/* * NVM Express device driver * Copyright (c) 2011-2014, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvme.h" #define NVME_MINORS (1U << MINORBITS) #define NVME_Q_DEPTH 1024 #define NVME_AQ_DEPTH 256 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ) unsigned char admin_timeout = 60; module_param(admin_timeout, byte, 0644); MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); unsigned char nvme_io_timeout = 30; module_param_named(io_timeout, nvme_io_timeout, byte, 0644); MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); static unsigned char shutdown_timeout = 5; module_param(shutdown_timeout, byte, 0644); MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); static int nvme_major; module_param(nvme_major, int, 0); static int nvme_char_major; module_param(nvme_char_major, int, 0); static int use_threaded_interrupts; module_param(use_threaded_interrupts, int, 0); static bool use_cmb_sqes = true; module_param(use_cmb_sqes, bool, 0644); MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); static DEFINE_SPINLOCK(dev_list_lock); static LIST_HEAD(dev_list); static struct task_struct *nvme_thread; static struct workqueue_struct *nvme_workq; static wait_queue_head_t nvme_kthread_wait; static struct class *nvme_class; struct nvme_dev; struct nvme_queue; static int __nvme_reset(struct nvme_dev *dev); static int nvme_reset(struct nvme_dev *dev); static void nvme_process_cq(struct nvme_queue *nvmeq); static void nvme_dead_ctrl(struct nvme_dev *dev); struct async_cmd_info { struct kthread_work work; struct kthread_worker *worker; struct request *req; u32 result; int status; void *ctx; }; /* * Represents an NVM Express device. Each nvme_dev is a PCI function. */ struct nvme_dev { struct list_head node; struct nvme_queue **queues; struct blk_mq_tag_set tagset; struct blk_mq_tag_set admin_tagset; u32 __iomem *dbs; struct device *dev; struct dma_pool *prp_page_pool; struct dma_pool *prp_small_pool; unsigned queue_count; unsigned online_queues; unsigned max_qid; int q_depth; u32 db_stride; u32 ctrl_config; struct msix_entry *entry; void __iomem *bar; struct list_head namespaces; struct kref kref; struct device *device; struct work_struct reset_work; struct work_struct probe_work; struct work_struct scan_work; bool subsystem; u32 max_hw_sectors; u32 stripe_size; u32 page_size; void __iomem *cmb; dma_addr_t cmb_dma_addr; u64 cmb_size; u32 cmbsz; struct nvme_ctrl ctrl; }; static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) { return container_of(ctrl, struct nvme_dev, ctrl); } /* * An NVM Express queue. Each device has at least two (one for admin * commands and one for I/O commands). */ struct nvme_queue { struct device *q_dmadev; struct nvme_dev *dev; char irqname[24]; /* nvme4294967295-65535\0 */ spinlock_t q_lock; struct nvme_command *sq_cmds; struct nvme_command __iomem *sq_cmds_io; volatile struct nvme_completion *cqes; struct blk_mq_tags **tags; dma_addr_t sq_dma_addr; dma_addr_t cq_dma_addr; u32 __iomem *q_db; u16 q_depth; s16 cq_vector; u16 sq_head; u16 sq_tail; u16 cq_head; u16 qid; u8 cq_phase; u8 cqe_seen; struct async_cmd_info cmdinfo; }; /* * The nvme_iod describes the data in an I/O, including the list of PRP * entries. You can't see it in this data structure because C doesn't let * me express that. Use nvme_alloc_iod to ensure there's enough space * allocated to store the PRP list. */ struct nvme_iod { unsigned long private; /* For the use of the submitter of the I/O */ int npages; /* In the PRP list. 0 means small pool in use */ int offset; /* Of PRP list */ int nents; /* Used in scatterlist */ int length; /* Of data, in bytes */ dma_addr_t first_dma; struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */ struct scatterlist sg[0]; }; /* * Check we didin't inadvertently grow the command struct */ static inline void _nvme_check_size(void) { BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); BUILD_BUG_ON(sizeof(struct nvme_features) != 64); BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); } typedef void (*nvme_completion_fn)(struct nvme_queue *, void *, struct nvme_completion *); struct nvme_cmd_info { nvme_completion_fn fn; void *ctx; int aborted; struct nvme_queue *nvmeq; struct nvme_iod iod[0]; }; /* * Max size of iod being embedded in the request payload */ #define NVME_INT_PAGES 2 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size) #define NVME_INT_MASK 0x01 /* * Will slightly overestimate the number of pages needed. This is OK * as it only leads to a small amount of wasted memory for the lifetime of * the I/O. */ static int nvme_npages(unsigned size, struct nvme_dev *dev) { unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size); return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); } static unsigned int nvme_cmd_size(struct nvme_dev *dev) { unsigned int ret = sizeof(struct nvme_cmd_info); ret += sizeof(struct nvme_iod); ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev); ret += sizeof(struct scatterlist) * NVME_INT_PAGES; return ret; } static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_dev *dev = data; struct nvme_queue *nvmeq = dev->queues[0]; WARN_ON(hctx_idx != 0); WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); WARN_ON(nvmeq->tags); hctx->driver_data = nvmeq; nvmeq->tags = &dev->admin_tagset.tags[0]; return 0; } static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) { struct nvme_queue *nvmeq = hctx->driver_data; nvmeq->tags = NULL; } static int nvme_admin_init_request(void *data, struct request *req, unsigned int hctx_idx, unsigned int rq_idx, unsigned int numa_node) { struct nvme_dev *dev = data; struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req); struct nvme_queue *nvmeq = dev->queues[0]; BUG_ON(!nvmeq); cmd->nvmeq = nvmeq; return 0; } static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_dev *dev = data; struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; if (!nvmeq->tags) nvmeq->tags = &dev->tagset.tags[hctx_idx]; WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); hctx->driver_data = nvmeq; return 0; } static int nvme_init_request(void *data, struct request *req, unsigned int hctx_idx, unsigned int rq_idx, unsigned int numa_node) { struct nvme_dev *dev = data; struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req); struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; BUG_ON(!nvmeq); cmd->nvmeq = nvmeq; return 0; } static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx, nvme_completion_fn handler) { cmd->fn = handler; cmd->ctx = ctx; cmd->aborted = 0; blk_mq_start_request(blk_mq_rq_from_pdu(cmd)); } static void *iod_get_private(struct nvme_iod *iod) { return (void *) (iod->private & ~0x1UL); } /* * If bit 0 is set, the iod is embedded in the request payload. */ static bool iod_should_kfree(struct nvme_iod *iod) { return (iod->private & NVME_INT_MASK) == 0; } /* Special values must be less than 0x1000 */ #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA) #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE) #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE) #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE) static void special_completion(struct nvme_queue *nvmeq, void *ctx, struct nvme_completion *cqe) { if (ctx == CMD_CTX_CANCELLED) return; if (ctx == CMD_CTX_COMPLETED) { dev_warn(nvmeq->q_dmadev, "completed id %d twice on queue %d\n", cqe->command_id, le16_to_cpup(&cqe->sq_id)); return; } if (ctx == CMD_CTX_INVALID) { dev_warn(nvmeq->q_dmadev, "invalid id %d completed on queue %d\n", cqe->command_id, le16_to_cpup(&cqe->sq_id)); return; } dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx); } static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn) { void *ctx; if (fn) *fn = cmd->fn; ctx = cmd->ctx; cmd->fn = special_completion; cmd->ctx = CMD_CTX_CANCELLED; return ctx; } static void async_req_completion(struct nvme_queue *nvmeq, void *ctx, struct nvme_completion *cqe) { u32 result = le32_to_cpup(&cqe->result); u16 status = le16_to_cpup(&cqe->status) >> 1; if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) ++nvmeq->dev->ctrl.event_limit; if (status != NVME_SC_SUCCESS) return; switch (result & 0xff07) { case NVME_AER_NOTICE_NS_CHANGED: dev_info(nvmeq->q_dmadev, "rescanning\n"); schedule_work(&nvmeq->dev->scan_work); default: dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result); } } static void abort_completion(struct nvme_queue *nvmeq, void *ctx, struct nvme_completion *cqe) { struct request *req = ctx; u16 status = le16_to_cpup(&cqe->status) >> 1; u32 result = le32_to_cpup(&cqe->result); blk_mq_free_request(req); dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result); ++nvmeq->dev->ctrl.abort_limit; } static void async_completion(struct nvme_queue *nvmeq, void *ctx, struct nvme_completion *cqe) { struct async_cmd_info *cmdinfo = ctx; cmdinfo->result = le32_to_cpup(&cqe->result); cmdinfo->status = le16_to_cpup(&cqe->status) >> 1; queue_kthread_work(cmdinfo->worker, &cmdinfo->work); blk_mq_free_request(cmdinfo->req); } static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq, unsigned int tag) { struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag); return blk_mq_rq_to_pdu(req); } /* * Called with local interrupts disabled and the q_lock held. May not sleep. */ static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag, nvme_completion_fn *fn) { struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag); void *ctx; if (tag >= nvmeq->q_depth) { *fn = special_completion; return CMD_CTX_INVALID; } if (fn) *fn = cmd->fn; ctx = cmd->ctx; cmd->fn = special_completion; cmd->ctx = CMD_CTX_COMPLETED; return ctx; } /** * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell * @nvmeq: The queue to use * @cmd: The command to send * * Safe to use from interrupt context */ static void __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) { u16 tail = nvmeq->sq_tail; if (nvmeq->sq_cmds_io) memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); else memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); if (++tail == nvmeq->q_depth) tail = 0; writel(tail, nvmeq->q_db); nvmeq->sq_tail = tail; } static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) { unsigned long flags; spin_lock_irqsave(&nvmeq->q_lock, flags); __nvme_submit_cmd(nvmeq, cmd); spin_unlock_irqrestore(&nvmeq->q_lock, flags); } static __le64 **iod_list(struct nvme_iod *iod) { return ((void *)iod) + iod->offset; } static inline void iod_init(struct nvme_iod *iod, unsigned nbytes, unsigned nseg, unsigned long private) { iod->private = private; iod->offset = offsetof(struct nvme_iod, sg[nseg]); iod->npages = -1; iod->length = nbytes; iod->nents = 0; } static struct nvme_iod * __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev, unsigned long priv, gfp_t gfp) { struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) + sizeof(__le64 *) * nvme_npages(bytes, dev) + sizeof(struct scatterlist) * nseg, gfp); if (iod) iod_init(iod, bytes, nseg, priv); return iod; } static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev, gfp_t gfp) { unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) : sizeof(struct nvme_dsm_range); struct nvme_iod *iod; if (rq->nr_phys_segments <= NVME_INT_PAGES && size <= NVME_INT_BYTES(dev)) { struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq); iod = cmd->iod; iod_init(iod, size, rq->nr_phys_segments, (unsigned long) rq | NVME_INT_MASK); return iod; } return __nvme_alloc_iod(rq->nr_phys_segments, size, dev, (unsigned long) rq, gfp); } static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod) { const int last_prp = dev->page_size / 8 - 1; int i; __le64 **list = iod_list(iod); dma_addr_t prp_dma = iod->first_dma; if (iod->npages == 0) dma_pool_free(dev->prp_small_pool, list[0], prp_dma); for (i = 0; i < iod->npages; i++) { __le64 *prp_list = list[i]; dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); prp_dma = next_prp_dma; } if (iod_should_kfree(iod)) kfree(iod); } static int nvme_error_status(u16 status) { switch (status & 0x7ff) { case NVME_SC_SUCCESS: return 0; case NVME_SC_CAP_EXCEEDED: return -ENOSPC; default: return -EIO; } } #ifdef CONFIG_BLK_DEV_INTEGRITY static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) { if (be32_to_cpu(pi->ref_tag) == v) pi->ref_tag = cpu_to_be32(p); } static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) { if (be32_to_cpu(pi->ref_tag) == p) pi->ref_tag = cpu_to_be32(v); } /** * nvme_dif_remap - remaps ref tags to bip seed and physical lba * * The virtual start sector is the one that was originally submitted by the * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical * start sector may be different. Remap protection information to match the * physical LBA on writes, and back to the original seed on reads. * * Type 0 and 3 do not have a ref tag, so no remapping required. */ static void nvme_dif_remap(struct request *req, void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) { struct nvme_ns *ns = req->rq_disk->private_data; struct bio_integrity_payload *bip; struct t10_pi_tuple *pi; void *p, *pmap; u32 i, nlb, ts, phys, virt; if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) return; bip = bio_integrity(req->bio); if (!bip) return; pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; p = pmap; virt = bip_get_seed(bip); phys = nvme_block_nr(ns, blk_rq_pos(req)); nlb = (blk_rq_bytes(req) >> ns->lba_shift); ts = ns->disk->queue->integrity.tuple_size; for (i = 0; i < nlb; i++, virt++, phys++) { pi = (struct t10_pi_tuple *)p; dif_swap(phys, virt, pi); p += ts; } kunmap_atomic(pmap); } static void nvme_init_integrity(struct nvme_ns *ns) { struct blk_integrity integrity; switch (ns->pi_type) { case NVME_NS_DPS_PI_TYPE3: integrity.profile = &t10_pi_type3_crc; break; case NVME_NS_DPS_PI_TYPE1: case NVME_NS_DPS_PI_TYPE2: integrity.profile = &t10_pi_type1_crc; break; default: integrity.profile = NULL; break; } integrity.tuple_size = ns->ms; blk_integrity_register(ns->disk, &integrity); blk_queue_max_integrity_segments(ns->queue, 1); } #else /* CONFIG_BLK_DEV_INTEGRITY */ static void nvme_dif_remap(struct request *req, void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) { } static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) { } static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) { } static void nvme_init_integrity(struct nvme_ns *ns) { } #endif static void req_completion(struct nvme_queue *nvmeq, void *ctx, struct nvme_completion *cqe) { struct nvme_iod *iod = ctx; struct request *req = iod_get_private(iod); struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req); u16 status = le16_to_cpup(&cqe->status) >> 1; bool requeue = false; int error = 0; if (unlikely(status)) { if (!(status & NVME_SC_DNR || blk_noretry_request(req)) && (jiffies - req->start_time) < req->timeout) { unsigned long flags; requeue = true; blk_mq_requeue_request(req); spin_lock_irqsave(req->q->queue_lock, flags); if (!blk_queue_stopped(req->q)) blk_mq_kick_requeue_list(req->q); spin_unlock_irqrestore(req->q->queue_lock, flags); goto release_iod; } if (req->cmd_type == REQ_TYPE_DRV_PRIV) { if (cmd_rq->ctx == CMD_CTX_CANCELLED) error = -EINTR; else error = status; } else { error = nvme_error_status(status); } } if (req->cmd_type == REQ_TYPE_DRV_PRIV) { u32 result = le32_to_cpup(&cqe->result); req->special = (void *)(uintptr_t)result; } if (cmd_rq->aborted) dev_warn(nvmeq->dev->dev, "completing aborted command with status:%04x\n", error); release_iod: if (iod->nents) { dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents, rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (blk_integrity_rq(req)) { if (!rq_data_dir(req)) nvme_dif_remap(req, nvme_dif_complete); dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1, rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); } } nvme_free_iod(nvmeq->dev, iod); if (likely(!requeue)) blk_mq_complete_request(req, error); } static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len) { struct dma_pool *pool; int length = total_len; struct scatterlist *sg = iod->sg; int dma_len = sg_dma_len(sg); u64 dma_addr = sg_dma_address(sg); u32 page_size = dev->page_size; int offset = dma_addr & (page_size - 1); __le64 *prp_list; __le64 **list = iod_list(iod); dma_addr_t prp_dma; int nprps, i; length -= (page_size - offset); if (length <= 0) return true; dma_len -= (page_size - offset); if (dma_len) { dma_addr += (page_size - offset); } else { sg = sg_next(sg); dma_addr = sg_dma_address(sg); dma_len = sg_dma_len(sg); } if (length <= page_size) { iod->first_dma = dma_addr; return true; } nprps = DIV_ROUND_UP(length, page_size); if (nprps <= (256 / 8)) { pool = dev->prp_small_pool; iod->npages = 0; } else { pool = dev->prp_page_pool; iod->npages = 1; } prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); if (!prp_list) { iod->first_dma = dma_addr; iod->npages = -1; return false; } list[0] = prp_list; iod->first_dma = prp_dma; i = 0; for (;;) { if (i == page_size >> 3) { __le64 *old_prp_list = prp_list; prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); if (!prp_list) return false; list[iod->npages++] = prp_list; prp_list[0] = old_prp_list[i - 1]; old_prp_list[i - 1] = cpu_to_le64(prp_dma); i = 1; } prp_list[i++] = cpu_to_le64(dma_addr); dma_len -= page_size; dma_addr += page_size; length -= page_size; if (length <= 0) break; if (dma_len > 0) continue; BUG_ON(dma_len < 0); sg = sg_next(sg); dma_addr = sg_dma_address(sg); dma_len = sg_dma_len(sg); } return true; } static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod, struct nvme_command *cmnd) { struct request *req = iod_get_private(iod); struct request_queue *q = req->q; enum dma_data_direction dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; int ret = BLK_MQ_RQ_QUEUE_ERROR; sg_init_table(iod->sg, req->nr_phys_segments); iod->nents = blk_rq_map_sg(q, req, iod->sg); if (!iod->nents) goto out; ret = BLK_MQ_RQ_QUEUE_BUSY; if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir)) goto out; if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req))) goto out_unmap; ret = BLK_MQ_RQ_QUEUE_ERROR; if (blk_integrity_rq(req)) { if (blk_rq_count_integrity_sg(q, req->bio) != 1) goto out_unmap; sg_init_table(iod->meta_sg, 1); if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1) goto out_unmap; if (rq_data_dir(req)) nvme_dif_remap(req, nvme_dif_prep); if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir)) goto out_unmap; } cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); cmnd->rw.prp2 = cpu_to_le64(iod->first_dma); if (blk_integrity_rq(req)) cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg)); return BLK_MQ_RQ_QUEUE_OK; out_unmap: dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); out: return ret; } /* * We reuse the small pool to allocate the 16-byte range here as it is not * worth having a special pool for these or additional cases to handle freeing * the iod. */ static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns, struct nvme_iod *iod, struct nvme_command *cmnd) { struct request *req = iod_get_private(iod); struct nvme_dsm_range *range; range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC, &iod->first_dma); if (!range) return BLK_MQ_RQ_QUEUE_BUSY; iod_list(iod)[0] = (__le64 *)range; iod->npages = 0; range->cattr = cpu_to_le32(0); range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift); range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); memset(cmnd, 