(&rpdrv->drv); } EXPORT_SYMBOL(register_rpmsg_driver); /** * unregister_rpmsg_driver() - unregister an rpmsg driver from the rpmsg bus * @rpdrv: pointer to a struct rpmsg_driver * * Returns 0 on success, and an appropriate error value on failure. */ void unregister_rpmsg_driver(struct rpmsg_driver *rpdrv) { driver_unregister(&rpdrv->drv); } EXPORT_SYMBOL(unregister_rpmsg_driver); static void rpmsg_release_device(struct device *dev) { struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); kfree(rpdev); } /* * match an rpmsg channel with a channel info struct. * this is used to make sure we're not creating rpmsg devices for channels * that already exist. */ static int rpmsg_channel_match(struct device *dev, void *data) { struct rpmsg_channel_info *chinfo = data; struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); if (chinfo->src != RPMSG_ADDR_ANY && chinfo->src != rpdev->src) return 0; if (chinfo->dst != RPMSG_ADDR_ANY && chinfo->dst != rpdev->dst) return 0; if (strncmp(chinfo->name, rpdev->id.name, RPMSG_NAME_SIZE)) return 0; /* found a match ! */ return 1; } /* * create an rpmsg channel using its name and address info. * this function will be used to create both static and dynamic * channels. */ static struct rpmsg_channel *rpmsg_create_channel(struct virtproc_info *vrp, struct rpmsg_channel_info *chinfo) { struct rpmsg_channel *rpdev; struct device *tmp, *dev = &vrp->vdev->dev; int ret; /* make sure a similar channel doesn't already exist */ tmp = device_find_child(dev, chinfo, rpmsg_channel_match); if (tmp) { /* decrement the matched device's refcount back */ put_device(tmp); dev_err(dev, "channel %s:%x:%x already exist\n", chinfo->name, chinfo->src, chinfo->dst); return NULL; } rpdev = kzalloc(sizeof(struct rpmsg_channel), GFP_KERNEL); if (!rpdev) { pr_err("kzalloc failed\n"); return NULL; } rpdev->vrp = vrp; rpdev->src = chinfo->src; rpdev->dst = chinfo->dst; /* * rpmsg server channels has predefined local address (for now), * and their existence needs to be announced remotely */ rpdev->announce = rpdev->src != RPMSG_ADDR_ANY ? true : false; strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE); /* very simple device indexing plumbing which is enough for now */ dev_set_name(&rpdev->dev, "rpmsg%d", rpmsg_dev_index++); rpdev->dev.parent = &vrp->vdev->dev; rpdev->dev.bus = &rpmsg_bus; rpdev->dev.release = rpmsg_release_device; ret = device_register(&rpdev->dev); if (ret) { dev_err(dev, "device_register failed: %d\n", ret); put_device(&rpdev->dev); return NULL; } return rpdev; } /* * find an existing channel using its name + address properties, * and destroy it */ static int rpmsg_destroy_channel(struct virtproc_info *vrp, struct rpmsg_channel_info *chinfo) { struct virtio_device *vdev = vrp->vdev; struct device *dev; dev = device_find_child(&vdev->dev, chinfo, rpmsg_channel_match); if (!dev) return -EINVAL; device_unregister(dev); put_device(dev); return 0; } /* super simple buffer "allocator" that is just enough for now */ static void *get_a_tx_buf(struct virtproc_info *vrp) { unsigned int len; void *ret; /* support multiple concurrent senders */ mutex_lock(&vrp->tx_lock); /* * either pick the next unused tx buffer * (half of our buffers are used for sending messages) */ if (vrp->last_sbuf < RPMSG_NUM_BUFS / 2) ret = vrp->sbufs + RPMSG_BUF_SIZE * vrp->last_sbuf++; /* or recycle a used one */ else ret = virtqueue_get_buf(vrp->svq, &len); mutex_unlock(&vrp->tx_lock); return ret; } /** * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed * @vrp: virtual remote processor state * * This function is called before a sender is blocked, waiting for * a tx buffer to become available. * * If we already have blocking senders, this function merely increases * the "sleepers" reference count, and exits. * * Otherwise, if this is the first sender to block, we also enable * virtio's tx callbacks, so we'd be immediately notified when a tx * buffer is consumed (we rely on virtio's tx callback in order * to wake up sleeping senders as soon as a tx buffer is used by the * remote processor). */ static void