// SPDX-License-Identifier: GPL-2.0-only /* * Qualcomm self-authenticating modem subsystem remoteproc driver * * Copyright (C) 2016 Linaro Ltd. * Copyright (C) 2014 Sony Mobile Communications AB * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "linux/remoteproc/qcom_q6v5_ipa_notify.h" #include #include #include #include "remoteproc_internal.h" #include "qcom_common.h" #include "qcom_pil_info.h" #include "qcom_q6v5.h" #include #define MPSS_CRASH_REASON_SMEM 421 #define MBA_LOG_SIZE SZ_4K /* RMB Status Register Values */ #define RMB_PBL_SUCCESS 0x1 #define RMB_MBA_XPU_UNLOCKED 0x1 #define RMB_MBA_XPU_UNLOCKED_SCRIBBLED 0x2 #define RMB_MBA_META_DATA_AUTH_SUCCESS 0x3 #define RMB_MBA_AUTH_COMPLETE 0x4 /* PBL/MBA interface registers */ #define RMB_MBA_IMAGE_REG 0x00 #define RMB_PBL_STATUS_REG 0x04 #define RMB_MBA_COMMAND_REG 0x08 #define RMB_MBA_STATUS_REG 0x0C #define RMB_PMI_META_DATA_REG 0x10 #define RMB_PMI_CODE_START_REG 0x14 #define RMB_PMI_CODE_LENGTH_REG 0x18 #define RMB_MBA_MSS_STATUS 0x40 #define RMB_MBA_ALT_RESET 0x44 #define RMB_CMD_META_DATA_READY 0x1 #define RMB_CMD_LOAD_READY 0x2 /* QDSP6SS Register Offsets */ #define QDSP6SS_RESET_REG 0x014 #define QDSP6SS_GFMUX_CTL_REG 0x020 #define QDSP6SS_PWR_CTL_REG 0x030 #define QDSP6SS_MEM_PWR_CTL 0x0B0 #define QDSP6V6SS_MEM_PWR_CTL 0x034 #define QDSP6SS_STRAP_ACC 0x110 /* AXI Halt Register Offsets */ #define AXI_HALTREQ_REG 0x0 #define AXI_HALTACK_REG 0x4 #define AXI_IDLE_REG 0x8 #define AXI_GATING_VALID_OVERRIDE BIT(0) #define HALT_ACK_TIMEOUT_US 100000 /* QDSP6SS_RESET */ #define Q6SS_STOP_CORE BIT(0) #define Q6SS_CORE_ARES BIT(1) #define Q6SS_BUS_ARES_ENABLE BIT(2) /* QDSP6SS CBCR */ #define Q6SS_CBCR_CLKEN BIT(0) #define Q6SS_CBCR_CLKOFF BIT(31) #define Q6SS_CBCR_TIMEOUT_US 200 /* QDSP6SS_GFMUX_CTL */ #define Q6SS_CLK_ENABLE BIT(1) /* QDSP6SS_PWR_CTL */ #define Q6SS_L2DATA_SLP_NRET_N_0 BIT(0) #define Q6SS_L2DATA_SLP_NRET_N_1 BIT(1) #define Q6SS_L2DATA_SLP_NRET_N_2 BIT(2) #define Q6SS_L2TAG_SLP_NRET_N BIT(16) #define Q6SS_ETB_SLP_NRET_N BIT(17) #define Q6SS_L2DATA_STBY_N BIT(18) #define Q6SS_SLP_RET_N BIT(19) #define Q6SS_CLAMP_IO BIT(20) #define QDSS_BHS_ON BIT(21) #define QDSS_LDO_BYP BIT(22) /* QDSP6v56 parameters */ #define QDSP6v56_LDO_BYP BIT(25) #define QDSP6v56_BHS_ON BIT(24) #define QDSP6v56_CLAMP_WL BIT(21) #define QDSP6v56_CLAMP_QMC_MEM BIT(22) #define QDSP6SS_XO_CBCR 0x0038 #define QDSP6SS_ACC_OVERRIDE_VAL 0x20 /* QDSP6v65 parameters */ #define QDSP6SS_CORE_CBCR 0x20 #define QDSP6SS_SLEEP 0x3C #define QDSP6SS_BOOT_CORE_START 0x400 #define QDSP6SS_BOOT_CMD 0x404 #define BOOT_FSM_TIMEOUT 10000 struct reg_info { struct regulator *reg; int uV; int uA; }; struct qcom_mss_reg_res { const char *supply; int uV; int uA; }; struct rproc_hexagon_res { const char *hexagon_mba_image; struct qcom_mss_reg_res *proxy_supply; struct qcom_mss_reg_res *active_supply; char **proxy_clk_names; char **reset_clk_names; char **active_clk_names; char **active_pd_names; char **proxy_pd_names; int version; bool need_mem_protection; bool has_alt_reset; bool has_mba_logs; bool has_spare_reg; }; struct q6v5 { struct device *dev; struct rproc *rproc; void __iomem *reg_base; void __iomem *rmb_base; struct regmap *halt_map; struct regmap *conn_map; u32 halt_q6; u32 halt_modem; u32 halt_nc; u32 conn_box; struct reset_control *mss_restart; struct reset_control *pdc_reset; struct qcom_q6v5 q6v5; struct clk *active_clks[8]; struct clk *reset_clks[4]; struct clk *proxy_clks[4]; struct device *active_pds[1]; struct device *proxy_pds[3]; int active_clk_count; int reset_clk_count; int proxy_clk_count; int active_pd_count; int proxy_pd_count; struct reg_info active_regs[1]; struct reg_info proxy_regs[3]; int active_reg_count; int proxy_reg_count; bool running; bool dump_mba_loaded; size_t current_dump_size; size_t total_dump_size; phys_addr_t mba_phys; void *mba_region; size_t mba_size; size_t dp_size; phys_addr_t mpss_phys; phys_addr_t mpss_reloc; size_t mpss_size; struct qcom_rproc_glink glink_subdev; struct qcom_rproc_subdev smd_subdev; struct qcom_rproc_ssr ssr_subdev; struct qcom_rproc_ipa_notify ipa_notify_subdev; struct qcom_sysmon *sysmon; bool need_mem_protection; bool has_alt_reset; bool has_mba_logs; bool has_spare_reg; int mpss_perm; int mba_perm; const char *hexagon_mdt_image; int version; }; enum { MSS_MSM8916, MSS_MSM8974, MSS_MSM8996, MSS_MSM8998, MSS_SC7180, MSS_SDM845, }; static int q6v5_regulator_init(struct device *dev, struct reg_info *regs, const struct qcom_mss_reg_res *reg_res) { int rc; int i; if (!reg_res) return 0; for (i = 0; reg_res[i].supply; i++) { regs[i].reg = devm_regulator_get(dev, reg_res[i].supply); if (IS_ERR(regs[i].reg)) { rc = PTR_ERR(regs[i].reg); if (rc != -EPROBE_DEFER) dev_err(dev, "Failed to get %s\n regulator", reg_res[i].supply); return rc; } regs[i].uV = reg_res[i].uV; regs[i].uA = reg_res[i].uA; } return i; } static int q6v5_regulator_enable(struct q6v5 *qproc, struct reg_info *regs, int count) { int ret; int i; for (i = 0; i < count; i++) { if (regs[i].uV > 0) { ret = regulator_set_voltage(regs[i].reg, regs[i].uV, INT_MAX); if (ret) { dev_err(qproc->dev, "Failed to request voltage for %d.