0, sizeof(*cmnd)); cmnd->dsm.opcode = nvme_cmd_dsm; cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma); cmnd->dsm.nr = 0; cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); return BLK_MQ_RQ_QUEUE_OK; } static void nvme_setup_flush(struct nvme_ns *ns, struct nvme_command *cmnd) { memset(cmnd, 0, sizeof(*cmnd)); cmnd->common.opcode = nvme_cmd_flush; cmnd->common.nsid = cpu_to_le32(ns->ns_id); } static void nvme_setup_rw(struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd) { u16 control = 0; u32 dsmgmt = 0; if (req->cmd_flags & REQ_FUA) control |= NVME_RW_FUA; if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) control |= NVME_RW_LR; if (req->cmd_flags & REQ_RAHEAD) dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; memset(cmnd, 0, sizeof(*cmnd)); cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); cmnd->rw.command_id = req->tag; cmnd->rw.nsid = cpu_to_le32(ns->ns_id); cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); if (ns->ms) { switch (ns->pi_type) { case NVME_NS_DPS_PI_TYPE3: control |= NVME_RW_PRINFO_PRCHK_GUARD; break; case NVME_NS_DPS_PI_TYPE1: case NVME_NS_DPS_PI_TYPE2: control |= NVME_RW_PRINFO_PRCHK_GUARD | NVME_RW_PRINFO_PRCHK_REF; cmnd->rw.reftag = cpu_to_le32( nvme_block_nr(ns, blk_rq_pos(req))); break; } if (!blk_integrity_rq(req)) control |= NVME_RW_PRINFO_PRACT; } cmnd->rw.control = cpu_to_le16(control); cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); } /* * NOTE: ns is NULL when called on the admin queue. */ static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct nvme_ns *ns = hctx->queue->queuedata; struct nvme_queue *nvmeq = hctx->driver_data; struct nvme_dev *dev = nvmeq->dev; struct request *req = bd->rq; struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req); struct nvme_iod *iod; struct nvme_command cmnd; int ret = BLK_MQ_RQ_QUEUE_OK; /* * If formated with metadata, require the block layer provide a buffer * unless this namespace is formated such that the metadata can be * stripped/generated by the controller with PRACT=1. */ if (ns && ns->ms && !blk_integrity_rq(req)) { if (!(ns->pi_type && ns->ms == 8) && req->cmd_type != REQ_TYPE_DRV_PRIV) { blk_mq_complete_request(req, -EFAULT); return BLK_MQ_RQ_QUEUE_OK; } } iod = nvme_alloc_iod(req, dev, GFP_ATOMIC); if (!iod) return BLK_MQ_RQ_QUEUE_BUSY; if (req->cmd_flags & REQ_DISCARD) { ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd); } else { if (req->cmd_type == REQ_TYPE_DRV_PRIV) memcpy(&cmnd, req->cmd, sizeof(cmnd)); else if (req->cmd_flags & REQ_FLUSH) nvme_setup_flush(ns, &cmnd); else nvme_setup_rw(ns, req, &cmnd); if (req->nr_phys_segments) ret = nvme_map_data(dev, iod, &cmnd); } if (ret) goto out; cmnd.common.command_id = req->tag; nvme_set_info(cmd, iod, req_completion); spin_lock_irq(&nvmeq->q_lock); __nvme_submit_cmd(nvmeq, &cmnd); nvme_process_cq(nvmeq); spin_unlock_irq(&nvmeq->q_lock); return BLK_MQ_RQ_QUEUE_OK; out: nvme_free_iod(dev, iod); return ret; } static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) { u16 head, phase; head = nvmeq->cq_head; phase = nvmeq->cq_phase; for (;;) { void *ctx; nvme_completion_fn fn; struct nvme_completion cqe = nvmeq->cqes[head]; if ((le16_to_cpu(cqe.status) & 1) != phase) break; nvmeq->sq_head = le16_to_cpu(cqe.sq_head); if (++head == nvmeq->q_depth) { head = 0; phase = !phase; } if (tag && *tag == cqe.command_id) *tag = -1; ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn); fn(nvmeq, ctx, &cqe); } /* If the controller ignores the cq head doorbell and continuously * writes to the queue, it is theoretically possible to wrap around * the queue twice and mistakenly return IRQ_NONE. Linux only * requires that 0.1% of your interrupts are handled, so this isn't * a big problem. */ if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) return; if (likely(nvmeq->cq_vector >= 0)) writel(head, nvmeq->q_db + nvmeq->dev->db_stride); nvmeq->cq_head = head; nvmeq->cq_phase = phase; nvmeq->cqe_seen = 1; } static void nvme_process_cq(struct nvme_queue *nvmeq) { __nvme_process_cq(nvmeq, NULL); } static irqreturn_t nvme_irq(int irq, void *data) { irqreturn_t result; struct nvme_queue *nvmeq = data; spin_lock(&nvmeq->q_lock); nvme_process_cq(nvmeq); result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; nvmeq->cqe_seen = 0; spin_unlock(&nvmeq->q_lock); return result; } static irqreturn_t nvme_irq_check(int irq, void *data) { struct nvme_queue *nvmeq = data; struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) return IRQ_NONE; return IRQ_WAKE_THREAD; } static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) { struct nvme_queue *nvmeq = hctx->driver_data; if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == nvmeq->cq_phase) { spin_lock_irq(&nvmeq->q_lock); __nvme_process_cq(nvmeq, &tag); spin_unlock_irq(&nvmeq->q_lock); if (tag == -1) return 1; } return 0; } static int nvme_submit_async_admin_req(struct nvme_dev *dev) { struct nvme_queue *nvmeq = dev->queues[0]; struct nvme_command c; struct nvme_cmd_info *cmd_info; struct request *req; req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED); if (IS_ERR(req)) return PTR_ERR(req); req->cmd_flags |= REQ_NO_TIMEOUT; cmd_info = blk_mq_rq_to_pdu(req); nvme_set_info(cmd_info, NULL, async_req_completion); memset(&c, 0, sizeof(c)); c.common.opcode = nvme_admin_async_event; c.common.command_id = req->tag; blk_mq_free_request(req); __nvme_submit_cmd(nvmeq, &c); return 0; } static int nvme_submit_admin_async_cmd(struct nvme_dev *dev, struct nvme_command *cmd, struct async_cmd_info *cmdinfo, unsigned timeout) { struct nvme_queue *nvmeq = dev->queues[0]; struct request *req; struct nvme_cmd_info *cmd_rq; req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0); if (IS_ERR(req)) return PTR_ERR(req); req->timeout = timeout; cmd_rq = blk_mq_rq_to_pdu(req); cmdinfo->req = req; nvme_set_info(cmd_rq, cmdinfo, async_completion); cmdinfo->status = -EINTR; cmd->common.command_id = req->tag; nvme_submit_cmd(nvmeq, cmd); return 0; } static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.delete_queue.opcode = opcode; c.delete_queue.qid = cpu_to_le16(id); return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); } static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq) { struct nvme_command c; int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; /* * Note: we (ab)use the fact the the prp fields survive if no data * is attached to the request. */ memset(&c, 0, sizeof(c)); c.create_cq.opcode = nvme_admin_create_cq; c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); c.create_cq.cqid = cpu_to_le16(qid); c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_cq.cq_flags = cpu_to_le16(flags); c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); } static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq) { struct nvme_command c; int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; /* * Note: we (ab)use the fact the the prp fields survive if no data * is attached to the request. */ memset(&c, 0, sizeof(c)); c.create_sq.opcode = nvme_admin_create_sq; c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); c.create_sq.sqid = cpu_to_le16(qid); c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_sq.sq_flags = cpu_to_le16(flags); c.create_sq.cqid = cpu_to_le16(qid); return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); } static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) { return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); } static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) { return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); } /** * nvme_abort_req - Attempt aborting a request * * Schedule controller reset if the command was already aborted once before and * still hasn't been returned to the driver, or if this is the admin queue. */ static void nvme_abort_req(struct request *req) { struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req); struct nvme_queue *nvmeq = cmd_rq->nvmeq; struct nvme_dev *dev = nvmeq->dev; struct request *abort_req; struct nvme_cmd_info *abort_cmd; struct nvme_command cmd; if (!nvmeq->qid || cmd_rq->aborted) { spin_lock(&dev_list_lock); if (!__nvme_reset(dev)) { dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n", req->tag, nvmeq->qid); } spin_unlock(&dev_list_lock); return; } if (!dev->ctrl.abort_limit) return; abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, BLK_MQ_REQ_NOWAIT); if (IS_ERR(abort_req)) return; abort_cmd = blk_mq_rq_to_pdu(abort_req); nvme_set_info(abort_cmd, abort_req, abort_completion); memset(&cmd, 0, sizeof(cmd)); cmd.abort.opcode = nvme_admin_abort_cmd; cmd.abort.cid = req->tag; cmd.abort.sqid = cpu_to_le16(nvmeq->qid); cmd.abort.command_id = abort_req->tag; --dev->ctrl.abort_limit; cmd_rq->aborted = 1; dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag, nvmeq->qid); nvme_submit_cmd(dev->queues[0], &cmd); } static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved) { struct nvme_queue *nvmeq = data; void *ctx; nvme_completion_fn fn; struct nvme_cmd_info *cmd; struct nvme_completion cqe; if (!blk_mq_request_started(req)) return; cmd = blk_mq_rq_to_pdu(req); if (cmd->ctx == CMD_CTX_CANCELLED) return; if (blk_queue_dying(req->q)) cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1); else cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1); dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid); ctx = cancel_cmd_info(cmd, &fn); fn(nvmeq, ctx, &cqe); } static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) { struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req); struct nvme_queue *nvmeq = cmd->nvmeq; dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag, nvmeq->qid); spin_lock_irq(&nvmeq->q_lock); nvme_abort_req(req); spin_unlock_irq(&nvmeq->q_lock); /* * The aborted req will be completed on receiving the abort req. * We enable the timer again. If hit twice, it'll cause a device reset, * as the device then is in a faulty state. */ return BLK_EH_RESET_TIMER; } static void nvme_free_queue(struct nvme_queue *nvmeq) { dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); if (nvmeq->sq_cmds) dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), nvmeq->sq_cmds, nvmeq->sq_dma_addr); kfree(nvmeq); } static void nvme_free_queues(struct nvme_dev *dev, int lowest) { int i; for (i = dev->queue_count - 1; i >= lowest; i--) { struct nvme_queue *nvmeq = dev->queues[i]; dev->queue_count--; dev->queues[i] = NULL; nvme_free_queue(nvmeq); } } /** * nvme_suspend_queue - put queue into suspended state * @nvmeq - queue to suspend */ static int nvme_suspend_queue(struct nvme_queue *nvmeq) { int vector; spin_lock_irq(&nvmeq->q_lock); if (nvmeq->cq_vector == -1) { spin_unlock_irq(&nvmeq->q_lock); return 1; } vector = nvmeq->dev->entry[nvmeq->cq_vector].vector; nvmeq->dev->online_queues--; nvmeq->cq_vector = -1; spin_unlock_irq(&nvmeq->q_lock); if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q); irq_set_affinity_hint(vector, NULL); free_irq(vector, nvmeq); return 0; } static void nvme_clear_queue(struct nvme_queue *nvmeq) { spin_lock_irq(&nvmeq->q_lock); if (nvmeq->tags && *nvmeq->tags) blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq); spin_unlock_irq(&nvmeq->q_lock); } static void nvme_disable_queue(struct nvme_dev *dev, int qid) { struct nvme_queue *nvmeq = dev->queues[qid]; if (!nvmeq) return; if (nvme_suspend_queue(nvmeq)) return; /* Don't tell the adapter to delete the admin queue. * Don't tell a removed adapter to delete IO queues. */ if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) { adapter_delete_sq(dev, qid); adapter_delete_cq(dev, qid); } spin_lock_irq(&nvmeq->q_lock); nvme_process_cq(nvmeq); spin_unlock_irq(&nvmeq->q_lock); } static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, int entry_size) { int q_depth = dev->q_depth; unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size); if (q_size_aligned * nr_io_queues > dev->cmb_size) { u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); mem_per_q = round_down(mem_per_q, dev->page_size); q_depth = div_u64(mem_per_q, entry_size); /* * Ensure the reduced q_depth is above some threshold where it * would be better to map queues in system memory with the * original depth */ if (q_depth < 64) return -ENOMEM; } return q_depth; } static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, int qid, int depth) { if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), dev->page_size); nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; nvmeq->sq_cmds_io = dev->cmb + offset; } else { nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), &nvmeq->sq_dma_addr, GFP_KERNEL); if (!nvmeq->sq_cmds) return -ENOMEM; } return 0; } static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) { struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); if (!nvmeq) return NULL; nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), &nvmeq->cq_dma_addr, GFP_KERNEL); if (!nvmeq->cqes) goto free_nvmeq; if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) goto free_cqdma; nvmeq->q_dmadev = dev->dev; nvmeq->dev = dev; snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", dev->ctrl.instance, qid); spin_lock_init(&nvmeq->q_lock); nvmeq->cq_head = 0; nvmeq->cq_phase = 1; nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; nvmeq->q_depth = depth; nvmeq->qid = qid; nvmeq->cq_vector = -1; dev->queues[qid] = nvmeq; /* make sure queue descriptor is set before queue count, for kthread */ mb(); dev->queue_count++; return nvmeq; free_cqdma: dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); free_nvmeq: kfree(nvmeq); return NULL; } static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, const char *name) { if (use_threaded_interrupts) return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq_check, nvme_irq, IRQF_SHARED, name, nvmeq); return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, IRQF_SHARED, name, nvmeq); } static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) { struct nvme_dev *dev = nvmeq->dev; spin_lock_irq(&nvmeq->q_lock); nvmeq->sq_tail = 0; nvmeq->cq_head = 0; nvmeq->cq_phase = 1; nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); dev->online_queues++; spin_unlock_irq(&nvmeq->q_lock); } static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) { struct nvme_dev *dev = nvmeq->dev; int result; nvmeq->cq_vector = qid - 1; result = adapter_alloc_cq(dev, qid, nvmeq); if (result < 0) return result; result = adapter_alloc_sq(dev, qid, nvmeq); if (result < 0) goto release_cq; result = queue_request_irq(dev, nvmeq, nvmeq->irqname); if (result < 0) goto release_sq; nvme_init_queue(nvmeq, qid); return result; release_sq: adapter_delete_sq(dev, qid); release_cq: adapter_delete_cq(dev, qid); return result; } static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled) { unsigned long timeout; u32 bit = enabled ? NVME_CSTS_RDY : 0; timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; while ((readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_RDY) != bit) { msleep(100); if (fatal_signal_pending(current)) return -EINTR; if (time_after(jiffies, timeout)) { dev_err(dev->dev, "Device not ready; aborting %s\n", enabled ? "initialisation" : "reset"); return -ENODEV; } } return 0; } /* * If the device has been passed off to us in an enabled state, just clear * the enabled bit. The spec says we should set the 'shutdown notification * bits', but doing so may cause the device to complete commands to the * admin queue ... and we don't know what memory that might be pointing at! */ static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap) { dev->ctrl_config &= ~NVME_CC_SHN_MASK; dev->ctrl_config &= ~NVME_CC_ENABLE; writel(dev->ctrl_config, dev->bar + NVME_REG_CC); return nvme_wait_ready(dev, cap, false); } static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap) { dev->ctrl_config &= ~NVME_CC_SHN_MASK; dev->ctrl_config |= NVME_CC_ENABLE; writel(dev->ctrl_config, dev->bar + NVME_REG_CC); return nvme_wait_ready(dev, cap, true); } static int nvme_shutdown_ctrl(struct nvme_dev *dev) { unsigned long timeout; dev->ctrl_config &= ~NVME_CC_SHN_MASK; dev->ctrl_config |= NVME_CC_SHN_NORMAL; writel(dev->ctrl_config, dev->bar + NVME_REG_CC); timeout = SHUTDOWN_TIMEOUT + jiffies; while ((readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_SHST_MASK) != NVME_CSTS_SHST_CMPLT) { msleep(100); if (fatal_signal_pending(current)) return -EINTR; if (time_after(jiffies, timeout)) { dev_err(dev->dev, "Device shutdown incomplete; abort shutdown\n"); return -ENODEV; } } return 0; } static struct blk_mq_ops nvme_mq_admin_ops = { .queue_rq = nvme_queue_rq, .map_queue = blk_mq_map_queue, .init_hctx = nvme_admin_init_hctx, .exit_hctx = nvme_admin_exit_hctx, .init_request = nvme_admin_init_request, .timeout = nvme_timeout, }; static struct blk_mq_ops nvme_mq_ops = { .queue_rq = nvme_queue_rq, .map_queue = blk_mq_map_queue, .init_hctx = nvme_init_hctx, .init_request = nvme_init_request, .timeout = nvme_timeout, .poll = nvme_poll, }; static void nvme_dev_remove_admin(struct nvme_dev *dev) { if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { blk_cleanup_queue(dev->ctrl.admin_q); blk_mq_free_tag_set(&dev->admin_tagset); } } static int nvme_alloc_admin_tags(struct nvme_dev *dev) { if (!dev->ctrl.admin_q) { dev->admin_tagset.ops = &nvme_mq_admin_ops; dev->admin_tagset.nr_hw_queues = 1; dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1; dev->admin_tagset.reserved_tags = 1; dev->admin_tagset.timeout = ADMIN_TIMEOUT; dev->admin_tagset.numa_node = dev_to_node(dev->dev); dev->admin_tagset.cmd_size = nvme_cmd_size(dev); dev->admin_tagset.driver_data = dev; if (blk_mq_alloc_tag_set(&dev->admin_tagset)) return -ENOMEM; dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); if (IS_ERR(dev->ctrl.admin_q)) { blk_mq_free_tag_set(&dev->admin_tagset); return -ENOMEM; } if (!blk_get_queue(dev->ctrl.admin_q)) { nvme_dev_remove_admin(dev); dev->ctrl.admin_q = NULL; return -ENODEV; } } else blk_mq_unfreeze_queue(dev->ctrl.admin_q); return 0; } static int nvme_configure_admin_queue(struct nvme_dev *dev) { int result; u32 aqa; u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); struct nvme_queue *nvmeq; /* * default to a 4K page size, with the intention to update this * path in the future to accomodate architectures with differing * kernel and IO page sizes. */ unsigned page_shift = 12; unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12; if (page_shift < dev_page_min) { dev_err(dev->dev, "Minimum device page size (%u) too large for " "host (%u)\n", 1 << dev_page_min, 1 << page_shift); return -ENODEV; } dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ? NVME_CAP_NSSRC(cap) : 0; if (dev->subsystem && (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); result = nvme_disable_ctrl(dev, cap); if (result < 0) return result; nvmeq = dev->queues[0]; if (!nvmeq) { nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); if (!nvmeq) return -ENOMEM; } aqa = nvmeq->q_depth - 1; aqa |= aqa << 16; dev->page_size = 1 << page_shift; dev->ctrl_config = NVME_CC_CSS_NVM; dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; writel(aqa, dev->bar + NVME_REG_AQA); lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); result = nvme_enable_ctrl(dev, cap); if (result) goto free_nvmeq; nvmeq->cq_vector = 0; result = queue_request_irq(dev, nvmeq, nvmeq->irqname); if (result) { nvmeq->cq_vector = -1; goto free_nvmeq; } return result; free_nvmeq: nvme_free_queues(dev, 0); return result; } static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) { struct nvme_dev *dev = to_nvme_dev(ns->ctrl); struct nvme_user_io io; struct nvme_command c; unsigned length, meta_len; int status, write; dma_addr_t meta_dma = 0; void *meta = NULL; void __user *metadata; if (copy_from_user(&io, uio, sizeof(io))) return -EFAULT; switch (io.opcode) { case nvme_cmd_write: case nvme_cmd_read: case nvme_cmd_compare: break; default: return -EINVAL; } length = (io.nblocks + 1) << ns->lba_shift; meta_len = (io.nblocks + 1) * ns->ms; metadata = (void __user *)(uintptr_t)io.metadata; write = io.opcode & 1; if (ns->ext) { length += meta_len; meta_len = 0; } if (meta_len) { if (((io.metadata & 3) || !io.metadata) && !ns->ext) return -EINVAL; meta = dma_alloc_coherent(dev->dev, meta_len, &meta_dma, GFP_KERNEL); if (!meta) { status = -ENOMEM; goto unmap; } if (write) { if (copy_from_user(meta, metadata, meta_len)) { status = -EFAULT; goto unmap; } } } memset(&c, 0, sizeof(c)); c.rw.opcode = io.opcode; c.rw.flags = io.flags; c.rw.nsid = cpu_to_le32(ns->ns_id); c.rw.slba = cpu_to_le64(io.slba); c.rw.length = cpu_to_le16(io.nblocks); c.rw.control = cpu_to_le16(io.control); c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); c.rw.reftag = cpu_to_le32(io.reftag); c.rw.apptag = cpu_to_le16(io.apptag); c.rw.appmask = cpu_to_le16(io.appmask); c.rw.metadata = cpu_to_le64(meta_dma); status = __nvme_submit_sync_cmd(ns->queue, &c, NULL, (void __user *)(uintptr_t)io.addr, length, NULL, 0); unmap: if (meta) { if (status == NVME_SC_SUCCESS && !write) { if (copy_to_user(metadata, meta, meta_len)) status = -EFAULT; } dma_free_coherent(dev->dev, meta_len, meta, meta_dma); } return status; } static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, struct nvme_passthru_cmd __user *ucmd) { struct nvme_passthru_cmd cmd; struct nvme_command c; unsigned timeout = 0; int status; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (copy_from_user(&cmd, ucmd, sizeof(cmd))) return -EFAULT; memset(&c, 0, sizeof(c)); c.common.opcode = cmd.opcode; c.common.flags = cmd.flags; c.common.nsid = cpu_to_le32(cmd.nsid); c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); if (cmd.timeout_ms) timeout = msecs_to_jiffies(cmd.timeout_ms); status = __nvme_submit_sync_cmd(ns ? ns->queue : ctrl->admin_q, &c, NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len, &cmd.result, timeout); if (status >= 0) { if (put_user(cmd.result, &ucmd->result)) return -EFAULT; } return status; } static int nvme_subsys_reset(struct nvme_dev *dev) { if (!dev->subsystem) return -ENOTTY; writel(0x4E564D65, dev->bar + NVME_REG_NSSR); /* "NVMe" */ return 0; } static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct nvme_ns *ns = bdev->bd_disk->private_data; switch (cmd) { case NVME_IOCTL_ID: force_successful_syscall_return(); return ns->ns_id; case NVME_IOCTL_ADMIN_CMD: return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); case NVME_IOCTL_IO_CMD: return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); case NVME_IOCTL_SUBMIT_IO: return nvme_submit_io(ns, (void __user *)arg); case SG_GET_VERSION_NUM: return nvme_sg_get_version_num((void __user *)arg); case SG_IO: return nvme_sg_io(ns, (void __user *)arg); default: return -ENOTTY; } } #ifdef CONFIG_COMPAT static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { switch (cmd) { case SG_IO: return -ENOIOCTLCMD; } return nvme_ioctl(bdev, mode, cmd, arg); } #else #define nvme_compat_ioctl NULL #endif static void nvme_free_dev(struct kref *kref); static void nvme_free_ns(struct kref *kref) { struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); struct nvme_dev *dev = to_nvme_dev(ns->ctrl); if (ns->type == NVME_NS_LIGHTNVM) nvme_nvm_unregister(ns->queue, ns->disk->disk_name); spin_lock(&dev_list_lock); ns->disk->private_data = NULL; spin_unlock(&dev_list_lock); kref_put(&dev->kref, nvme_free_dev); put_disk(ns->disk); kfree(ns); } static int nvme_open(struct block_device *bdev, fmode_t mode) { int ret = 0; struct nvme_ns *ns; spin_lock(&dev_list_lock); ns = bdev->bd_disk->private_data; if (!ns) ret = -ENXIO; else if (!kref_get_unless_zero(&ns->kref)) ret = -ENXIO; spin_unlock(&dev_list_lock); return ret; } static void nvme_release(struct gendisk *disk, fmode_t mode) { struct nvme_ns *ns = disk->private_data; kref_put(&ns->kref, nvme_free_ns); } static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo) { /* some standard values */ geo->heads = 1 << 6; geo->sectors = 1 << 5; geo->cylinders = get_capacity(bd->bd_disk) >> 11; return 0; } static void nvme_config_discard(struct nvme_ns *ns) { u32 logical_block_size = queue_logical_block_size(ns->queue); ns->queue->limits.discard_zeroes_data = 0; ns->queue->limits.discard_alignment = logical_block_size; ns->queue->limits.discard_granularity = logical_block_size; blk_queue_max_discard_sectors(ns->queue, 0xffffffff); queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); } static int nvme_revalidate_disk(struct gendisk *disk) { struct nvme_ns *ns = disk->private_data; struct nvme_dev *dev = to_nvme_dev(ns->ctrl); struct nvme_id_ns *id; u8 lbaf, pi_type; u16 old_ms; unsigned short bs; if (nvme_identify_ns(&dev->ctrl, ns->ns_id, &id)) { dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__, dev->ctrl.instance, ns->ns_id); return -ENODEV; } if (id->ncap == 0) { kfree(id); return -ENODEV; } if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) { if (nvme_nvm_register(ns->queue, disk->disk_name)) { dev_warn(dev->dev, "%s: LightNVM init failure\n", __func__); kfree(id); return -ENODEV; } ns->type = NVME_NS_LIGHTNVM; } old_ms = ns->ms; lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; ns->lba_shift = id->lbaf[lbaf].ds; ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); /* * If identify namespace failed, use default 512 byte block size so * block layer can use before failing read/write for 0 capacity. */ if (ns->lba_shift == 0) ns->lba_shift = 9; bs = 1 << ns->lba_shift; /* XXX: PI implementation requires metadata equal t10 pi tuple size */ pi_type = ns->ms == sizeof(struct t10_pi_tuple) ? id->dps & NVME_NS_DPS_PI_MASK : 0; blk_mq_freeze_queue(disk->queue); if (blk_get_integrity(disk) && (ns->pi_type != pi_type || ns->ms != old_ms || bs != queue_logical_block_size(disk->queue) || (ns->ms && ns->ext))) blk_integrity_unregister(disk); ns->pi_type = pi_type; blk_queue_logical_block_size(ns->queue, bs); if (ns->ms && !ns->ext) nvme_init_integrity(ns); if ((ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk)) || ns->type == NVME_NS_LIGHTNVM) set_capacity(disk, 0); else set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); if (dev->ctrl.oncs & NVME_CTRL_ONCS_DSM) nvme_config_discard(ns); blk_mq_unfreeze_queue(disk->queue); kfree(id); return 0; } static char nvme_pr_type(enum pr_type type) { switch (type) { case PR_WRITE_EXCLUSIVE: return 1; case PR_EXCLUSIVE_ACCESS: return 2; case PR_WRITE_EXCLUSIVE_REG_ONLY: return 3; case PR_EXCLUSIVE_ACCESS_REG_ONLY: return 4; case PR_WRITE_EXCLUSIVE_ALL_REGS: return 5; case PR_EXCLUSIVE_ACCESS_ALL_REGS: return 6; default: return 0; } }; static int nvme_pr_command(struct block_device *bdev, u32 cdw10, u64 key, u64 sa_key, u8 op) { struct nvme_ns *ns = bdev->bd_disk->private_data; struct nvme_command c; u8 data[16] = { 0, }; put_unaligned_le64(key, &data[0]); put_unaligned_le64(sa_key, &data[8]); memset(&c, 0, sizeof(c)); c.common.opcode = op; c.common.nsid = cpu_to_le32(ns->ns_id); c.common.cdw10[0] = cpu_to_le32(cdw10); return nvme_submit_sync_cmd(ns->queue, &c, data, 16); } static int nvme_pr_register(struct block_device *bdev, u64 old, u64 new, unsigned flags) { u32 cdw10; if (flags & ~PR_FL_IGNORE_KEY) return -EOPNOTSUPP; cdw10 = old ? 2 : 0; cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); } static int nvme_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, unsigned flags) { u32 cdw10; if (flags & ~PR_FL_IGNORE_KEY) return -EOPNOTSUPP; cdw10 = nvme_pr_type(type) << 8; cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); } static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, enum pr_type type, bool abort) { u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); } static int nvme_pr_clear(struct block_device *bdev, u64 key) { u32 cdw10 = 1 | (key ? 1 << 3 : 0); return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); } static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) { u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); } static const struct pr_ops nvme_pr_ops = { .pr_register = nvme_pr_register, .pr_reserve = nvme_pr_reserve, .pr_release = nvme_pr_release, .pr_preempt = nvme_pr_preempt, .pr_clear = nvme_pr_clear, }; static const struct block_device_operations nvme_fops = { .owner = THIS_MODULE, .ioctl = nvme_ioctl, .compat_ioctl = nvme_compat_ioctl, .open = nvme_open, .release = nvme_release, .getgeo = nvme_getgeo, .revalidate_disk= nvme_revalidate_disk, .pr_ops = &nvme_pr_ops, }; static int nvme_kthread(void *data) { struct nvme_dev *dev, *next; while (!kthread_should_stop()) { set_current_state(TASK_INTERRUPTIBLE); spin_lock(&dev_list_lock); list_for_each_entry_safe(dev, next, &dev_list, node) { int i; u32 csts = readl(dev->bar + NVME_REG_CSTS); if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) || csts & NVME_CSTS_CFS) { if (!