/* Copyright (C) 2004 - 2009 Ivo van Doorn This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt73usb Abstract: rt73usb device specific routines. Supported chipsets: rt2571W & rt2671. */ #include #include #include #include #include #include #include #include #include "rt2x00.h" #include "rt2x00usb.h" #include "rt73usb.h" /* * Allow hardware encryption to be disabled. */ static int modparam_nohwcrypt; module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); /* * Register access. * All access to the CSR registers will go through the methods * rt2x00usb_register_read and rt2x00usb_register_write. * BBP and RF register require indirect register access, * and use the CSR registers BBPCSR and RFCSR to achieve this. * These indirect registers work with busy bits, * and we will try maximal REGISTER_BUSY_COUNT times to access * the register while taking a REGISTER_BUSY_DELAY us delay * between each attampt. When the busy bit is still set at that time, * the access attempt is considered to have failed, * and we will print an error. * The _lock versions must be used if you already hold the csr_mutex */ #define WAIT_FOR_BBP(__dev, __reg) \ rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) #define WAIT_FOR_RF(__dev, __reg) \ rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, const u8 value) { u32 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the BBP becomes available, afterwards we * can safely write the new data into the register. */ if (WAIT_FOR_BBP(rt2x00dev, ®)) { reg = 0; rt2x00_set_field32(®, PHY_CSR3_VALUE, value); rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); } mutex_unlock(&rt2x00dev->csr_mutex); } static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev, const unsigned int word, u8 *value) { u32 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the BBP becomes available, afterwards we * can safely write the read request into the register. * After the data has been written, we wait until hardware * returns the correct value, if at any time the register * doesn't become available in time, reg will be 0xffffffff * which means we return 0xff to the caller. */ if (WAIT_FOR_BBP(rt2x00dev, ®)) { reg = 0; rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); WAIT_FOR_BBP(rt2x00dev, ®); } *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); mutex_unlock(&rt2x00dev->csr_mutex); } static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, const u32 value) { u32 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the RF becomes available, afterwards we * can safely write the new data into the register. */ if (WAIT_FOR_RF(rt2x00dev, ®)) { reg = 0; rt2x00_set_field32(®, PHY_CSR4_VALUE, value); /* * RF5225 and RF2527 contain 21 bits per RF register value, * all others contain 20 bits. */ rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 20 + (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))); rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg); rt2x00_rf_write(rt2x00dev, word, value); } mutex_unlock(&rt2x00dev->csr_mutex); } #ifdef CONFIG_RT2X00_LIB_DEBUGFS static const struct rt2x00debug rt73usb_rt2x00debug = { .owner = THIS_MODULE, .csr = { .read = rt2x00usb_register_read, .write = rt2x00usb_register_write, .flags = RT2X00DEBUGFS_OFFSET, .word_base = CSR_REG_BASE, .word_size = sizeof(u32), .word_count = CSR_REG_SIZE / sizeof(u32), }, .eeprom = { .read = rt2x00_eeprom_read, .write = rt2x00_eeprom_write, .word_base = EEPROM_BASE, .word_size = sizeof(u16), .word_count = EEPROM_SIZE / sizeof(u16), }, .bbp = { .read = rt73usb_bbp_read, .write = rt73usb_bbp_write, .word_base = BBP_BASE, .word_size = sizeof(u8), .word_count = BBP_SIZE / sizeof(u8), }, .rf = { .read = rt2x00_rf_read, .write = rt73usb_rf_write, .word_base = RF_BASE, .word_size = sizeof(u32), .word_count = RF_SIZE / sizeof(u32), }, }; #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) { u32 reg; rt2x00usb_register_read(rt2x00dev, MAC_CSR13, ®); return rt2x00_get_field32(reg, MAC_CSR13_BIT7); } #ifdef CONFIG_RT2X00_LIB_LEDS static void rt73usb_brightness_set(struct led_classdev *led_cdev, enum led_brightness brightness) { struct rt2x00_led *led = container_of(led_cdev, struct rt2x00_led, led_dev); unsigned int enabled = brightness != LED_OFF; unsigned int a_mode = (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); unsigned int bg_mode = (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); if (led->type == LED_TYPE_RADIO) { rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, MCU_LEDCS_RADIO_STATUS, enabled); rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 0, led->rt2x00dev->led_mcu_reg, REGISTER_TIMEOUT); } else if (led->type == LED_TYPE_ASSOC) { rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, MCU_LEDCS_LINK_BG_STATUS, bg_mode); rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, MCU_LEDCS_LINK_A_STATUS, a_mode); rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 