\n", i); goto err; } } if (regs[i].uA > 0) { ret = regulator_set_load(regs[i].reg, regs[i].uA); if (ret < 0) { dev_err(qproc->dev, "Failed to set regulator mode\n"); goto err; } } ret = regulator_enable(regs[i].reg); if (ret) { dev_err(qproc->dev, "Regulator enable failed\n"); goto err; } } return 0; err: for (; i >= 0; i--) { if (regs[i].uV > 0) regulator_set_voltage(regs[i].reg, 0, INT_MAX); if (regs[i].uA > 0) regulator_set_load(regs[i].reg, 0); regulator_disable(regs[i].reg); } return ret; } static void q6v5_regulator_disable(struct q6v5 *qproc, struct reg_info *regs, int count) { int i; for (i = 0; i < count; i++) { if (regs[i].uV > 0) regulator_set_voltage(regs[i].reg, 0, INT_MAX); if (regs[i].uA > 0) regulator_set_load(regs[i].reg, 0); regulator_disable(regs[i].reg); } } static int q6v5_clk_enable(struct device *dev, struct clk **clks, int count) { int rc; int i; for (i = 0; i < count; i++) { rc = clk_prepare_enable(clks[i]); if (rc) { dev_err(dev, "Clock enable failed\n"); goto err; } } return 0; err: for (i--; i >= 0; i--) clk_disable_unprepare(clks[i]); return rc; } static void q6v5_clk_disable(struct device *dev, struct clk **clks, int count) { int i; for (i = 0; i < count; i++) clk_disable_unprepare(clks[i]); } static int q6v5_pds_enable(struct q6v5 *qproc, struct device **pds, size_t pd_count) { int ret; int i; for (i = 0; i < pd_count; i++) { dev_pm_genpd_set_performance_state(pds[i], INT_MAX); ret = pm_runtime_get_sync(pds[i]); if (ret < 0) goto unroll_pd_votes; } return 0; unroll_pd_votes: for (i--; i >= 0; i--) { dev_pm_genpd_set_performance_state(pds[i], 0); pm_runtime_put(pds[i]); } return ret; } static void q6v5_pds_disable(struct q6v5 *qproc, struct device **pds, size_t pd_count) { int i; for (i = 0; i < pd_count; i++) { dev_pm_genpd_set_performance_state(pds[i], 0); pm_runtime_put(pds[i]); } } static int q6v5_xfer_mem_ownership(struct q6v5 *qproc, int *current_perm, bool local, bool remote, phys_addr_t addr, size_t size) { struct qcom_scm_vmperm next[2]; int perms = 0; if (!qproc->need_mem_protection) return 0; if (local == !!(*current_perm & BIT(QCOM_SCM_VMID_HLOS)) && remote == !!(*current_perm & BIT(QCOM_SCM_VMID_MSS_MSA))) return 0; if (local) { next[perms].vmid = QCOM_SCM_VMID_HLOS; next[perms].perm = QCOM_SCM_PERM_RWX; perms++; } if (remote) { next[perms].vmid = QCOM_SCM_VMID_MSS_MSA; next[perms].perm = QCOM_SCM_PERM_RW; perms++; } return qcom_scm_assign_mem(addr, ALIGN(size, SZ_4K), current_perm, next, perms); } static void q6v5_debug_policy_load(struct q6v5 *qproc) { const struct firmware *dp_fw; if (request_firmware_direct(&dp_fw, "msadp", qproc->dev)) return; if (SZ_1M + dp_fw->size <= qproc->mba_size) { memcpy(qproc->mba_region + SZ_1M, dp_fw->data, dp_fw->size); qproc->dp_size = dp_fw->size; } release_firmware(dp_fw); } static int q6v5_load(struct rproc *rproc, const struct firmware *fw) { struct q6v5 *qproc = rproc->priv; /* MBA is restricted to a maximum size of 1M */ if (fw->size > qproc->mba_size || fw->size > SZ_1M) { dev_err(qproc->dev, "MBA firmware load failed\n"); return -EINVAL; } memcpy(qproc->mba_region, fw->data, fw->size); q6v5_debug_policy_load(qproc); return 0; } static int q6v5_reset_assert(struct q6v5 *qproc) { int ret; if (qproc->has_alt_reset) { reset_control_assert(qproc->pdc_reset); ret = reset_control_reset(qproc->mss_restart); reset_control_deassert(qproc->pdc_reset); } else if (qproc->has_spare_reg) { /* * When the AXI pipeline is being reset with the Q6 modem partly * operational there is possibility of AXI valid signal to * glitch, leading to spurious transactions and Q6 hangs. A work * around is employed by asserting the AXI_GATING_VALID_OVERRIDE * BIT before triggering Q6 MSS reset. AXI_GATING_VALID_OVERRIDE * is withdrawn post MSS assert followed by a MSS deassert, * while holding the PDC reset. */ reset_control_assert(qproc->pdc_reset); regmap_update_bits(qproc->conn_map, qproc->conn_box, AXI_GATING_VALID_OVERRIDE, 1); reset_control_assert(qproc->mss_restart); reset_control_deassert(qproc->pdc_reset); regmap_update_bits(qproc->conn_map, qproc->conn_box, AXI_GATING_VALID_OVERRIDE, 0); ret = reset_control_deassert(qproc->mss_restart); } else { ret = reset_control_assert(qproc->mss_restart); } return ret; } static int q6v5_reset_deassert(struct q6v5 *qproc) { int ret; if (qproc->has_alt_reset) { reset_control_assert(qproc->pdc_reset); writel(1, qproc->rmb_base + RMB_MBA_ALT_RESET); ret = reset_control_reset(qproc->mss_restart); writel(0, qproc->rmb_base + RMB_MBA_ALT_RESET); reset_control_deassert(qproc->pdc_reset); } else if (qproc->has_spare_reg) { ret = reset_control_reset(qproc->mss_restart); } else { ret = reset_control_deassert(qproc->mss_restart); } return ret; } static int q6v5_rmb_pbl_wait(struct q6v5 *qproc, int ms) { unsigned long timeout; s32 val; timeout = jiffies + msecs_to_jiffies(ms); for (;;) { val = readl(qproc->rmb_base + RMB_PBL_STATUS_REG); if (val) break; if (time_after(jiffies, timeout)) return -ETIMEDOUT; msleep(1); } return val; } static int q6v5_rmb_mba_wait(struct q6v5 *qproc, u32 status, int ms) { unsigned long timeout; s32 val; timeout = jiffies + msecs_to_jiffies(ms); for (;;) { val = readl(qproc->rmb_base + RMB_MBA_STATUS_REG); if (val < 0) break; if (!status && val) break; else if (status && val == status) break; if (time_after(jiffies, timeout)) return -ETIMEDOUT; msleep(1); } return val; } static void q6v5_dump_mba_logs(struct q6v5 *qproc) { struct rproc *rproc = qproc->rproc; void *data; if (!qproc->has_mba_logs) return; if (q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false, qproc->mba_phys, qproc->mba_size)) return; data = vmalloc(MBA_LOG_SIZE); if (!data) return; memcpy(data, qproc->mba_region, MBA_LOG_SIZE); dev_coredumpv(&rproc->dev, data, MBA_LOG_SIZE, GFP_KERNEL); } static int q6v5proc_reset(struct q6v5 *qproc) { u32 val; int ret; int i; if (qproc->version == MSS_SDM845) { val = readl(qproc->reg_base + QDSP6SS_SLEEP); val |= Q6SS_CBCR_CLKEN; writel(val, qproc->reg_base + QDSP6SS_SLEEP); ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_SLEEP, val, !(val & Q6SS_CBCR_CLKOFF), 1, Q6SS_CBCR_TIMEOUT_US); if (ret) { dev_err(qproc->dev, "QDSP6SS Sleep clock timed out\n"); return -ETIMEDOUT; } /* De-assert QDSP6 stop core */ writel(1, qproc->reg_base + QDSP6SS_BOOT_CORE_START); /* Trigger boot FSM */ writel(1, qproc->reg_base + QDSP6SS_BOOT_CMD); ret = readl_poll_timeout(qproc->rmb_base + RMB_MBA_MSS_STATUS, val, (val & BIT(0)) != 0, 10, BOOT_FSM_TIMEOUT); if (ret) { dev_err(qproc->dev, "Boot FSM failed to complete.