__nvme_reset(dev)) { dev_warn(dev->dev, "Failed status: %x, reset controller\n", readl(dev->bar + NVME_REG_CSTS)); } continue; } for (i = 0; i < dev->queue_count; i++) { struct nvme_queue *nvmeq = dev->queues[i]; if (!nvmeq) continue; spin_lock_irq(&nvmeq->q_lock); nvme_process_cq(nvmeq); while (i == 0 && dev->ctrl.event_limit > 0) { if (nvme_submit_async_admin_req(dev)) break; dev->ctrl.event_limit--; } spin_unlock_irq(&nvmeq->q_lock); } } spin_unlock(&dev_list_lock); schedule_timeout(round_jiffies_relative(HZ)); } return 0; } static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid) { struct nvme_ns *ns; struct gendisk *disk; int node = dev_to_node(dev->dev); ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); if (!ns) return; ns->queue = blk_mq_init_queue(&dev->tagset); if (IS_ERR(ns->queue)) goto out_free_ns; queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue); queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); ns->ctrl = &dev->ctrl; ns->queue->queuedata = ns; disk = alloc_disk_node(0, node); if (!disk) goto out_free_queue; kref_init(&ns->kref); ns->ns_id = nsid; ns->disk = disk; ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ list_add_tail(&ns->list, &dev->namespaces); blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); if (dev->max_hw_sectors) { blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors); blk_queue_max_segments(ns->queue, (dev->max_hw_sectors / (dev->page_size >> 9)) + 1); } if (dev->stripe_size) blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9); if (dev->ctrl.vwc & NVME_CTRL_VWC_PRESENT) blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA); blk_queue_virt_boundary(ns->queue, dev->page_size - 1); disk->major = nvme_major; disk->first_minor = 0; disk->fops = &nvme_fops; disk->private_data = ns; disk->queue = ns->queue; disk->driverfs_dev = dev->device; disk->flags = GENHD_FL_EXT_DEVT; sprintf(disk->disk_name, "nvme%dn%d", dev->ctrl.instance, nsid); /* * Initialize capacity to 0 until we establish the namespace format and * setup integrity extentions if necessary. The revalidate_disk after * add_disk allows the driver to register with integrity if the format * requires it. */ set_capacity(disk, 0); if (nvme_revalidate_disk(ns->disk)) goto out_free_disk; kref_get(&dev->kref); if (ns->type != NVME_NS_LIGHTNVM) { add_disk(ns->disk); if (ns->ms) { struct block_device *bd = bdget_disk(ns->disk, 0); if (!bd) return; if (blkdev_get(bd, FMODE_READ, NULL)) { bdput(bd); return; } blkdev_reread_part(bd); blkdev_put(bd, FMODE_READ); } } return; out_free_disk: kfree(disk); list_del(&ns->list); out_free_queue: blk_cleanup_queue(ns->queue); out_free_ns: kfree(ns); } /* * Create I/O queues. Failing to create an I/O queue is not an issue, * we can continue with less than the desired amount of queues, and * even a controller without I/O queues an still be used to issue * admin commands. This might be useful to upgrade a buggy firmware * for example. */ static void nvme_create_io_queues(struct nvme_dev *dev) { unsigned i; for (i = dev->queue_count; i <= dev->max_qid; i++) if (!nvme_alloc_queue(dev, i, dev->q_depth)) break; for (i = dev->online_queues; i <= dev->queue_count - 1; i++) if (nvme_create_queue(dev->queues[i], i)) { nvme_free_queues(dev, i); break; } } static int set_queue_count(struct nvme_dev *dev, int count) { int status; u32 result; u32 q_count = (count - 1) | ((count - 1) << 16); status = nvme_set_features(&dev->ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0, &result); if (status < 0) return status; if (status > 0) { dev_err(dev->dev, "Could not set queue count (%d)\n", status); return 0; } return min(result & 0xffff, result >> 16) + 1; } static void __iomem *nvme_map_cmb(struct nvme_dev *dev) { u64 szu, size, offset; u32 cmbloc; resource_size_t bar_size; struct pci_dev *pdev = to_pci_dev(dev->dev); void __iomem *cmb; dma_addr_t dma_addr; if (!use_cmb_sqes) return NULL; dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); if (!(NVME_CMB_SZ(dev->cmbsz))) return NULL; cmbloc = readl(dev->bar + NVME_REG_CMBLOC); szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); size = szu * NVME_CMB_SZ(dev->cmbsz); offset = szu * NVME_CMB_OFST(cmbloc); bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc)); if (offset > bar_size) return NULL; /* * Controllers may support a CMB size larger than their BAR, * for example, due to being behind a bridge. Reduce the CMB to * the reported size of the BAR */ if (size > bar_size - offset) size = bar_size - offset; dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset; cmb = ioremap_wc(dma_addr, size); if (!cmb) return NULL; dev->cmb_dma_addr = dma_addr; dev->cmb_size = size; return cmb; } static inline void nvme_release_cmb(struct nvme_dev *dev) { if (dev->cmb) { iounmap(dev->cmb); dev->cmb = NULL; } } static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) { return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); } static int nvme_setup_io_queues(struct nvme_dev *dev) { struct nvme_queue *adminq = dev->queues[0]; struct pci_dev *pdev = to_pci_dev(dev->dev); int result, i, vecs, nr_io_queues, size; nr_io_queues = num_possible_cpus(); result = set_queue_count(dev, nr_io_queues); if (result <= 0) return result; if (result < nr_io_queues) nr_io_queues = result; if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { result = nvme_cmb_qdepth(dev, nr_io_queues, sizeof(struct nvme_command)); if (result > 0) dev->q_depth = result; else nvme_release_cmb(dev); } size = db_bar_size(dev, nr_io_queues); if (size > 8192) { iounmap(dev->bar); do { dev->bar = ioremap(pci_resource_start(pdev, 0), size); if (dev->bar) break; if (!--nr_io_queues) return -ENOMEM; size = db_bar_size(dev, nr_io_queues); } while (1); dev->dbs = dev->bar + 4096; adminq->q_db = dev->dbs; } /* Deregister the admin queue's interrupt */ free_irq(dev->entry[0].vector, adminq); /* * If we enable msix early due to not intx, disable it again before * setting up the full range we need. */ if (!pdev->irq) pci_disable_msix(pdev); for (i = 0; i < nr_io_queues; i++) dev->entry[i].entry = i; vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues); if (vecs < 0) { vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32)); if (vecs < 0) { vecs = 1; } else { for (i = 0; i < vecs; i++) dev->entry[i].vector = i + pdev->irq; } } /* * Should investigate if there's a performance win from allocating * more queues than interrupt vectors; it might allow the submission * path to scale better, even if the receive path is limited by the * number of interrupts. */ nr_io_queues = vecs; dev->max_qid = nr_io_queues; result = queue_request_irq(dev, adminq, adminq->irqname); if (result) { adminq->cq_vector = -1; goto free_queues; } /* Free previously allocated queues that are no longer usable */ nvme_free_queues(dev, nr_io_queues + 1); nvme_create_io_queues(dev); return 0; free_queues: nvme_free_queues(dev, 1); return result; } static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) { struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); return nsa->ns_id - nsb->ns_id; } static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid) { struct nvme_ns *ns; list_for_each_entry(ns, &dev->namespaces, list) { if (ns->ns_id == nsid) return ns; if (ns->ns_id > nsid) break; } return NULL; } static inline bool nvme_io_incapable(struct nvme_dev *dev) { return (!dev->bar || readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_CFS || dev->online_queues < 2); } static void nvme_ns_remove(struct nvme_ns *ns) { bool kill = nvme_io_incapable(to_nvme_dev(ns->ctrl)) && !blk_queue_dying(ns->queue); if (kill) blk_set_queue_dying(ns->queue); if (ns->disk->flags & GENHD_FL_UP) del_gendisk(ns->disk); if (kill || !blk_queue_dying(ns->queue)) { blk_mq_abort_requeue_list(ns->queue); blk_cleanup_queue(ns->queue); } list_del_init(&ns->list); kref_put(&ns->kref, nvme_free_ns); } static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn) { struct nvme_ns *ns, *next; unsigned i; for (i = 1; i <= nn; i++) { ns = nvme_find_ns(dev, i); if (ns) { if (revalidate_disk(ns->disk)) nvme_ns_remove(ns); } else nvme_alloc_ns(dev, i); } list_for_each_entry_safe(ns, next, &dev->namespaces, list) { if (ns->ns_id > nn) nvme_ns_remove(ns); } list_sort(NULL, &dev->namespaces, ns_cmp); } static void nvme_set_irq_hints(struct nvme_dev *dev) { struct nvme_queue *nvmeq; int i; for (i = 0; i < dev->online_queues; i++) { nvmeq = dev->queues[i]; if (!nvmeq->tags || !(*nvmeq->tags)) continue; irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector, blk_mq_tags_cpumask(*nvmeq->tags)); } } static void nvme_dev_scan(struct work_struct *work) { struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work); struct nvme_id_ctrl *ctrl; if (!dev->tagset.tags) return; if (nvme_identify_ctrl(&dev->ctrl, &ctrl)) return; nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn)); kfree(ctrl); nvme_set_irq_hints(dev); } /* * Return: error value if an error occurred setting up the queues or calling * Identify Device. 