0, led->rt2x00dev->led_mcu_reg, REGISTER_TIMEOUT); } else if (led->type == LED_TYPE_QUALITY) { /* * The brightness is divided into 6 levels (0 - 5), * this means we need to convert the brightness * argument into the matching level within that range. */ rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, brightness / (LED_FULL / 6), led->rt2x00dev->led_mcu_reg, REGISTER_TIMEOUT); } } static int rt73usb_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { struct rt2x00_led *led = container_of(led_cdev, struct rt2x00_led, led_dev); u32 reg; rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, ®); rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg); return 0; } static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev, struct rt2x00_led *led, enum led_type type) { led->rt2x00dev = rt2x00dev; led->type = type; led->led_dev.brightness_set = rt73usb_brightness_set; led->led_dev.blink_set = rt73usb_blink_set; led->flags = LED_INITIALIZED; } #endif /* CONFIG_RT2X00_LIB_LEDS */ /* * Configuration handlers. */ static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_crypto *crypto, struct ieee80211_key_conf *key) { struct hw_key_entry key_entry; struct rt2x00_field32 field; u32 mask; u32 reg; if (crypto->cmd == SET_KEY) { /* * rt2x00lib can't determine the correct free * key_idx for shared keys. We have 1 register * with key valid bits. The goal is simple, read * the register, if that is full we have no slots * left. * Note that each BSS is allowed to have up to 4 * shared keys, so put a mask over the allowed * entries. */ mask = (0xf << crypto->bssidx); rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®); reg &= mask; if (reg && reg == mask) return -ENOSPC; key->hw_key_idx += reg ? ffz(reg) : 0; /* * Upload key to hardware */ memcpy(key_entry.key, crypto->key, sizeof(key_entry.key)); memcpy(key_entry.tx_mic, crypto->tx_mic, sizeof(key_entry.tx_mic)); memcpy(key_entry.rx_mic, crypto->rx_mic, sizeof(key_entry.rx_mic)); reg = SHARED_KEY_ENTRY(key->hw_key_idx); rt2x00usb_register_multiwrite(rt2x00dev, reg, &key_entry, sizeof(key_entry)); /* * The cipher types are stored over 2 registers. * bssidx 0 and 1 keys are stored in SEC_CSR1 and * bssidx 1 and 2 keys are stored in SEC_CSR5. * Using the correct defines correctly will cause overhead, * so just calculate the correct offset. */ if (key->hw_key_idx < 8) { field.bit_offset = (3 * key->hw_key_idx); field.bit_mask = 0x7 << field.bit_offset; rt2x00usb_register_read(rt2x00dev, SEC_CSR1, ®); rt2x00_set_field32(®, field, crypto->cipher); rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg); } else { field.bit_offset = (3 * (key->hw_key_idx - 8)); field.bit_mask = 0x7 << field.bit_offset; rt2x00usb_register_read(rt2x00dev, SEC_CSR5, ®); rt2x00_set_field32(®, field, crypto->cipher); rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg); } /* * The driver does not support the IV/EIV generation * in hardware. However it doesn't support the IV/EIV * inside the ieee80211 frame either, but requires it * to be provided separately for the descriptor. * rt2x00lib will cut the IV/EIV data out of all frames * given to us by mac80211, but we must tell mac80211 * to generate the IV/EIV data. */ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; } /* * SEC_CSR0 contains only single-bit fields to indicate * a particular key is valid. Because using the FIELD32() * defines directly will cause a lot of overhead we use * a calculation to determine the correct bit directly. */ mask = 1 << key->hw_key_idx; rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®); if (crypto->cmd == SET_KEY) reg |= mask; else if (crypto->cmd == DISABLE_KEY) reg &= ~mask; rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg); return 0; } static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_crypto *crypto, struct ieee80211_key_conf *key) { struct hw_pairwise_ta_entry addr_entry; struct hw_key_entry key_entry; u32 mask; u32 reg; if (crypto->cmd == SET_KEY) { /* * rt2x00lib can't determine the correct free * key_idx for pairwise keys. We have 2 registers * with key valid bits. The goal is simple, read * the first register, if that is full move to * the next register. * When both registers are full, we drop the key, * otherwise we use the first invalid entry. */ rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®); if (reg && reg == ~0) { key->hw_key_idx = 32; rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®); if (reg && reg == ~0) return -ENOSPC; } key->hw_key_idx += reg ? ffz(reg) : 0; /* * Upload key to hardware */ memcpy(key_entry.key, crypto->key, sizeof(key_entry.key)); memcpy(key_entry.tx_mic, crypto->tx_mic, sizeof(key_entry.tx_mic)); memcpy(key_entry.rx_mic, crypto->rx_mic, sizeof(key_entry.rx_mic)); reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); rt2x00usb_register_multiwrite(rt2x00dev, reg, &key_entry, sizeof(key_entry)); /* * Send