rpmsg_upref_sleepers(struct virtproc_info *vrp) { /* support multiple concurrent senders */ mutex_lock(&vrp->tx_lock); /* are we the first sleeping context waiting for tx buffers ? */ if (atomic_inc_return(&vrp->sleepers) == 1) /* enable "tx-complete" interrupts before dozing off */ virtqueue_enable_cb(vrp->svq); mutex_unlock(&vrp->tx_lock); } /** * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed * @vrp: virtual remote processor state * * This function is called after a sender, that waited for a tx buffer * to become available, is unblocked. * * If we still have blocking senders, this function merely decreases * the "sleepers" reference count, and exits. * * Otherwise, if there are no more blocking senders, we also disable * virtio's tx callbacks, to avoid the overhead incurred with handling * those (now redundant) interrupts. */ static void rpmsg_downref_sleepers(struct virtproc_info *vrp) { /* support multiple concurrent senders */ mutex_lock(&vrp->tx_lock); /* are we the last sleeping context waiting for tx buffers ? */ if (atomic_dec_and_test(&vrp->sleepers)) /* disable "tx-complete" interrupts */ virtqueue_disable_cb(vrp->svq); mutex_unlock(&vrp->tx_lock); } /** * rpmsg_send_offchannel_raw() - send a message across to the remote processor * @rpdev: the rpmsg channel * @src: source address * @dst: destination address * @data: payload of message * @len: length of payload * @wait: indicates whether caller should block in case no TX buffers available * * This function is the base implementation for all of the rpmsg sending API. * * It will send @data of length @len to @dst, and say it's from @src. The * message will be sent to the remote processor which the @rpdev channel * belongs to. * * The message is sent using one of the TX buffers that are available for * communication with this remote processor. * * If @wait is true, the caller will be blocked until either a TX buffer is * available, or 15 seconds elapses (we don't want callers to * sleep indefinitely due to misbehaving remote processors), and in that * case -ERESTARTSYS is returned. The number '15' itself was picked * arbitrarily; there's little point in asking drivers to provide a timeout * value themselves. * * Otherwise, if @wait is false, and there are no TX buffers available, * the function will immediately fail, and -ENOMEM will be returned. * * Normally drivers shouldn't use this function directly; instead, drivers * should use the appropriate rpmsg_{try}send{to, _offchannel} API * (see include/linux/rpmsg.h). * * Returns 0 on success and an appropriate error value on failure. */ int rpmsg_send_offchannel_raw(struct rpmsg_channel *rpdev, u32 src, u32 dst, void *data, int len, bool wait) { struct virtproc_info *vrp = rpdev->vrp; struct device *dev = &rpdev->dev; struct scatterlist sg; struct rpmsg_hdr *msg; int err; /* bcasting isn't allowed */ if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) { dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst); return -EINVAL; } /* * We currently use fixed-sized buffers, and therefore the payload * length is limited. * * One of the possible improvements here is either to support * user-provided buffers (and then we can also support zero-copy * messaging), or to improve the buffer allocator, to support * variable-length buffer sizes. */ if (len > RPMSG_BUF_SIZE - sizeof(struct rpmsg_hdr)) { dev_err(dev, "message is too big (%d)\n", len); return -EMSGSIZE; } /* grab a buffer */ msg = get_a_tx_buf(vrp); if (!msg && !wait) return -ENOMEM; /* no free buffer ? wait for one (but bail after 15 seconds) */ while (!msg) { /* enable "tx-complete" interrupts, if not already enabled */ rpmsg_upref_sleepers(vrp); /* * sleep until a free buffer is available or 15 secs elapse. * the timeout period is not configurable because there's * little point in asking drivers to specify that. * if later this happens to be required, it'd be easy to add. */ err = wait_event_interruptible_timeout(vrp->sendq, (msg = get_a_tx_buf(vrp)), msecs_to_jiffies(15000)); /* disable "tx-complete" interrupts if we're the last