\n"); /* Reset the modem so that boot FSM is in reset state */ q6v5_reset_deassert(qproc); return ret; } goto pbl_wait; } else if (qproc->version == MSS_SC7180) { val = readl(qproc->reg_base + QDSP6SS_SLEEP); val |= Q6SS_CBCR_CLKEN; writel(val, qproc->reg_base + QDSP6SS_SLEEP); ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_SLEEP, val, !(val & Q6SS_CBCR_CLKOFF), 1, Q6SS_CBCR_TIMEOUT_US); if (ret) { dev_err(qproc->dev, "QDSP6SS Sleep clock timed out\n"); return -ETIMEDOUT; } /* Turn on the XO clock needed for PLL setup */ val = readl(qproc->reg_base + QDSP6SS_XO_CBCR); val |= Q6SS_CBCR_CLKEN; writel(val, qproc->reg_base + QDSP6SS_XO_CBCR); ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_XO_CBCR, val, !(val & Q6SS_CBCR_CLKOFF), 1, Q6SS_CBCR_TIMEOUT_US); if (ret) { dev_err(qproc->dev, "QDSP6SS XO clock timed out\n"); return -ETIMEDOUT; } /* Configure Q6 core CBCR to auto-enable after reset sequence */ val = readl(qproc->reg_base + QDSP6SS_CORE_CBCR); val |= Q6SS_CBCR_CLKEN; writel(val, qproc->reg_base + QDSP6SS_CORE_CBCR); /* De-assert the Q6 stop core signal */ writel(1, qproc->reg_base + QDSP6SS_BOOT_CORE_START); /* Wait for 10 us for any staggering logic to settle */ usleep_range(10, 20); /* Trigger the boot FSM to start the Q6 out-of-reset sequence */ writel(1, qproc->reg_base + QDSP6SS_BOOT_CMD); /* Poll the MSS_STATUS for FSM completion */ ret = readl_poll_timeout(qproc->rmb_base + RMB_MBA_MSS_STATUS, val, (val & BIT(0)) != 0, 10, BOOT_FSM_TIMEOUT); if (ret) { dev_err(qproc->dev, "Boot FSM failed to complete.\n"); /* Reset the modem so that boot FSM is in reset state */ q6v5_reset_deassert(qproc); return ret; } goto pbl_wait; } else if (qproc->version == MSS_MSM8996 || qproc->version == MSS_MSM8998) { int mem_pwr_ctl; /* Override the ACC value if required */ writel(QDSP6SS_ACC_OVERRIDE_VAL, qproc->reg_base + QDSP6SS_STRAP_ACC); /* Assert resets, stop core */ val = readl(qproc->reg_base + QDSP6SS_RESET_REG); val |= Q6SS_CORE_ARES | Q6SS_BUS_ARES_ENABLE | Q6SS_STOP_CORE; writel(val, qproc->reg_base + QDSP6SS_RESET_REG); /* BHS require xo cbcr to be enabled */ val = readl(qproc->reg_base + QDSP6SS_XO_CBCR); val |= Q6SS_CBCR_CLKEN; writel(val, qproc->reg_base + QDSP6SS_XO_CBCR); /* Read CLKOFF bit to go low indicating CLK is enabled */ ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_XO_CBCR, val, !(val & Q6SS_CBCR_CLKOFF), 1, Q6SS_CBCR_TIMEOUT_US); if (ret) { dev_err(qproc->dev, "xo cbcr enabling timed out (rc:%d)\n", ret); return ret; } /* Enable power block headswitch and wait for it to stabilize */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= QDSP6v56_BHS_ON; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); udelay(1); /* Put LDO in bypass mode */ val |= QDSP6v56_LDO_BYP; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); /* Deassert QDSP6 compiler memory clamp */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val &= ~QDSP6v56_CLAMP_QMC_MEM; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); /* Deassert memory peripheral sleep and L2 memory standby */ val |= Q6SS_L2DATA_STBY_N | Q6SS_SLP_RET_N; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); /* Turn on L1, L2, ETB and JU memories 1 at a time */ if (qproc->version == MSS_MSM8996) { mem_pwr_ctl = QDSP6SS_MEM_PWR_CTL; i = 19; } else { /* MSS_MSM8998 */ mem_pwr_ctl = QDSP6V6SS_MEM_PWR_CTL; i = 28; } val = readl(qproc->reg_base + mem_pwr_ctl); for (; i >= 0; i--) { val |= BIT(i); writel(val, qproc->reg_base + mem_pwr_ctl); /* * Read back value to ensure the write is done then * wait for 1us for both memory peripheral and data * array to turn on. */ val |= readl(qproc->reg_base + mem_pwr_ctl); udelay(1); } /* Remove word line clamp */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val &= ~QDSP6v56_CLAMP_WL; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); } else { /* Assert resets, stop core */ val = readl(qproc->reg_base + QDSP6SS_RESET_REG); val |= Q6SS_CORE_ARES | Q6SS_BUS_ARES_ENABLE | Q6SS_STOP_CORE; writel(val, qproc->reg_base + QDSP6SS_RESET_REG); /* Enable power block headswitch and wait for it to stabilize */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= QDSS_BHS_ON | QDSS_LDO_BYP; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); udelay(1); /* * Turn on memories. L2 banks should be done individually * to minimize inrush current. */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= Q6SS_SLP_RET_N | Q6SS_L2TAG_SLP_NRET_N | Q6SS_ETB_SLP_NRET_N | Q6SS_L2DATA_STBY_N; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= Q6SS_L2DATA_SLP_NRET_N_2; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= Q6SS_L2DATA_SLP_NRET_N_1; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= Q6SS_L2DATA_SLP_NRET_N_0; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); } /* Remove IO clamp */ val &= ~Q6SS_CLAMP_IO; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); /* Bring core out of reset */ val = readl(qproc->reg_base + QDSP6SS_RESET_REG); val &= ~Q6SS_CORE_ARES; writel(val, qproc->reg_base + QDSP6SS_RESET_REG); /* Turn on core clock */ val = readl(qproc->reg_base + QDSP6SS_GFMUX_CTL_REG); val |= Q6SS_CLK_ENABLE; writel(val, qproc->reg_base + QDSP6SS_GFMUX_CTL_REG); /* Start core execution */ val = readl(qproc->reg_base + QDSP6SS_RESET_REG); val &= ~Q6SS_STOP_CORE; writel(val, qproc->reg_base + QDSP6SS_RESET_REG); pbl_wait: /* Wait for PBL status */ ret = q6v5_rmb_pbl_wait(qproc, 1000); if (ret == -ETIMEDOUT) { dev_err(qproc->dev, "PBL boot timed out\n"); } else if (ret != RMB_PBL_SUCCESS) { dev_err(qproc->dev, "PBL returned unexpected status %d\n", ret); ret = -EINVAL; } else { ret = 0; } return ret; } static void q6v5proc_halt_axi_port(struct