the address and cipher type to the hardware register. */ memset(&addr_entry, 0, sizeof(addr_entry)); memcpy(&addr_entry, crypto->address, ETH_ALEN); addr_entry.cipher = crypto->cipher; reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); rt2x00usb_register_multiwrite(rt2x00dev, reg, &addr_entry, sizeof(addr_entry)); /* * Enable pairwise lookup table for given BSS idx, * without this received frames will not be decrypted * by the hardware. */ rt2x00usb_register_read(rt2x00dev, SEC_CSR4, ®); reg |= (1 << crypto->bssidx); rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg); /* * The driver does not support the IV/EIV generation * in hardware. However it doesn't support the IV/EIV * inside the ieee80211 frame either, but requires it * to be provided separately for the descriptor. * rt2x00lib will cut the IV/EIV data out of all frames * given to us by mac80211, but we must tell mac80211 * to generate the IV/EIV data. */ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; } /* * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate * a particular key is valid. Because using the FIELD32() * defines directly will cause a lot of overhead we use * a calculation to determine the correct bit directly. */ if (key->hw_key_idx < 32) { mask = 1 << key->hw_key_idx; rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®); if (crypto->cmd == SET_KEY) reg |= mask; else if (crypto->cmd == DISABLE_KEY) reg &= ~mask; rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg); } else { mask = 1 << (key->hw_key_idx - 32); rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®); if (crypto->cmd == SET_KEY) reg |= mask; else if (crypto->cmd == DISABLE_KEY) reg &= ~mask; rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg); } return 0; } static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev, const unsigned int filter_flags) { u32 reg; /* * Start configuration steps. * Note that the version error will always be dropped * and broadcast frames will always be accepted since * there is no filter for it at this time. */ rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, !(filter_flags & FIF_FCSFAIL)); rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, !(filter_flags & FIF_PLCPFAIL)); rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, !(filter_flags & (FIF_CONTROL | FIF_PSPOLL))); rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, !(filter_flags & FIF_PROMISC_IN_BSS)); rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, !(filter_flags & FIF_PROMISC_IN_BSS) && !rt2x00dev->intf_ap_count); rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, !(filter_flags & FIF_ALLMULTI)); rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, !(filter_flags & FIF_CONTROL)); rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); } static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf, struct rt2x00intf_conf *conf, const unsigned int flags) { u32 reg; if (flags & CONFIG_UPDATE_TYPE) { /* * Enable synchronisation. */ rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); } if (flags & CONFIG_UPDATE_MAC) { reg = le32_to_cpu(conf->mac[1]); rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); conf->mac[1] = cpu_to_le32(reg); rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac, sizeof(conf->mac)); } if (flags & CONFIG_UPDATE_BSSID) { reg = le32_to_cpu(conf->bssid[1]); rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); conf->bssid[1] = cpu_to_le32(reg); rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4, conf->bssid, sizeof(conf->bssid)); } } static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp, u32 changed) { u32 reg; rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32); rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); if (changed & BSS_CHANGED_ERP_PREAMBLE) { rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®); rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, !!erp->short_preamble); rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); } if (changed & BSS_CHANGED_BASIC_RATES) rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates); if (changed & BSS_CHANGED_BEACON_INT) { rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, erp->beacon_int * 16); rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); } if (changed & BSS_CHANGED_ERP_SLOT) { rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®); rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); rt2x00usb_register_read(rt2x00dev, MAC_CSR8, ®); rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg); } } static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) { u8 r3; u8 r4; u8 r77; u8 temp; rt73usb_bbp_read(rt2x00dev, 3, &r3); rt73usb_bbp_read(rt2x00dev, 4, &r4); rt73usb_bbp_read(rt2x00dev, 77, &r77); rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); /* * Configure the RX antenna. */ switch (ant->rx) { case ANTENNA_HW_DIVERSITY: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); temp = !