sleeper */ rpmsg_downref_sleepers(vrp); /* timeout ? */ if (!err) { dev_err(dev, "timeout waiting for a tx buffer\n"); return -ERESTARTSYS; } } msg->len = len; msg->flags = 0; msg->src = src; msg->dst = dst; msg->reserved = 0; memcpy(msg->data, data, len); dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n", msg->src, msg->dst, msg->len, msg->flags, msg->reserved); print_hex_dump(KERN_DEBUG, "rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1, msg, sizeof(*msg) + msg->len, true); sg_init_one(&sg, msg, sizeof(*msg) + len); mutex_lock(&vrp->tx_lock); /* add message to the remote processor's virtqueue */ err = virtqueue_add_buf(vrp->svq, &sg, 1, 0, msg, GFP_KERNEL); if (err < 0) { /* * need to reclaim the buffer here, otherwise it's lost * (memory won't leak, but rpmsg won't use it again for TX). * this will wait for a buffer management overhaul. */ dev_err(dev, "virtqueue_add_buf failed: %d\n", err); goto out; } /* tell the remote processor it has a pending message to read */ virtqueue_kick(vrp->svq); err = 0; out: mutex_unlock(&vrp->tx_lock); return err; } EXPORT_SYMBOL(rpmsg_send_offchannel_raw); /* called when an rx buffer is used, and it's time to digest a message */ static void rpmsg_recv_done(struct virtqueue *rvq) { struct rpmsg_hdr *msg; unsigned int len; struct rpmsg_endpoint *ept; struct scatterlist sg; struct virtproc_info *vrp = rvq->vdev->priv; struct device *dev = &rvq->vdev->dev; int err; msg = virtqueue_get_buf(rvq, &len); if (!msg) { dev_err(dev, "uhm, incoming signal, but no used buffer ?\n"); return; } dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n", msg->src, msg->dst, msg->len, msg->flags, msg->reserved); print_hex_dump(KERN_DEBUG, "rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1, msg, sizeof(*msg) + msg->len, true); /* use the dst addr to fetch the callback of the appropriate user */ mutex_lock(&vrp->endpoints_lock); ept = idr_find(&vrp->endpoints, msg->dst); mutex_unlock(&vrp->endpoints_lock); if (ept && ept->cb) ept->cb(ept->rpdev, msg->data, msg->len, ept->priv, msg->src); else dev_warn(dev, "msg received with no recepient\n"); sg_init_one(&sg, msg, sizeof(*msg) + len); /* add the buffer back to the remote processor's virtqueue */ err = virtqueue_add_buf(vrp->rvq, &sg, 0, 1, msg, GFP_KERNEL); if (err < 0) { dev_err(dev, "failed to add a virtqueue buffer: %d\n", err); return; } /* tell the remote processor we added another available rx buffer */ virtqueue_kick(vrp->rvq); } /* * This is invoked whenever the remote processor completed processing * a TX msg we just sent it, and the buffer is put back to the used ring. * * Normally, though, we suppress this "tx complete" interrupt in order to * avoid the incurred overhead. */ static void rpmsg_xmit_done(struct virtqueue *svq) { struct virtproc_info *vrp = svq->vdev->priv; dev_dbg(&svq->vdev->dev, "%s\n", __func__); /* wake up potential senders that are waiting for a tx buffer */ wake_up_interruptible(&vrp->sendq); } /* invoked when a name service announcement arrives */ static void rpmsg_ns_cb(struct rpmsg_channel *rpdev, void *data, int len, void *priv, u32 src) { struct rpmsg_ns_msg *msg = data; struct rpmsg_channel *newch; struct rpmsg_channel_info chinfo; struct virtproc_info *vrp = priv; struct device *dev = &vrp->vdev->dev; int ret; print_hex_dump(KERN_DEBUG, "NS announcement: ", DUMP_PREFIX_NONE, 16, 1, data, len, true); if (len != sizeof(*msg)) { dev_err(dev, "malformed ns msg (%d)\n", len); return; } /* * the name service ept does _not_ belong to a real rpmsg channel, * and is handled by the rpmsg bus itself. * for sanity reasons, make sure a valid rpdev has _not_ sneaked * in somehow. */ if (rpdev) { dev_err(dev, "anomaly: ns ept has an rpdev handle\n"); return; } /* don't trust the remote processor for null terminating the name */ msg->name[RPMSG_NAME_SIZE - 1] = '\0'; dev_info(dev, "%sing channel %s addr 0x%x\n", msg->flags & RPMSG_NS_DESTROY ? "destroy" : "creat", msg->name, msg->addr); strncpy(chinfo.name, msg->name, sizeof(chinfo.name)); chinfo.src = RPMSG_ADDR_ANY; chinfo.dst = msg->addr; if (msg->flags & RPMSG_NS_DESTROY) { ret = rpmsg_destroy_channel(vrp, &chinfo); if (ret) dev_err(dev, "rpmsg_destroy_channel failed: %d\n", ret); } else { newch = rpmsg_create_channel(vrp, &chinfo); if (!newch) dev_err(dev, "rpmsg_create_channel failed\n"); } } static int rpmsg_probe(struct virtio_device *vdev) { vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done }; const char *names[] = { "input", "output" }; struct virtqueue *vqs[2]; struct virtproc_info *vrp; void *bufs_va; int err = 0, i; vrp = kzalloc(sizeof(*vrp), GFP_KERNEL); if (!vrp) return -ENOMEM; vrp->vdev = vdev; idr_init(&vrp->endpoints); mutex_init(&vrp->endpoints_lock); mutex_init(&vrp->tx_lock); init_waitqueue_head(&vrp->sendq); /* We expect two virtqueues, rx and tx (and in this order) */ err = vdev->config->find_vqs(vdev, 2, vqs, vq_cbs, names); if (err) goto free_vrp; vrp->rvq = vqs[0]; vrp->svq = vqs[1]; /* allocate coherent memory for the buffers */ bufs_va = dma_alloc_coherent(vdev->dev.parent, RPMSG_TOTAL_BUF_SPACE, &vrp->bufs_dma, GFP_KERNEL); if (!bufs_va) goto vqs_del; dev_dbg(&vdev->dev, "buffers: va %p, dma 0x%x\n", bufs_va, vrp->bufs_dma); /* half of the buffers is dedicated for RX */ vrp->rbufs = bufs_va; /* and half is dedicated for TX */ vrp->sbufs = bufs_va + RPMSG_TOTAL_BUF_SPACE / 2; /* set up the receive buffers */ for (i = 0; i < RPMSG_NUM_BUFS / 2; i++) { struct scatterlist sg; void *cpu_addr = vrp->rbufs + i * RPMSG_BUF_SIZE; sg_init_one(&sg, cpu_addr, RPMSG_BUF_SIZE); err = virtqueue_add_buf(vrp->rvq, &sg, 0, 1, cpu_addr, GFP_KERNEL); WARN_ON(err < 0); /* sanity check; this can't really happen */ } /* suppress "tx-complete" interrupts */ virtqueue_disable_cb(vrp->svq); vdev->priv = vrp; /* if supported by the remote processor, enable the name service */ if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) { /* a dedicated endpoint handles the name service msgs */ vrp->ns_ept = __rpmsg_create_ept(vrp, NULL, rpmsg_ns_cb, vrp, RPMSG_NS_ADDR); if (!vrp->ns_ept) { dev_err(&vdev->dev, "failed to create the ns ept\n"); err = -ENOMEM; goto free_coherent; } } /* tell the remote processor it can start sending messages */ virtqueue_kick(vrp->rvq); dev_info(&vdev->dev, "rpmsg host is online\n"); return 0; free_coherent: dma_free_coherent(vdev->dev.parent, RPMSG_TOTAL_BUF_SPACE, bufs_va, vrp->bufs_dma); vqs_del: vdev->config->del_vqs(vrp->vdev); free_vrp: kfree(vrp); return err; } static int rpmsg_remove_device(struct device *dev, void *data) { device_unregister(dev); return 0; } static void __devexit rpmsg_remove(struct virtio_device *vdev) { struct virtproc_info *vrp = vdev->priv; int ret; vdev->config->reset(vdev); ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device); if (ret) dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret); if (vrp->ns_ept) __rpmsg_destroy_ept(vrp, vrp->ns_ept); idr_remove_all(&vrp->endpoints); idr_destroy(&vrp->endpoints); vdev->config->del_vqs(vrp->vdev); dma_free_coherent(vdev->dev.parent, RPMSG_TOTAL_BUF_SPACE, vrp->rbufs, vrp->bufs_dma); kfree(vrp); } static struct virtio_device_id id_table[] = { { VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID }, { 0 }, }; static unsigned int features[] = { VIRTIO_RPMSG_F_NS, }; static struct virtio_driver virtio_ipc_driver = { .feature_table = features, .feature_table_size = ARRAY_SIZE(features), .driver.name = KBUILD_MODNAME, .driver.owner = THIS_MODULE, .id_table = id_table, .probe = rpmsg_probe, .remove = __devexit_p(rpmsg_remove), }; static int __init rpmsg_init(void) { int ret; ret = bus_register(&rpmsg_bus); if (ret) { pr_err("failed to register rpmsg bus: %d\n", ret); return ret; } ret = register_virtio_driver(&virtio_ipc_driver); if (ret) { pr_err("failed to register virtio driver: %d\n", ret); bus_unregister(&rpmsg_bus); } return ret; } module_init(rpmsg_init); static void __exit rpmsg_fini(void) { unregister_virtio_driver(&virtio_ipc_driver); bus_unregister(&rpmsg_bus); } module_exit(rpmsg_fini); MODULE_DEVICE_TABLE(virtio, id_table); MODULE_DESCRIPTION("Virtio-based remote processor messaging bus"); MODULE_LICENSE("GPL v2");