q6v5 *qproc, struct regmap *halt_map, u32 offset) { unsigned int val; int ret; /* Check if we're already idle */ ret = regmap_read(halt_map, offset + AXI_IDLE_REG, &val); if (!ret && val) return; /* Assert halt request */ regmap_write(halt_map, offset + AXI_HALTREQ_REG, 1); /* Wait for halt */ regmap_read_poll_timeout(halt_map, offset + AXI_HALTACK_REG, val, val, 1000, HALT_ACK_TIMEOUT_US); ret = regmap_read(halt_map, offset + AXI_IDLE_REG, &val); if (ret || !val) dev_err(qproc->dev, "port failed halt\n"); /* Clear halt request (port will remain halted until reset) */ regmap_write(halt_map, offset + AXI_HALTREQ_REG, 0); } static int q6v5_mpss_init_image(struct q6v5 *qproc, const struct firmware *fw) { unsigned long dma_attrs = DMA_ATTR_FORCE_CONTIGUOUS; dma_addr_t phys; void *metadata; int mdata_perm; int xferop_ret; size_t size; void *ptr; int ret; metadata = qcom_mdt_read_metadata(fw, &size); if (IS_ERR(metadata)) return PTR_ERR(metadata); ptr = dma_alloc_attrs(qproc->dev, size, &phys, GFP_KERNEL, dma_attrs); if (!ptr) { kfree(metadata); dev_err(qproc->dev, "failed to allocate mdt buffer\n"); return -ENOMEM; } memcpy(ptr, metadata, size); /* Hypervisor mapping to access metadata by modem */ mdata_perm = BIT(QCOM_SCM_VMID_HLOS); ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm, false, true, phys, size); if (ret) { dev_err(qproc->dev, "assigning Q6 access to metadata failed: %d\n", ret); ret = -EAGAIN; goto free_dma_attrs; } writel(phys, qproc->rmb_base + RMB_PMI_META_DATA_REG); writel(RMB_CMD_META_DATA_READY, qproc->rmb_base + RMB_MBA_COMMAND_REG); ret = q6v5_rmb_mba_wait(qproc, RMB_MBA_META_DATA_AUTH_SUCCESS, 1000); if (ret == -ETIMEDOUT) dev_err(qproc->dev, "MPSS header authentication timed out\n"); else if (ret < 0) dev_err(qproc->dev, "MPSS header authentication failed: %d\n", ret); /* Metadata authentication done, remove modem access */ xferop_ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm, true, false, phys, size); if (xferop_ret) dev_warn(qproc->dev, "mdt buffer not reclaimed system may become unstable\n"); free_dma_attrs: dma_free_attrs(qproc->dev, size, ptr, phys, dma_attrs); kfree(metadata); return ret < 0 ? ret : 0; } static bool q6v5_phdr_valid(const struct elf32_phdr *phdr) { if (phdr->p_type != PT_LOAD) return false; if ((phdr->p_flags & QCOM_MDT_TYPE_MASK) == QCOM_MDT_TYPE_HASH) return false; if (!phdr->p_memsz) return false; return true; } static int q6v5_mba_load(struct q6v5 *qproc) { int ret; int xfermemop_ret; bool mba_load_err = false; qcom_q6v5_prepare(&qproc->q6v5); ret = q6v5_pds_enable(qproc, qproc->active_pds, qproc->active_pd_count); if (ret < 0) { dev_err(qproc->dev, "failed to enable active power domains\n"); goto disable_irqs; } ret = q6v5_pds_enable(qproc, qproc->proxy_pds, qproc->proxy_pd_count); if (ret < 0) { dev_err(qproc->dev, "failed to enable proxy power domains\n"); goto disable_active_pds; } ret = q6v5_regulator_enable(qproc, qproc->proxy_regs, qproc->proxy_reg_count); if (ret) { dev_err(qproc->dev, "failed to enable proxy supplies\n"); goto disable_proxy_pds; } ret = q6v5_clk_enable(qproc->dev, qproc->proxy_clks, qproc->proxy_clk_count); if (ret) { dev_err(qproc->dev, "failed to enable proxy clocks\n"); goto disable_proxy_reg; } ret = q6v5_regulator_enable(qproc, qproc->active_regs, qproc->active_reg_count); if (ret) { dev_err(qproc->dev, "failed to enable supplies\n"); goto disable_proxy_clk; } ret = q6v5_clk_enable(qproc->dev, qproc->reset_clks, qproc->reset_clk_count); if (ret) { dev_err(qproc->dev, "failed to enable reset clocks\n"); goto disable_vdd; } ret = q6v5_reset_deassert(qproc); if (ret) { dev_err(qproc->dev, "failed to deassert mss restart\n"); goto disable_reset_clks; } ret = q6v5_clk_enable(qproc->dev, qproc->active_clks, qproc->active_clk_count); if (ret) { dev_err(qproc->dev, "failed to enable clocks\n"); goto assert_reset; } /* Assign MBA image access in DDR to q6 */ ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, false, true, qproc->mba_phys, qproc->mba_size); if (ret) { dev_err(qproc->dev, "assigning Q6 access to mba memory failed: %d\n", ret); goto disable_active_clks; } writel(qproc->mba_phys, qproc->rmb_base + RMB_MBA_IMAGE_REG); if (qproc->dp_size) { writel(qproc->mba_phys + SZ_1M, qproc->rmb_base + RMB_PMI_CODE_START_REG); writel(qproc->dp_size, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG); } ret = q6v5proc_reset(qproc); if (ret) goto reclaim_mba; ret = q6v5_rmb_mba_wait(qproc, 0, 5000); if (ret == -ETIMEDOUT) { dev_err(qproc->dev, "MBA boot timed out\n"); goto halt_axi_ports; } else if (ret != RMB_MBA_XPU_UNLOCKED && ret != RMB_MBA_XPU_UNLOCKED_SCRIBBLED) { dev_err(qproc->dev, "MBA returned unexpected status %d\n", ret); ret = -EINVAL; goto halt_axi_ports; } qproc->dump_mba_loaded = true; return 0; halt_axi_ports: q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_q6); q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_modem); q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_nc); mba_load_err = true; reclaim_mba: xfermemop_ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false, qproc->mba_phys, qproc->mba_size); if (xfermemop_ret) { dev_err(qproc->dev, "Failed to reclaim mba buffer, system may become unstable\n"); } else if (mba_load_err) { q6v5_dump_mba_logs(qproc); } disable_active_clks: q6v5_clk_disable(qproc->dev, qproc->active_clks, qproc->active_clk_count); assert_reset: q6v5_reset_assert(qproc); disable_reset_clks: q6v5_clk_disable(qproc->dev, qproc->reset_clks, qproc->reset_clk_count); disable_vdd: q6v5_regulator_disable(qproc, qproc->active_regs, qproc->active_reg_count); disable_proxy_clk: q6v5_clk_disable(qproc->dev, qproc->proxy_clks, qproc->proxy_clk_count); disable_proxy_reg: q6v5_regulator_disable(qproc, qproc->proxy_regs, qproc->proxy_reg_count); disable_proxy_pds: q6v5_pds_disable(qproc, qproc->proxy_pds, qproc->proxy_pd_count); disable_active_pds: q6v5_pds_disable(qproc, qproc->active_pds, qproc->active_pd_count); disable_irqs: qcom_q6v5_unprepare(&qproc->q6v5); return ret; } static void q6v5_mba_reclaim(struct q6v5 *qproc) { int ret; u32 val; qproc->dump_mba_loaded = false; qproc->dp_size = 0; q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_q6); q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_modem); q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_nc); if (qproc->version == MSS_MSM8996) { /* * To avoid high MX current during LPASS/MSS restart. */ val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG); val |= Q6SS_CLAMP_IO | QDSP6v56_CLAMP_WL | QDSP6v56_CLAMP_QMC_MEM; writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG); } q6v5_reset_assert(qproc); q6v5_clk_disable(qproc->dev, qproc->reset_clks, qproc->reset_clk_count); q6v5_clk_disable(qproc->dev, qproc->active_clks, qproc->active_clk_count); q6v5_regulator_disable(qproc, qproc->active_regs, qproc->active_reg_count); q6v5_pds_disable(qproc, qproc->active_pds, qproc->active_pd_count); /* In case of failure or coredump scenario where reclaiming MBA memory * could not happen reclaim it here. */ ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false, qproc->mba_phys, qproc->mba_size); WARN_ON(ret); ret = qcom_q6v5_unprepare(&qproc->q6v5); if (ret) { q6v5_pds_disable(qproc, qproc->proxy_pds, qproc->proxy_pd_count); q6v5_clk_disable(qproc->dev, qproc->proxy_clks, qproc->proxy_clk_count); q6v5_regulator_disable(qproc, qproc->proxy_regs, qproc->proxy_reg_count); } } static int q6v5_reload_mba(struct rproc *rproc) { struct q6v5 *qproc = rproc->priv; const struct firmware *fw; int ret; ret = request_firmware(&fw, rproc->firmware, qproc->dev); if (ret < 0) return ret; q6v5_load(rproc, fw); ret = q6v5_mba_load(qproc); release_firmware(fw); return ret; } static int q6v5_mpss_load(struct q6v5 *qproc) { const struct elf32_phdr *phdrs; const struct elf32_phdr *phdr; const struct firmware *seg_fw; const struct firmware *fw; struct elf32_hdr *ehdr; phys_addr_t mpss_reloc; phys_addr_t boot_addr; phys_addr_t min_addr = PHYS_ADDR_MAX; phys_addr_t max_addr = 0; u32 code_length; bool relocate = false; char *fw_name; size_t fw_name_len; ssize_t offset; size_t size = 0; void *ptr; int ret; int i; fw_name_len = strlen(qproc->hexagon_mdt_image); if (fw_name_len <= 4) return -EINVAL; fw_name = kstrdup(qproc->hexagon_mdt_image, GFP_KERNEL); if (!fw_name) return -ENOMEM; ret = request_firmware(&fw, fw_name, qproc->dev); if (ret < 0) { dev_err(qproc->dev, "unable to load %s\n", fw_name); goto out; } /* Initialize the RMB validator */ writel(0, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG); ret = q6v5_mpss_init_image(qproc, fw); if (ret) goto release_firmware; ehdr = (struct elf32_hdr *)fw->data; phdrs = (struct elf32_phdr *)(ehdr + 1); for (i = 0; i < ehdr->e_phnum; i++) { phdr = &phdrs[i]; if (!q6v5_phdr_valid(phdr)) continue; if (phdr->p_flags & QCOM_MDT_RELOCATABLE) relocate = true; if (phdr->p_paddr < min_addr) min_addr = phdr->p_paddr; if (phdr->p_paddr + phdr->p_memsz > max_addr) max_addr = ALIGN(phdr->p_paddr + phdr->p_memsz, SZ_4K); } /** * In case of a modem subsystem restart on secure devices, the modem * memory can be reclaimed only after MBA is loaded. For modem cold * boot this will be a nop */ q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, false, qproc->mpss_phys, qproc->mpss_size); /* Share ownership between Linux and MSS, during segment loading */ ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, true, qproc->mpss_phys, qproc->mpss_size); if (ret) { dev_err(qproc->dev, "assigning Q6 access to mpss memory failed: %d\n", ret); ret = -EAGAIN; goto release_firmware; } mpss_reloc = relocate ? min_addr : qproc->mpss_phys; qproc->mpss_reloc = mpss_reloc; /* Load firmware segments */ for (i = 0; i < ehdr->e_phnum; i++) { phdr = &phdrs[i]; if (!q6v5_phdr_valid(phdr)) continue; offset = phdr->p_paddr - mpss_reloc; if (offset < 0 || offset + phdr->p_memsz > qproc->mpss_size) { dev_err(qproc->dev, "segment outside memory range\n"); ret = -EINVAL; goto release_firmware; } ptr = ioremap_wc(qproc->mpss_phys + offset, phdr->p_memsz); if (!ptr) { dev_err(qproc->dev, "unable to map memory region: %pa+%zx-%x\n", &qproc->mpss_phys, offset, phdr->p_memsz); goto release_firmware; } if (phdr->p_filesz && phdr->p_offset < fw->size) { /* Firmware is large enough to be non-split */ if (phdr->p_offset + phdr->p_filesz > fw->size) { dev_err(qproc->dev, "failed to load segment %d from truncated file %s\n", i, fw_name); ret = -EINVAL; iounmap(ptr); goto release_firmware; } memcpy(ptr, fw->data + phdr->p_offset, phdr->p_filesz); } else if (phdr->p_filesz) { /* Replace "xxx.xxx" with "xxx.bxx" */ sprintf(fw_name + fw_name_len - 3, "b%02d", i); ret = request_firmware_into_buf(&seg_fw, fw_name, qproc->dev, ptr, phdr->p_filesz); if (ret) { dev_err(qproc->dev, "failed to load %s\n", fw_name); iounmap(ptr); goto release_firmware; } release_firmware(seg_fw); } if (phdr->p_memsz > phdr->p_filesz) { memset(ptr + phdr->p_filesz, 0, phdr->p_memsz - phdr->p_filesz); } iounmap(ptr); size += phdr->p_memsz; code_length = readl(qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG); if (!code_length) { boot_addr = relocate ? qproc->mpss_phys : min_addr; writel(boot_addr, qproc->rmb_base + RMB_PMI_CODE_START_REG); writel(RMB_CMD_LOAD_READY, qproc->rmb_base + RMB_MBA_COMMAND_REG); } writel(size, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG); ret = readl(qproc->rmb_base + RMB_MBA_STATUS_REG); if (ret < 0) { dev_err(qproc->dev, "MPSS authentication failed: %d\n", ret); goto release_firmware; } } /* Transfer ownership of modem ddr region to q6 */ ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, false, true, qproc->mpss_phys, qproc->mpss_size); if (ret) { dev_err(qproc->dev, "assigning Q6 access to mpss memory failed: %d\n", ret); ret = -EAGAIN; goto release_firmware; } ret = q6v5_rmb_mba_wait(qproc, RMB_MBA_AUTH_COMPLETE, 10000); if (ret == -ETIMEDOUT) dev_err(qproc->dev, "MPSS authentication timed out\n"); else if (ret < 0) dev_err(qproc->dev, "MPSS authentication failed: %d\n", ret); qcom_pil_info_store("modem", qproc->mpss_phys, qproc->mpss_size); release_firmware: release_firmware(fw); out: kfree(fw_name); return ret < 0 ? ret : 0; } static void qcom_q6v5_dump_segment(struct rproc *rproc, struct rproc_dump_segment *segment, void *dest, size_t cp_offset, size_t size) { int ret = 0; struct q6v5 *qproc = rproc->priv; int offset = segment->da - qproc->mpss_reloc; void *ptr = NULL; /* Unlock mba before copying segments */ if (!qproc->dump_mba_loaded) { ret = q6v5_reload_mba(rproc); if (!ret) { /* Reset ownership back to Linux to copy segments */ ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, false, qproc->mpss_phys, qproc->mpss_size); } } if (!ret) ptr = ioremap_wc(qproc->mpss_phys + offset + cp_offset, size); if (ptr) { memcpy(dest, ptr, size); iounmap(ptr); } else { memset(dest, 0xff, size); } qproc->current_dump_size += size; /* Reclaim mba after copying segments */ if (qproc->current_dump_size == qproc->total_dump_size) { if (qproc->dump_mba_loaded) { /* Try to reset ownership back to Q6 */ q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, false, true, qproc->mpss_phys, qproc->mpss_size); q6v5_mba_reclaim(qproc); } } } static int q6v5_start(struct rproc *rproc) { struct q6v5 *qproc = (struct q6v5 *)rproc->priv; int xfermemop_ret; int ret; ret = q6v5_mba_load(qproc); if (ret) return ret; dev_info(qproc->dev, "MBA booted with%s debug policy, loading mpss\n", qproc->dp_size ? "" : "out"); ret = q6v5_mpss_load(qproc); if (ret) goto reclaim_mpss; ret = qcom_q6v5_wait_for_start(&qproc->q6v5, msecs_to_jiffies(5000)); if (ret == -ETIMEDOUT) { dev_err(qproc->dev, "start timed out\n"); goto reclaim_mpss; } xfermemop_ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false, qproc->mba_phys, qproc->mba_size); if (xfermemop_ret) dev_err(qproc->dev, "Failed to reclaim mba buffer system may become unstable\n"); /* Reset Dump Segment Mask */ qproc->current_dump_size = 0; qproc->running = true; return 0; reclaim_mpss: q6v5_mba_reclaim(qproc); q6v5_dump_mba_logs(qproc); return ret; } static int q6v5_stop(struct rproc *rproc) { struct q6v5 *qproc = (struct q6v5 *)rproc->priv; int ret; qproc->running = false; ret = qcom_q6v5_request_stop(&qproc->q6v5); if (ret == -ETIMEDOUT) dev_err(qproc->dev, "timed out on wait\n"); q6v5_mba_reclaim(qproc); return 0; } static int qcom_q6v5_register_dump_segments(struct rproc *rproc, const struct firmware *mba_fw) { const struct firmware *fw; const struct elf32_phdr *phdrs; const struct elf32_phdr *phdr; const struct elf32_hdr *ehdr; struct q6v5 *qproc = rproc->priv; unsigned long i; int ret; ret = request_firmware(&fw, qproc->hexagon_mdt_image, qproc->dev); if (ret < 0) { dev_err(qproc->dev, "unable to load %s\n", qproc->hexagon_mdt_image); return ret; } rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE); ehdr = (struct elf32_hdr *)fw->data; phdrs = (struct elf32_phdr *)(ehdr + 1); qproc->total_dump_size = 0; for (i = 0; i < ehdr->e_phnum; i++) { phdr = &phdrs[i]; if (!q6v5_phdr_valid(phdr)) continue; ret = rproc_coredump_add_custom_segment(rproc, phdr->p_paddr, phdr->p_memsz, qcom_q6v5_dump_segment, NULL); if (ret) break; qproc->total_dump_size += phdr->p_memsz; } release_firmware(fw); return ret; } static const struct rproc_ops q6v5_ops = { .start = q6v5_start, .stop = q6v5_stop, .parse_fw = qcom_q6v5_register_dump_segments, .load = q6v5_load, }; static void qcom_msa_handover(struct qcom_q6v5 *q6v5) { struct q6v5 *qproc = container_of(q6v5, struct q6v5, q6v5); q6v5_clk_disable(qproc->dev, qproc->proxy_clks, qproc->proxy_clk_count); q6v5_regulator_disable(qproc, qproc->proxy_regs, qproc->proxy_reg_count); q6v5_pds_disable(qproc, qproc->proxy_pds, qproc->proxy_pd_count); } static int q6v5_init_mem(struct q6v5 *qproc, struct platform_device *pdev) { struct of_phandle_args args; struct resource *res; int ret; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qdsp6"); qproc->reg_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(qproc->reg_base)) return PTR_ERR(qproc->reg_base); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rmb"); qproc->rmb_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(qproc->rmb_base)) return PTR_ERR(qproc->rmb_base); ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node, "qcom,halt-regs", 3, 0, &args); if (ret < 0) { dev_err(&pdev->dev, "failed to parse qcom,halt-regs\n"); return -EINVAL; } qproc->halt_map = syscon_node_to_regmap(args.np); of_node_put(args.np); if (IS_ERR(qproc->halt_map)) return PTR_ERR(qproc->halt_map); qproc->halt_q6 = args.args[0]; qproc->halt_modem = args.args[1]; qproc->halt_nc = args.args[2]; if (qproc->has_spare_reg) { ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node, "qcom,spare-regs", 1, 0, &args); if (ret < 0) { dev_err(&pdev->dev, "failed to parse spare-regs\n"); return -EINVAL; } qproc->conn_map = syscon_node_to_regmap(args.np); of_node_put(args.np); if (IS_ERR(qproc->conn_map)) return PTR_ERR(qproc->conn_map); qproc->conn_box = args.args[0]; } return 0; } static int q6v5_init_clocks(struct device *dev, struct clk **clks, char **clk_names) { int i; if (!clk_names) return 0; for (i = 0; clk_names[i]; i++) { clks[i] = devm_clk_get(dev, clk_names[i]); if (IS_ERR(clks[i])) { int rc = PTR_ERR(clks[i]); if (rc != -EPROBE_DEFER) dev_err(dev, "Failed to get %s clock\n", clk_names[i]); return rc; } } return i; } static int q6v5_pds_attach(struct