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags) && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp); break; case ANTENNA_A: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); else rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); break; case ANTENNA_B: default: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); else rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); break; } rt73usb_bbp_write(rt2x00dev, 77, r77); rt73usb_bbp_write(rt2x00dev, 3, r3); rt73usb_bbp_write(rt2x00dev, 4, r4); } static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) { u8 r3; u8 r4; u8 r77; rt73usb_bbp_read(rt2x00dev, 3, &r3); rt73usb_bbp_read(rt2x00dev, 4, &r4); rt73usb_bbp_read(rt2x00dev, 77, &r77); rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags)); /* * Configure the RX antenna. */ switch (ant->rx) { case ANTENNA_HW_DIVERSITY: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); break; case ANTENNA_A: rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); break; case ANTENNA_B: default: rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); break; } rt73usb_bbp_write(rt2x00dev, 77, r77); rt73usb_bbp_write(rt2x00dev, 3, r3); rt73usb_bbp_write(rt2x00dev, 4, r4); } struct antenna_sel { u8 word; /* * value[0] -> non-LNA * value[1] -> LNA */ u8 value[2]; }; static const struct antenna_sel antenna_sel_a[] = { { 96, { 0x58, 0x78 } }, { 104, { 0x38, 0x48 } }, { 75, { 0xfe, 0x80 } }, { 86, { 0xfe, 0x80 } }, { 88, { 0xfe, 0x80 } }, { 35, { 0x60, 0x60 } }, { 97, { 0x58, 0x58 } }, { 98, { 0x58, 0x58 } }, }; static const struct antenna_sel antenna_sel_bg[] = { { 96, { 0x48, 0x68 } }, { 104, { 0x2c, 0x3c } }, { 75, { 0xfe, 0x80 } }, { 86, { 0xfe, 0x80 } }, { 88, { 0xfe, 0x80 } }, { 35, { 0x50, 0x50 } }, { 97, { 0x48, 0x48 } }, { 98, { 0x48, 0x48 } }, }; static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) { const struct antenna_sel *sel; unsigned int lna; unsigned int i; u32 reg; /* * We should never come here because rt2x00lib is supposed * to catch this and send us the correct antenna explicitely. */ BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || ant->tx == ANTENNA_SW_DIVERSITY); if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { sel = antenna_sel_a; lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); } else { sel = antenna_sel_bg; lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); } for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); rt2x00usb_register_read(rt2x00dev, PHY_CSR0, ®); rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ)); rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)); rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg); if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225)) rt73usb_config_antenna_5x(rt2x00dev, ant); else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527)) rt73usb_config_antenna_2x(rt2x00dev, ant); } static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf) { u16 eeprom; short lna_gain = 0; if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) { if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) lna_gain += 14; rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom); lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); } else { rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom); lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); } rt2x00dev->lna_gain = lna_gain; } static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev, struct rf_channel *rf, const int txpower) { u8 r3; u8 r94; u8 smart; rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)); rt73usb_bbp_read(rt2x00dev, 3, &r3); rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); rt73usb_bbp_write(rt2x00dev, 3, r3); r94 = 6; if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) r94 += txpower - MAX_TXPOWER; else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) r94 += txpower; rt73usb_bbp_write(rt2x00dev, 94, r94); rt73usb_rf_write(rt2x00dev, 1, rf->rf1); rt73usb_rf_write(rt2x00dev, 2, rf->rf2); rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); rt73usb_rf_write(rt2x00dev, 4, rf->rf4); rt73usb_rf_write(rt2x00dev, 1, rf->rf1); rt73usb_rf_write(rt2x00dev, 2, rf->rf2); rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); rt73usb_rf_write(rt2x00dev, 4, rf->rf4); rt73usb_rf_write(rt2x00dev, 1, rf->rf1); rt73usb_rf_write(rt2x00dev, 2, rf->rf2); rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); rt73usb_rf_write(rt2x00dev, 4, rf->rf4); udelay(10); } static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev, const int txpower) { struct rf_channel rf; rt2x00_rf_read(rt2x00dev, 1, &rf.rf1); rt2x00_rf_read(rt2x00dev, 2, &rf.rf2); rt2x00_rf_read(rt2x00dev, 