0 if these succeeded, even if adding some of the * namespaces failed. At the moment, these failures are silent. TBD which * failures should be reported. */ static int nvme_dev_add(struct nvme_dev *dev) { struct pci_dev *pdev = to_pci_dev(dev->dev); int res; struct nvme_id_ctrl *ctrl; int shift = NVME_CAP_MPSMIN(lo_hi_readq(dev->bar + NVME_REG_CAP)) + 12; res = nvme_identify_ctrl(&dev->ctrl, &ctrl); if (res) { dev_err(dev->dev, "Identify Controller failed (%d)\n", res); return -EIO; } dev->ctrl.oncs = le16_to_cpup(&ctrl->oncs); dev->ctrl.abort_limit = ctrl->acl + 1; dev->ctrl.vwc = ctrl->vwc; memcpy(dev->ctrl.serial, ctrl->sn, sizeof(ctrl->sn)); memcpy(dev->ctrl.model, ctrl->mn, sizeof(ctrl->mn)); memcpy(dev->ctrl.firmware_rev, ctrl->fr, sizeof(ctrl->fr)); if (ctrl->mdts) dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9); else dev->max_hw_sectors = UINT_MAX; if ((pdev->vendor == PCI_VENDOR_ID_INTEL) && (pdev->device == 0x0953) && ctrl->vs[3]) { unsigned int max_hw_sectors; dev->stripe_size = 1 << (ctrl->vs[3] + shift); max_hw_sectors = dev->stripe_size >> (shift - 9); if (dev->max_hw_sectors) { dev->max_hw_sectors = min(max_hw_sectors, dev->max_hw_sectors); } else dev->max_hw_sectors = max_hw_sectors; } kfree(ctrl); if (!dev->tagset.tags) { dev->tagset.ops = &nvme_mq_ops; dev->tagset.nr_hw_queues = dev->online_queues - 1; dev->tagset.timeout = NVME_IO_TIMEOUT; dev->tagset.numa_node = dev_to_node(dev->dev); dev->tagset.queue_depth = min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; dev->tagset.cmd_size = nvme_cmd_size(dev); dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; dev->tagset.driver_data = dev; if (blk_mq_alloc_tag_set(&dev->tagset)) return 0; } schedule_work(&dev->scan_work); return 0; } static int nvme_dev_map(struct nvme_dev *dev) { u64 cap; int bars, result = -ENOMEM; struct pci_dev *pdev = to_pci_dev(dev->dev); if (pci_enable_device_mem(pdev)) return result; dev->entry[0].vector = pdev->irq; pci_set_master(pdev); bars = pci_select_bars(pdev, IORESOURCE_MEM); if (!bars) goto disable_pci; if (pci_request_selected_regions(pdev, bars, "nvme")) goto disable_pci; if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) goto disable; dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); if (!dev->bar) goto disable; if (readl(dev->bar + NVME_REG_CSTS) == -1) { result = -ENODEV; goto unmap; } /* * Some devices don't advertse INTx interrupts, pre-enable a single * MSIX vec for setup. We'll adjust this later. */ if (!pdev->irq) { result = pci_enable_msix(pdev, dev->entry, 1); if (result < 0) goto unmap; } cap = lo_hi_readq(dev->bar + NVME_REG_CAP); dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); dev->db_stride = 1 << NVME_CAP_STRIDE(cap); dev->dbs = dev->bar + 4096; if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2)) dev->cmb = nvme_map_cmb(dev); return 0; unmap: iounmap(dev->bar); dev->bar = NULL; disable: pci_release_regions(pdev); disable_pci: pci_disable_device(pdev); return result; } static void nvme_dev_unmap(struct nvme_dev *dev) { struct pci_dev *pdev = to_pci_dev(dev->dev); if (pdev->msi_enabled) pci_disable_msi(pdev); else if (pdev->msix_enabled) pci_disable_msix(pdev); if (dev->bar) { iounmap(dev->bar); dev->bar = NULL; pci_release_regions(pdev); } if (pci_is_enabled(pdev)) pci_disable_device(pdev); } struct nvme_delq_ctx { struct task_struct *waiter; struct kthread_worker *worker; atomic_t refcount; }; static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev) { dq->waiter = current; mb(); for (;;) { set_current_state(TASK_KILLABLE); if (!atomic_read(&dq->refcount)) break; if (!schedule_timeout(ADMIN_TIMEOUT) || fatal_signal_pending(current)) { /* * Disable the controller first since we can't trust it * at this point, but leave the admin queue enabled * until all queue deletion requests are flushed. * FIXME: This may take a while if there are more h/w * queues than admin tags. */ set_current_state(TASK_RUNNING); nvme_disable_ctrl(dev, lo_hi_readq(dev->bar + NVME_REG_CAP)); nvme_clear_queue(dev->queues[0]); flush_kthread_worker(dq->worker); nvme_disable_queue(dev, 0); return; } } set_current_state(TASK_RUNNING); } static void nvme_put_dq(struct nvme_delq_ctx *dq) { atomic_dec(&dq->refcount); if (dq->waiter) wake_up_process(dq->waiter); } static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq) { atomic_inc(&dq->refcount); return dq; } static void nvme_del_queue_end(struct nvme_queue *nvmeq) { struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx; nvme_put_dq(dq); spin_lock_irq(&nvmeq->q_lock); nvme_process_cq(nvmeq); spin_unlock_irq(&nvmeq->q_lock); } static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode, kthread_work_func_t fn) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.delete_queue.opcode = opcode; c.delete_queue.qid = cpu_to_le16(nvmeq->qid); init_kthread_work(&nvmeq->cmdinfo.work, fn); return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo, ADMIN_TIMEOUT); } static void nvme_del_cq_work_handler(struct kthread_work *work) { struct nvme_queue *nvmeq = container_of(work, struct nvme_queue, cmdinfo.work); nvme_del_queue_end(nvmeq); } static int nvme_delete_cq(struct nvme_queue *nvmeq) { return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq, nvme_del_cq_work_handler); } static void nvme_del_sq_work_handler(struct kthread_work *work) { struct nvme_queue *nvmeq = container_of(work, struct nvme_queue, cmdinfo.work); int status = nvmeq->cmdinfo.status; if (!status) status = nvme_delete_cq(nvmeq); if (status) nvme_del_queue_end(nvmeq); } static int nvme_delete_sq(struct nvme_queue *nvmeq) { return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq, nvme_del_sq_work_handler); } static void nvme_del_queue_start(struct kthread_work *work) { struct nvme_queue *nvmeq = container_of(work, struct nvme_queue, cmdinfo.work); if (nvme_delete_sq(nvmeq)) nvme_del_queue_end(nvmeq); } static void nvme_disable_io_queues(struct nvme_dev *dev) { int i; DEFINE_KTHREAD_WORKER_ONSTACK(worker); struct nvme_delq_ctx dq; struct task_struct *kworker_task = kthread_run(kthread_worker_fn, &worker, "nvme%d", dev->ctrl.instance); if (IS_ERR(kworker_task)) { dev_err(dev->dev, "Failed to create queue del task\n"); for (i = dev->queue_count - 1; i > 0; i--) nvme_disable_queue(dev, i); return; } dq.waiter = NULL; atomic_set(&dq.refcount, 0); dq.worker = &worker; for (i = dev->queue_count - 1; i > 0; i--) { struct nvme_queue *nvmeq = dev->queues[i]; if (nvme_suspend_queue(nvmeq)) continue; nvmeq->cmdinfo.ctx = nvme_get_dq(&dq); nvmeq->cmdinfo.worker = dq.worker; init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start); queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work); } nvme_wait_dq(&dq, dev); kthread_stop(kworker_task); } /* * Remove the node from the device list and check * for whether or not we need to stop the nvme_thread. */ static void nvme_dev_list_remove(struct nvme_dev *dev) { struct task_struct *tmp = NULL; spin_lock(&dev_list_lock); list_del_init(&dev->node); if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) { tmp = nvme_thread; nvme_thread = NULL; } spin_unlock(&dev_list_lock); if (tmp) kthread_stop(tmp); } static void nvme_freeze_queues(struct nvme_dev *dev) { struct nvme_ns *ns; list_for_each_entry(ns, &dev->namespaces, list) { blk_mq_freeze_queue_start(ns->queue); spin_lock_irq(ns->queue->queue_lock); queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue); spin_unlock_irq(ns->queue->queue_lock); blk_mq_cancel_requeue_work(ns->queue); blk_mq_stop_hw_queues(ns->queue); } } static void nvme_unfreeze_queues(struct nvme_dev *dev) { struct nvme_ns *ns; list_for_each_entry(ns, &dev->namespaces, list) { queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue); blk_mq_unfreeze_queue(ns->queue); blk_mq_start_stopped_hw_queues(ns->queue, true); blk_mq_kick_requeue_list(ns->queue); } } static void nvme_dev_shutdown(struct nvme_dev *dev) { int i; u32 csts = -1; nvme_dev_list_remove(dev); if (dev->bar) { nvme_freeze_queues(dev); csts = readl(dev->bar + NVME_REG_CSTS); } if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { for (i = dev->queue_count - 1; i >= 0; i--) { struct nvme_queue *nvmeq = dev->queues[i]; nvme_suspend_queue(nvmeq); } } else { nvme_disable_io_queues(dev); nvme_shutdown_ctrl(dev); nvme_disable_queue(dev, 0); } nvme_dev_unmap(dev); for (i = dev->queue_count - 1; i >= 0; i--) nvme_clear_queue(dev->queues[i]); } static void nvme_dev_remove(struct nvme_dev *dev) { struct nvme_ns *ns, *next; list_for_each_entry_safe(ns, next, &dev->namespaces, list) nvme_ns_remove(ns); } static int nvme_setup_prp_pools(struct nvme_dev *dev) { dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, PAGE_SIZE, PAGE_SIZE, 0); if (!dev->prp_page_pool) return -ENOMEM; /* Optimisation for I/Os between 4k and 128k */ dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 256, 256, 0); if (!dev->prp_small_pool) { dma_pool_destroy(dev->prp_page_pool); return -ENOMEM; } return 0; } static void nvme_release_prp_pools(struct nvme_dev *dev) { dma_pool_destroy(dev->prp_page_pool); dma_pool_destroy(dev->prp_small_pool); } static DEFINE_IDA(nvme_instance_ida); static int nvme_set_instance(struct nvme_dev *dev) { int instance, error; do { if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) return -ENODEV; spin_lock(&dev_list_lock); error = ida_get_new(&nvme_instance_ida, &instance); spin_unlock(&dev_list_lock); } while (error == -EAGAIN); if (error) return -ENODEV; dev->ctrl.instance = instance; return 0; } static void nvme_release_instance(struct nvme_dev *dev) { spin_lock(&dev_list_lock); ida_remove(&nvme_instance_ida, dev->ctrl.instance); spin_unlock(&dev_list_lock); } static void nvme_free_dev(struct kref *kref) { struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref); put_device(dev->dev); put_device(dev->device); nvme_release_instance(dev); if (dev->tagset.tags) blk_mq_free_tag_set(&dev->tagset); if (dev->ctrl.admin_q) blk_put_queue(dev->ctrl.admin_q); kfree(dev->queues); kfree(dev->entry); kfree(dev); } static int nvme_dev_open(struct inode *inode, struct file *f) { struct nvme_dev *dev; int instance = iminor(inode); int ret = -ENODEV; spin_lock(&dev_list_lock); list_for_each_entry(dev, &dev_list, node) { if (dev->ctrl.instance == instance) { if (!dev->ctrl.admin_q) { ret = -EWOULDBLOCK; break; } if (!kref_get_unless_zero(&dev->kref)) break; f->private_data = dev; ret = 0; break; } } spin_unlock(&dev_list_lock); return ret; } static int nvme_dev_release(struct inode *inode, struct file *f) { struct nvme_dev *dev = f->private_data; kref_put(&dev->kref, nvme_free_dev); return 