device *dev, struct device **devs, char **pd_names) { size_t num_pds = 0; int ret; int i; if (!pd_names) return 0; while (pd_names[num_pds]) num_pds++; for (i = 0; i < num_pds; i++) { devs[i] = dev_pm_domain_attach_by_name(dev, pd_names[i]); if (IS_ERR_OR_NULL(devs[i])) { ret = PTR_ERR(devs[i]) ? : -ENODATA; goto unroll_attach; } } return num_pds; unroll_attach: for (i--; i >= 0; i--) dev_pm_domain_detach(devs[i], false); return ret; } static void q6v5_pds_detach(struct q6v5 *qproc, struct device **pds, size_t pd_count) { int i; for (i = 0; i < pd_count; i++) dev_pm_domain_detach(pds[i], false); } static int q6v5_init_reset(struct q6v5 *qproc) { qproc->mss_restart = devm_reset_control_get_exclusive(qproc->dev, "mss_restart"); if (IS_ERR(qproc->mss_restart)) { dev_err(qproc->dev, "failed to acquire mss restart\n"); return PTR_ERR(qproc->mss_restart); } if (qproc->has_alt_reset || qproc->has_spare_reg) { qproc->pdc_reset = devm_reset_control_get_exclusive(qproc->dev, "pdc_reset"); if (IS_ERR(qproc->pdc_reset)) { dev_err(qproc->dev, "failed to acquire pdc reset\n"); return PTR_ERR(qproc->pdc_reset); } } return 0; } static int q6v5_alloc_memory_region(struct q6v5 *qproc) { struct device_node *child; struct device_node *node; struct resource r; int ret; /* * In the absence of mba/mpss sub-child, extract the mba and mpss * reserved memory regions from device's memory-region property. */ child = of_get_child_by_name(qproc->dev->of_node, "mba"); if (!child) node = of_parse_phandle(qproc->dev->of_node, "memory-region", 0); else node = of_parse_phandle(child, "memory-region", 0); ret = of_address_to_resource(node, 0, &r); if (ret) { dev_err(qproc->dev, "unable to resolve mba region\n"); return ret; } of_node_put(node); qproc->mba_phys = r.start; qproc->mba_size = resource_size(&r); qproc->mba_region = devm_ioremap_wc(qproc->dev, qproc->mba_phys, qproc->mba_size); if (!qproc->mba_region) { dev_err(qproc->dev, "unable to map memory region: %pa+%zx\n", &r.start, qproc->mba_size); return -EBUSY; } if (!child) { node = of_parse_phandle(qproc->dev->of_node, "memory-region", 1); } else { child = of_get_child_by_name(qproc->dev->of_node, "mpss"); node = of_parse_phandle(child, "memory-region", 0); } ret = of_address_to_resource(node, 0, &r); if (ret) { dev_err(qproc->dev, "unable to resolve mpss region\n"); return ret; } of_node_put(node); qproc->mpss_phys = qproc->mpss_reloc = r.start; qproc->mpss_size = resource_size(&r); return 0; } #if IS_ENABLED(CONFIG_QCOM_Q6V5_IPA_NOTIFY) /* Register IPA notification function */ int qcom_register_ipa_notify(struct rproc *rproc, qcom_ipa_notify_t notify, void *data) { struct qcom_rproc_ipa_notify *ipa_notify; struct q6v5 *qproc = rproc->priv; if (!notify) return -EINVAL; ipa_notify = &qproc->ipa_notify_subdev; if (ipa_notify->notify) return -EBUSY; ipa_notify->notify = notify; ipa_notify->data = data; return 0; } EXPORT_SYMBOL_GPL(qcom_register_ipa_notify); /* Deregister IPA notification function */ void qcom_deregister_ipa_notify(struct rproc *rproc) { struct q6v5 *qproc = rproc->priv; qproc->ipa_notify_subdev.notify = NULL; } EXPORT_SYMBOL_GPL(qcom_deregister_ipa_notify); #endif /* !IS_ENABLED(CONFIG_QCOM_Q6V5_IPA_NOTIFY) */ static int q6v5_probe(struct platform_device *pdev) { const struct rproc_hexagon_res *desc; struct q6v5 *qproc; struct rproc *rproc; const char *mba_image; int ret; desc = of_device_get_match_data(&pdev->dev); if (!desc) return -EINVAL; if (desc->need_mem_protection && !qcom_scm_is_available()) return -EPROBE_DEFER; mba_image = desc->hexagon_mba_image; ret = of_property_read_string_index(pdev->dev.of_node, "firmware-name", 0, &mba_image); if (ret < 0 && ret != -EINVAL) return ret; rproc = rproc_alloc(&pdev->dev, pdev->name, &q6v5_ops, mba_image, sizeof(*qproc)); if (!rproc) { dev_err(&pdev->dev, "failed to allocate rproc\n"); return -ENOMEM; } rproc->auto_boot = false; rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE); qproc = (struct q6v5 *)rproc->priv; qproc->dev = &pdev->dev; qproc->rproc = rproc; qproc->hexagon_mdt_image = "modem.mdt"; ret = of_property_read_string_index(pdev->dev.of_node, "firmware-name", 1, &qproc->hexagon_mdt_image); if (ret < 0 && ret != -EINVAL) goto free_rproc; platform_set_drvdata(pdev, qproc); qproc->has_spare_reg = desc->has_spare_reg; ret = q6v5_init_mem(qproc, pdev); if (ret) goto free_rproc; ret = q6v5_alloc_memory_region(qproc); if (ret) goto free_rproc; ret = q6v5_init_clocks(&pdev->dev, qproc->proxy_clks, desc->proxy_clk_names); if (ret < 0) { dev_err(&pdev->dev, "Failed to get proxy clocks.\n"); goto free_rproc; } qproc->proxy_clk_count = ret; ret = q6v5_init_clocks(&pdev->dev, qproc->reset_clks, desc->reset_clk_names); if (ret < 0) { dev_err(&pdev->dev, "Failed to get reset clocks.\n"); goto free_rproc; } qproc->reset_clk_count = ret; ret = q6v5_init_clocks(&pdev->dev, qproc->active_clks, desc->active_clk_names); if (ret < 0) { dev_err(&pdev->dev, "Failed to get active clocks.\n"); goto free_rproc; } qproc->active_clk_count = ret; ret = q6v5_regulator_init(&pdev->dev, qproc->proxy_regs, desc->proxy_supply); if (ret < 0) { dev_err(&pdev->dev, "Failed to get proxy regulators.\n"); goto free_rproc; } qproc->proxy_reg_count = ret; ret = q6v5_regulator_init(&pdev->dev, qproc->active_regs, desc->active_supply); if (ret < 0) { dev_err(&pdev->dev, "Failed to get active regulators.