3, &rf.rf3); rt2x00_rf_read(rt2x00dev, 4, &rf.rf4); rt73usb_config_channel(rt2x00dev, &rf, txpower); } static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf) { u32 reg; rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®); rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1); rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0); rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0); rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, libconf->conf->long_frame_max_tx_count); rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, libconf->conf->short_frame_max_tx_count); rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); } static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf) { enum dev_state state = (libconf->conf->flags & IEEE80211_CONF_PS) ? STATE_SLEEP : STATE_AWAKE; u32 reg; if (state == STATE_SLEEP) { rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®); rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, rt2x00dev->beacon_int - 10); rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, libconf->conf->listen_interval - 1); rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); /* We must first disable autowake before it can be enabled */ rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, USB_MODE_SLEEP, REGISTER_TIMEOUT); } else { rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®); rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, USB_MODE_WAKEUP, REGISTER_TIMEOUT); } } static void rt73usb_config(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf, const unsigned int flags) { /* Always recalculate LNA gain before changing configuration */ rt73usb_config_lna_gain(rt2x00dev, libconf); if (flags & IEEE80211_CONF_CHANGE_CHANNEL) rt73usb_config_channel(rt2x00dev, &libconf->rf, libconf->conf->power_level); if ((flags & IEEE80211_CONF_CHANGE_POWER) && !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level); if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) rt73usb_config_retry_limit(rt2x00dev, libconf); if (flags & IEEE80211_CONF_CHANGE_PS) rt73usb_config_ps(rt2x00dev, libconf); } /* * Link tuning */ static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) { u32 reg; /* * Update FCS error count from register. */ rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®); qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); /* * Update False CCA count from register. */ rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®); qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); } static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev, struct link_qual *qual, u8 vgc_level) { if (qual->vgc_level != vgc_level) { rt73usb_bbp_write(rt2x00dev, 17, vgc_level); qual->vgc_level = vgc_level; qual->vgc_level_reg = vgc_level; } } static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) { rt73usb_set_vgc(rt2x00dev, qual, 0x20); } static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual, const u32 count) { u8 up_bound; u8 low_bound; /* * Determine r17 bounds. */ if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { low_bound = 0x28; up_bound = 0x48; if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) { low_bound += 0x10; up_bound += 0x10; } } else { if (qual->rssi > -82) { low_bound = 0x1c; up_bound = 0x40; } else if (qual->rssi > -84) { low_bound = 0x1c; up_bound = 0x20; } else { low_bound = 0x1c; up_bound = 0x1c; } if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) { low_bound += 0x14; up_bound += 0x10; } } /* * If we are not associated, we should go straight to the * dynamic CCA tuning. */ if (!rt2x00dev->intf_associated) goto dynamic_cca_tune; /* * Special big-R17 for very short distance */ if (qual->rssi > -35) { rt73usb_set_vgc(rt2x00dev, qual, 0x60); return; } /* * Special big-R17 for short distance */ if (qual->rssi >= -58) { rt73usb_set_vgc(rt2x00dev, qual, up_bound); return; } /* * Special big-R17 for middle-short distance */ if (qual->rssi >= -66) { rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10); return; } /* * Special mid-R17 for middle distance */ if (qual->rssi >= -74) { rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08); return; } /* * Special case: Change up_bound based on the rssi. * Lower up_bound when rssi is weaker then -74 dBm. */ up_bound -= 2 * (-74 - qual->rssi); if (low_bound > up_bound) up_bound = low_bound; if (qual->vgc_level > up_bound) { rt73usb_set_vgc(rt2x00dev, qual, up_bound); return; } dynamic_cca_tune: /* * r17 does not yet exceed upper limit, continue and base * the r17 tuning on the false CCA count. */ if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) rt73usb_set_vgc(rt2x00dev, qual, min_t(u8, qual->vgc_level + 4, up_bound)); else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) rt73usb_set_vgc(rt2x00dev, qual, max_t(u8, qual->vgc_level - 4, low_bound)); } /* * Queue handlers. */ static void rt73usb_start_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u32 reg; switch (queue->qid) { case QID_RX: rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); break; case QID_BEACON: rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); break; default: break; } } static void rt73usb_stop_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u32 reg; switch (queue->qid) { case QID_RX: rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); break; case QID_BEACON: rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); break; default: break; } } /* * Firmware functions */ static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev) { return FIRMWARE_RT2571; } static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev, const u8 *data, const size_t len) { u16 fw_crc; u16 crc; /* * Only support 2kb firmware files. */ if (len != 2048) return FW_BAD_LENGTH; /* * The last 2 bytes in the firmware array are the crc checksum itself, * this means that we should never pass those 2 bytes to the crc * algorithm. */ fw_crc = (data[len - 2] << 8 | data[len - 1]); /* * Use the crc itu-t algorithm. */ crc = crc_itu_t(0, data, len - 2); crc = crc_itu_t_byte(crc, 0); crc = crc_itu_t_byte(crc, 0); return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; } static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, const u8 *data, const size_t len) { unsigned int i; int status; u32 reg; /* * Wait for stable hardware. */ for (i = 0; i < 100; i++) { rt2x00usb_register_read(rt2x00dev, MAC_CSR0, ®); if (reg) break; msleep(1); } if (!reg) { ERROR(rt2x00dev, "Unstable hardware.\n"); return -EBUSY; } /* * Write firmware to device. */ rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len); /* * Send firmware request to device to load firmware, * we need to specify a long timeout time. */ status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, USB_MODE_FIRMWARE, REGISTER_TIMEOUT_FIRMWARE); if (status < 0) { ERROR(rt2x00dev, "Failed to write Firmware to device.\n"); return status; } return 0; } /* * Initialization functions. */ static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev) { u32 reg; rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, ®); rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg); /* * CCK TXD BBP registers */ rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, ®); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg); /* * OFDM TXD BBP registers */ rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, ®); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg); rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, ®); rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg); rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, ®); rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg); rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); rt2x00usb_register_read(rt2x00dev, MAC_CSR6, ®); rt2x00_set_field32(®, MAC_CSR6_MAX_FRAME_UNIT, 0xfff); rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg); rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718); if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) return -EBUSY; rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00); /* * Invalidate all Shared Keys (SEC_CSR0), * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) */ rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000); rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000); rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000); reg = 0x000023b0; if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)) rt2x00_set_field32(®, PHY_CSR1_RF_RPI, 1); rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg); rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06); rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606); rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408); rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®); rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); /* * Clear all beacons * For the Beacon base registers we only need to clear * the first byte since that byte contains the VALID and OWNER * bits which (when set to 0) will invalidate the entire beacon. */ rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0); rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0); rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0); rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0); /* * We must clear the error counters. * These registers are cleared on read, * so we may pass a useless variable to store the value. */ rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®); rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®); rt2x00usb_register_read(rt2x00dev, STA_CSR2, ®); /* * Reset MAC and BBP registers. */ rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); return 0; } static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) { unsigned