0; } static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg) { struct nvme_dev *dev = f->private_data; struct nvme_ns *ns; switch (cmd) { case NVME_IOCTL_ADMIN_CMD: return nvme_user_cmd(&dev->ctrl, NULL, (void __user *)arg); case NVME_IOCTL_IO_CMD: if (list_empty(&dev->namespaces)) return -ENOTTY; ns = list_first_entry(&dev->namespaces, struct nvme_ns, list); return nvme_user_cmd(&dev->ctrl, ns, (void __user *)arg); case NVME_IOCTL_RESET: dev_warn(dev->dev, "resetting controller\n"); return nvme_reset(dev); case NVME_IOCTL_SUBSYS_RESET: return nvme_subsys_reset(dev); default: return -ENOTTY; } } static const struct file_operations nvme_dev_fops = { .owner = THIS_MODULE, .open = nvme_dev_open, .release = nvme_dev_release, .unlocked_ioctl = nvme_dev_ioctl, .compat_ioctl = nvme_dev_ioctl, }; static void nvme_probe_work(struct work_struct *work) { struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work); bool start_thread = false; int result; result = nvme_dev_map(dev); if (result) goto out; result = nvme_configure_admin_queue(dev); if (result) goto unmap; spin_lock(&dev_list_lock); if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) { start_thread = true; nvme_thread = NULL; } list_add(&dev->node, &dev_list); spin_unlock(&dev_list_lock); if (start_thread) { nvme_thread = kthread_run(nvme_kthread, NULL, "nvme"); wake_up_all(&nvme_kthread_wait); } else wait_event_killable(nvme_kthread_wait, nvme_thread); if (IS_ERR_OR_NULL(nvme_thread)) { result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR; goto disable; } nvme_init_queue(dev->queues[0], 0); result = nvme_alloc_admin_tags(dev); if (result) goto disable; result = nvme_setup_io_queues(dev); if (result) goto free_tags; dev->ctrl.event_limit = 1; /* * Keep the controller around but remove all namespaces if we don't have * any working I/O queue. */ if (dev->online_queues < 2) { dev_warn(dev->dev, "IO queues not created\n"); nvme_dev_remove(dev); } else { nvme_unfreeze_queues(dev); nvme_dev_add(dev); } return; free_tags: nvme_dev_remove_admin(dev); blk_put_queue(dev->ctrl.admin_q); dev->ctrl.admin_q = NULL; dev->queues[0]->tags = NULL; disable: nvme_disable_queue(dev, 0); nvme_dev_list_remove(dev); unmap: nvme_dev_unmap(dev); out: if (!work_busy(&dev->reset_work)) nvme_dead_ctrl(dev); } static int nvme_remove_dead_ctrl(void *arg) { struct nvme_dev *dev = (struct nvme_dev *)arg; struct pci_dev *pdev = to_pci_dev(dev->dev); if (pci_get_drvdata(pdev)) pci_stop_and_remove_bus_device_locked(pdev); kref_put(&dev->kref, nvme_free_dev); return 0; } static void nvme_dead_ctrl(struct nvme_dev *dev) { dev_warn(dev->dev, "Device failed to resume\n"); kref_get(&dev->kref); if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d", dev->ctrl.instance))) { dev_err(dev->dev, "Failed to start controller remove task\n"); kref_put(&dev->kref, nvme_free_dev); } } static void nvme_reset_work(struct work_struct *ws) { struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work); bool in_probe = work_busy(&dev->probe_work); nvme_dev_shutdown(dev); /* Synchronize with device probe so that work will see failure status * and exit gracefully without trying to schedule another reset */ flush_work(&dev->probe_work); /* Fail this device if reset occured during probe to avoid * infinite initialization loops. */ if (in_probe) { nvme_dead_ctrl(dev); return; } /* Schedule device resume asynchronously so the reset work is available * to cleanup errors that may occur during reinitialization */ schedule_work(&dev->probe_work); } static int __nvme_reset(struct nvme_dev *dev) { if (work_pending(&dev->reset_work)) return -EBUSY; list_del_init(&dev->node); queue_work(nvme_workq, &dev->reset_work); return 0; } static int nvme_reset(struct nvme_dev *dev) { int ret; if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) return -ENODEV; spin_lock(&dev_list_lock); ret = __nvme_reset(dev); spin_unlock(&dev_list_lock); if (!ret) { flush_work(&dev->reset_work); flush_work(&dev->probe_work); return 0; } return ret; } static ssize_t nvme_sysfs_reset(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct nvme_dev *ndev = dev_get_drvdata(dev); int ret; ret = nvme_reset(ndev); if (ret < 0) return ret; return count; } static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) { *val = readl(to_nvme_dev(ctrl)->bar + off); return 0; } static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { .reg_read32 = nvme_pci_reg_read32, }; static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int node, result = -ENOMEM; struct nvme_dev *dev; node = dev_to_node(&pdev->dev); if (node == NUMA_NO_NODE) set_dev_node(&pdev->dev, 0); dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); if (!dev) return -ENOMEM; dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry), GFP_KERNEL, node); if (!dev->entry) goto free; dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), GFP_KERNEL, node); if (!dev->queues) goto free; INIT_LIST_HEAD(&dev->namespaces); INIT_WORK(&dev->reset_work, nvme_reset_work); dev->dev = get_device(&pdev->dev); pci_set_drvdata(pdev, dev); dev->ctrl.ops = &nvme_pci_ctrl_ops; dev->ctrl.dev = dev->dev; result = nvme_set_instance(dev); if (result) goto put_pci; result = nvme_setup_prp_pools(dev); if (result) goto release; kref_init(&dev->kref); dev->device = device_create(nvme_class, &pdev->dev, MKDEV(nvme_char_major, dev->ctrl.instance), dev, "nvme%d", dev->ctrl.instance); if (IS_ERR(dev->device)) { result = PTR_ERR(dev->device); goto release_pools; } get_device(dev->device); dev_set_drvdata(dev->device, dev); result = device_create_file(dev->device, &dev_attr_reset_controller); if (result) goto put_dev; INIT_LIST_HEAD(&dev->node); INIT_WORK(&dev->scan_work, nvme_dev_scan); INIT_WORK(&dev->probe_work, nvme_probe_work); schedule_work(&dev->probe_work); return 0; put_dev: device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance)); put_device(dev->device); release_pools: nvme_release_prp_pools(dev); release: nvme_release_instance(dev); put_pci: put_device(dev->dev); free: kfree(dev->queues); kfree(dev->entry); kfree(dev); return result; } static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) { struct nvme_dev *dev = pci_get_drvdata(pdev); if (prepare) nvme_dev_shutdown(dev); else schedule_work(&dev->probe_work); } static void nvme_shutdown(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); nvme_dev_shutdown(dev); } static void nvme_remove(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); spin_lock(&dev_list_lock); list_del_init(&dev->node); spin_unlock(&dev_list_lock); pci_set_drvdata(pdev, NULL); flush_work(&dev->probe_work); flush_work(&dev->reset_work); flush_work(&dev->scan_work); device_remove_file(dev->device, &dev_attr_reset_controller); nvme_dev_remove(dev); nvme_dev_shutdown(dev); nvme_dev_remove_admin(dev); device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance)); nvme_free_queues(dev, 0); nvme_release_cmb(dev); nvme_release_prp_pools(dev); kref_put(&dev->kref, nvme_free_dev); } /* These functions are yet to be implemented */ #define nvme_error_detected NULL #define nvme_dump_registers NULL #define nvme_link_reset NULL #define nvme_slot_reset NULL #define nvme_error_resume NULL #ifdef CONFIG_PM_SLEEP static int nvme_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct nvme_dev *ndev = pci_get_drvdata(pdev); nvme_dev_shutdown(ndev); return 0; } static int nvme_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct nvme_dev *ndev = pci_get_drvdata(pdev); schedule_work(&ndev->probe_work); return 0; } #endif static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); static const struct pci_error_handlers nvme_err_handler = { .error_detected = nvme_error_detected, .mmio_enabled = nvme_dump_registers, .link_reset = nvme_link_reset, .slot_reset = nvme_slot_reset, .resume = nvme_error_resume, .reset_notify = nvme_reset_notify, }; /* Move to pci_ids.h later */ #define PCI_CLASS_STORAGE_EXPRESS 0x010802 static const struct pci_device_id nvme_id_table[] = { { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, { 0, } }; MODULE_DEVICE_TABLE(pci, nvme_id_table); static struct pci_driver nvme_driver = { .name = "nvme", .id_table = nvme_id_table, .probe = nvme_probe, .remove = nvme_remove, .shutdown = nvme_shutdown, .driver = { .pm = &nvme_dev_pm_ops, }, .err_handler = &nvme_err_handler, }; static int __init nvme_init(void) { int result; init_waitqueue_head(&nvme_kthread_wait); nvme_workq = create_singlethread_workqueue("nvme"); if (!nvme_workq) return -ENOMEM; result = register_blkdev(nvme_major, "nvme"); if (result < 0) goto kill_workq; else if (result > 0) nvme_major = result; result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", &nvme_dev_fops); if (result < 0) goto unregister_blkdev; else if (result > 0) nvme_char_major = result; nvme_class = class_create(THIS_MODULE, "nvme"); if (IS_ERR(nvme_class)) { result = PTR_ERR(nvme_class); goto unregister_chrdev; } result = pci_register_driver(&nvme_driver); if (result) goto destroy_class; return 0; destroy_class: class_destroy(nvme_class); unregister_chrdev: __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); unregister_blkdev: unregister_blkdev(nvme_major, "nvme"); kill_workq: destroy_workqueue(nvme_workq); return result; } static void __exit nvme_exit(void) { pci_unregister_driver(&nvme_driver); unregister_blkdev(nvme_major, "nvme"); destroy_workqueue(nvme_workq); class_destroy(nvme_class); __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); BUG_ON(nvme_thread && !IS_ERR(nvme_thread)); _nvme_check_size(); } MODULE_AUTHOR("Matthew Wilcox "); MODULE_LICENSE("GPL"); MODULE_VERSION("1.0"); module_init(nvme_init); module_exit(nvme_exit);