\n"); goto free_rproc; } qproc->active_reg_count = ret; ret = q6v5_pds_attach(&pdev->dev, qproc->active_pds, desc->active_pd_names); if (ret < 0) { dev_err(&pdev->dev, "Failed to attach active power domains\n"); goto free_rproc; } qproc->active_pd_count = ret; ret = q6v5_pds_attach(&pdev->dev, qproc->proxy_pds, desc->proxy_pd_names); if (ret < 0) { dev_err(&pdev->dev, "Failed to init power domains\n"); goto detach_active_pds; } qproc->proxy_pd_count = ret; qproc->has_alt_reset = desc->has_alt_reset; ret = q6v5_init_reset(qproc); if (ret) goto detach_proxy_pds; qproc->version = desc->version; qproc->need_mem_protection = desc->need_mem_protection; qproc->has_mba_logs = desc->has_mba_logs; ret = qcom_q6v5_init(&qproc->q6v5, pdev, rproc, MPSS_CRASH_REASON_SMEM, qcom_msa_handover); if (ret) goto detach_proxy_pds; qproc->mpss_perm = BIT(QCOM_SCM_VMID_HLOS); qproc->mba_perm = BIT(QCOM_SCM_VMID_HLOS); qcom_add_glink_subdev(rproc, &qproc->glink_subdev, "mpss"); qcom_add_smd_subdev(rproc, &qproc->smd_subdev); qcom_add_ssr_subdev(rproc, &qproc->ssr_subdev, "mpss"); qcom_add_ipa_notify_subdev(rproc, &qproc->ipa_notify_subdev); qproc->sysmon = qcom_add_sysmon_subdev(rproc, "modem", 0x12); if (IS_ERR(qproc->sysmon)) { ret = PTR_ERR(qproc->sysmon); goto remove_subdevs; } ret = rproc_add(rproc); if (ret) goto remove_sysmon_subdev; return 0; remove_sysmon_subdev: qcom_remove_sysmon_subdev(qproc->sysmon); remove_subdevs: qcom_remove_ipa_notify_subdev(qproc->rproc, &qproc->ipa_notify_subdev); qcom_remove_ssr_subdev(rproc, &qproc->ssr_subdev); qcom_remove_smd_subdev(rproc, &qproc->smd_subdev); qcom_remove_glink_subdev(rproc, &qproc->glink_subdev); detach_proxy_pds: q6v5_pds_detach(qproc, qproc->proxy_pds, qproc->proxy_pd_count); detach_active_pds: q6v5_pds_detach(qproc, qproc->active_pds, qproc->active_pd_count); free_rproc: rproc_free(rproc); return ret; } static int q6v5_remove(struct platform_device *pdev) { struct q6v5 *qproc = platform_get_drvdata(pdev); struct rproc *rproc = qproc->rproc; rproc_del(rproc); qcom_remove_sysmon_subdev(qproc->sysmon); qcom_remove_ipa_notify_subdev(rproc, &qproc->ipa_notify_subdev); qcom_remove_ssr_subdev(rproc, &qproc->ssr_subdev); qcom_remove_smd_subdev(rproc, &qproc->smd_subdev); qcom_remove_glink_subdev(rproc, &qproc->glink_subdev); q6v5_pds_detach(qproc, qproc->proxy_pds, qproc->proxy_pd_count); q6v5_pds_detach(qproc, qproc->active_pds, qproc->active_pd_count); rproc_free(rproc); return 0; } static const struct rproc_hexagon_res sc7180_mss = { .hexagon_mba_image = "mba.mbn", .proxy_clk_names = (char*[]){ "xo", NULL }, .reset_clk_names = (char*[]){ "iface", "bus", "snoc_axi", NULL }, .active_clk_names = (char*[]){ "mnoc_axi", "nav", NULL }, .active_pd_names = (char*[]){ "load_state", NULL }, .proxy_pd_names = (char*[]){ "cx", "mx", "mss", NULL }, .need_mem_protection = true, .has_alt_reset = false, .has_mba_logs = true, .has_spare_reg = true, .version = MSS_SC7180, }; static const struct rproc_hexagon_res sdm845_mss = { .hexagon_mba_image = "mba.mbn", .proxy_clk_names = (char*[]){ "xo", "prng", NULL }, .reset_clk_names = (char*[]){ "iface", "snoc_axi", NULL }, .active_clk_names = (char*[]){ "bus", "mem", "gpll0_mss", "mnoc_axi", NULL }, .active_pd_names = (char*[]){ "load_state", NULL }, .proxy_pd_names = (char*[]){ "cx", "mx", "mss", NULL }, .need_mem_protection = true, .has_alt_reset = true, .has_mba_logs = false, .has_spare_reg = false, .version = MSS_SDM845, }; static const struct rproc_hexagon_res msm8998_mss = { .hexagon_mba_image = "mba.mbn", .proxy_clk_names = (char*[]){ "xo", "qdss", "mem", NULL }, .active_clk_names = (char*[]){ "iface", "bus", "gpll0_mss", "mnoc_axi", "snoc_axi", NULL }, .proxy_pd_names = (char*[]){ "cx", "mx", NULL }, .need_mem_protection = true, .has_alt_reset = false, .has_mba_logs = false, .has_spare_reg = false, .version = MSS_MSM8998, }; static const struct rproc_hexagon_res msm8996_mss = { .hexagon_mba_image = "mba.mbn", .proxy_supply = (struct qcom_mss_reg_res[]) { { .supply = "pll", .uA = 100000, }, {} }, .proxy_clk_names = (char*[]){ "xo", "pnoc", "qdss", NULL }, .active_clk_names = (char*[]){ "iface", "bus", "mem", "gpll0_mss", "snoc_axi", "mnoc_axi", NULL }, .need_mem_protection = true, .has_alt_reset = false, .has_mba_logs = false, .has_spare_reg = false, .version = MSS_MSM8996, }; static const struct rproc_hexagon_res msm8916_mss = { .hexagon_mba_image = "mba.mbn", .proxy_supply = (struct qcom_mss_reg_res[]) { { .supply = "mx", .uV = 1050000, }, { .supply = "cx", .uA = 100000, }, { .supply = "pll", .uA = 100000, }, {} }, .proxy_clk_names = (char*[]){ "xo", NULL }, .active_clk_names = (char*[]){ "iface", "bus", "mem", NULL }, .need_mem_protection = false, .has_alt_reset = false, .has_mba_logs = false, .has_spare_reg = false, .version = MSS_MSM8916, }; static const struct rproc_hexagon_res msm8974_mss = { .hexagon_mba_image = "mba.b00", .proxy_supply = (struct qcom_mss_reg_res[]) { { .supply = "mx", .uV = 1050000, }, { .supply = "cx", .uA = 100000, }, { .supply = "pll", .uA = 100000, }, {} }, .active_supply = (struct qcom_mss_reg_res[]) { { .supply = "mss", .uV = 1050000, .uA = 100000, }, {} }, .proxy_clk_names = (char*[]){ "xo", NULL }, .active_clk_names = (char*[]){ "iface", "bus", "mem", NULL }, .need_mem_protection = false, .has_alt_reset = false, .has_mba_logs = false, .has_spare_reg = false, .version = MSS_MSM8974, }; static const struct of_device_id q6v5_of_match[] = { { .compatible = "qcom,q6v5-pil", .data = &msm8916_mss}, { .compatible = "qcom,msm8916-mss-pil", .data = &msm8916_mss}, { .compatible = "qcom,msm8974-mss-pil", .data = &msm8974_mss}, { .compatible = "qcom,msm8996-mss-pil", .data = &msm8996_mss}, { .compatible = "qcom,msm8998-mss-pil", .data = &msm8998_mss}, { .compatible = "qcom,sc7180-mss-pil", .data = &sc7180_mss}, { .compatible = "qcom,sdm845-mss-pil", .data = &sdm845_mss}, { }, }; MODULE_DEVICE_TABLE(of, q6v5_of_match); static struct platform_driver q6v5_driver = { .probe = q6v5_probe, .remove = q6v5_remove, .driver = { .name = "qcom-q6v5-mss", .of_match_table = q6v5_of_match, }, }; module_platform_driver(q6v5_driver); MODULE_DESCRIPTION("Qualcomm Self-authenticating modem remoteproc driver"); MODULE_LICENSE("GPL v2");