int i; u8 value; for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt73usb_bbp_read(rt2x00dev, 0, &value); if ((value != 0xff) && (value != 0x00)) return 0; udelay(REGISTER_BUSY_DELAY); } ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); return -EACCES; } static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev) { unsigned int i; u16 eeprom; u8 reg_id; u8 value; if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev))) return -EACCES; rt73usb_bbp_write(rt2x00dev, 3, 0x80); rt73usb_bbp_write(rt2x00dev, 15, 0x30); rt73usb_bbp_write(rt2x00dev, 21, 0xc8); rt73usb_bbp_write(rt2x00dev, 22, 0x38); rt73usb_bbp_write(rt2x00dev, 23, 0x06); rt73usb_bbp_write(rt2x00dev, 24, 0xfe); rt73usb_bbp_write(rt2x00dev, 25, 0x0a); rt73usb_bbp_write(rt2x00dev, 26, 0x0d); rt73usb_bbp_write(rt2x00dev, 32, 0x0b); rt73usb_bbp_write(rt2x00dev, 34, 0x12); rt73usb_bbp_write(rt2x00dev, 37, 0x07); rt73usb_bbp_write(rt2x00dev, 39, 0xf8); rt73usb_bbp_write(rt2x00dev, 41, 0x60); rt73usb_bbp_write(rt2x00dev, 53, 0x10); rt73usb_bbp_write(rt2x00dev, 54, 0x18); rt73usb_bbp_write(rt2x00dev, 60, 0x10); rt73usb_bbp_write(rt2x00dev, 61, 0x04); rt73usb_bbp_write(rt2x00dev, 62, 0x04); rt73usb_bbp_write(rt2x00dev, 75, 0xfe); rt73usb_bbp_write(rt2x00dev, 86, 0xfe); rt73usb_bbp_write(rt2x00dev, 88, 0xfe); rt73usb_bbp_write(rt2x00dev, 90, 0x0f); rt73usb_bbp_write(rt2x00dev, 99, 0x00); rt73usb_bbp_write(rt2x00dev, 102, 0x16); rt73usb_bbp_write(rt2x00dev, 107, 0x04); for (i = 0; i < EEPROM_BBP_SIZE; i++) { rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); if (eeprom != 0xffff && eeprom != 0x0000) { reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); rt73usb_bbp_write(rt2x00dev, reg_id, value); } } return 0; } /* * Device state switch handlers. */ static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev) { /* * Initialize all registers. */ if (unlikely(rt73usb_init_registers(rt2x00dev) || rt73usb_init_bbp(rt2x00dev))) return -EIO; return 0; } static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev) { rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818); /* * Disable synchronisation. */ rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0); rt2x00usb_disable_radio(rt2x00dev); } static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg, reg2; unsigned int i; char put_to_sleep; put_to_sleep = (state != STATE_AWAKE); rt2x00usb_register_read(rt2x00dev, MAC_CSR12, ®); rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); /* * Device is not guaranteed to be in the requested state yet. * We must wait until the register indicates that the * device has entered the correct state. */ for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2x00usb_register_read(rt2x00dev, MAC_CSR12, ®2); state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE); if (state == !put_to_sleep) return 0; rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); msleep(10); } return -EBUSY; } static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int retval = 0; switch (state) { case STATE_RADIO_ON: retval = rt73usb_enable_radio(rt2x00dev); break; case STATE_RADIO_OFF: rt73usb_disable_radio(rt2x00dev); break; case STATE_RADIO_IRQ_ON: case STATE_RADIO_IRQ_OFF: /* No support, but no error either */ break; case STATE_DEEP_SLEEP: case STATE_SLEEP: case STATE_STANDBY: case STATE_AWAKE: retval = rt73usb_set_state(rt2x00dev, state); break; default: retval = -ENOTSUPP; break; } if (unlikely(retval)) ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", state, retval); return retval; } /* * TX descriptor initialization */ static void rt73usb_write_tx_desc(struct queue_entry *entry, struct txentry_desc *txdesc) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); __le32 *txd = (__le32 *) entry->skb->data; u32 word; /* * Start writing the descriptor words. */ rt2x00_desc_read(txd, 0, &word); rt2x00_set_field32(&word, TXD_W0_BURST, test_bit(ENTRY_TXD_BURST, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_VALID, 1); rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_ACK, test_bit(ENTRY_TXD_ACK, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_OFDM, (txdesc->rate_mode == RATE_MODE_OFDM)); rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); rt2x00_set_field32(&word, TXD_W0_BURST2, test_bit(ENTRY_TXD_BURST, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); rt2x00_desc_write(txd, 0, word); rt2x00_desc_read(txd, 1, &word); rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid); rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs); rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); rt2x00_desc_write(txd, 1, word); rt2x00_desc_read(txd, 2, &word); rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->u.plcp.length_low); rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->u.plcp.length_high); rt2x00_desc_write(txd, 2, word); if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); } rt2x00_desc_read(txd, 5, &word); rt2x00_set_field32(&word, TXD_W5_TX_POWER, TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power)); rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); rt2x00_desc_write(txd, 5, word); /* * Register descriptor details in skb frame descriptor. */ skbdesc->flags |= SKBDESC_DESC_IN_SKB; skbdesc->desc = txd; skbdesc->desc_len = TXD_DESC_SIZE; } /* * TX data initialization */ static void rt73usb_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; unsigned int beacon_base; unsigned int padding_len; u32 orig_reg, reg; /* * Disable beaconing while we are reloading the beacon data, * otherwise we might be sending out invalid data. */ rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); orig_reg = reg; rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); /* * Add space for the descriptor in front of the skb. */ skb_push(entry->skb, TXD_DESC_SIZE); memset(entry->skb->data, 0, TXD_DESC_SIZE); /* * Write the TX descriptor for the beacon. */ rt73usb_write_tx_desc(entry, txdesc); /* * Dump beacon to userspace through debugfs. */ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); /* * Write entire beacon with descriptor and padding to register. */ padding_len = roundup(entry->skb->len, 4) - entry->skb->len; if (padding_len && skb_pad(entry->skb, padding_len)) { ERROR(rt2x00dev, "Failure padding beacon, aborting\n"); /* skb freed by skb_pad() on failure */ entry->skb = NULL; rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg); return; } beacon_base = HW_BEACON_OFFSET(entry->entry_idx); rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data, entry->skb->len + padding_len); /* * Enable beaconing again. * * For Wi-Fi faily generated beacons between participating stations. * Set TBTT phase adaptive adjustment step to 8us (default 16us) */ rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); /* * Clean up the beacon skb. */ dev_kfree_skb(entry->skb); entry->skb = NULL; } static void rt73usb_clear_beacon(struct queue_entry *entry) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; unsigned int beacon_base; u32 reg; /* * Disable beaconing while we are reloading the beacon data, * otherwise we might be sending out invalid data. */ rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); /* * Clear beacon. */ beacon_base = HW_BEACON_OFFSET(entry->entry_idx); rt2x00usb_register_write(rt2x00dev, beacon_base, 0); /* * Enable beaconing again. */ rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); } static int rt73usb_get_tx_data_len(struct queue_entry *entry) { int length; /* * The length _must_ be a multiple of 4, * but it must _not_ be a multiple of the USB packet size. */ length = roundup(entry->skb->len, 4); length += (4 * !(length % entry->queue->usb_maxpacket)); return length; } /* * RX control handlers */ static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) { u8 offset = rt2x00dev->lna_gain; u8 lna; lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); switch (lna) { case 3: offset += 90; break; case 2: offset += 74; break; case 1: offset += 64; break; default: return 0; } if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) { if (lna == 3 || lna == 2) offset += 10; } else { if (lna == 3) offset += 6; else if (lna == 2) offset += 8; } } return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; } static void rt73usb_fill_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); __le32 *rxd = (__le32 *)entry->skb->data; u32 word0; u32 word1; /* * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of * frame data in rt2x00usb. */ memcpy(skbdesc->desc, rxd, skbdesc->desc_len); rxd = (__le32 *)skbdesc->desc; /* * It is now safe to read the descriptor on all architectures. */ rt2x00_desc_read(rxd, 0, &word0); rt2x00_desc_read(rxd, 1, &word1); if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); if (rxdesc->cipher != CIPHER_NONE) { _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]); _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]); rxdesc->dev_flags |= RXDONE_CRYPTO_IV; _rt2x00_desc_read(rxd, 4, &rxdesc->icv); rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; /* * Hardware has stripped IV/EIV data from 802.11 frame during * decryption. It has provided the data separately but rt2x00lib * should decide if it should be reinserted. */ rxdesc->flags |= RX_FLAG_IV_STRIPPED; /* * The hardware has already checked the Michael Mic and has * stripped it from the frame. Signal this to mac80211. */ rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) rxdesc->flags |= RX_FLAG_DECRYPTED; else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) rxdesc->flags |= RX_FLAG_MMIC_ERROR; } /* * Obtain the status about this packet. * When frame was received with an OFDM bitrate, * the signal is the PLCP value. If it was received with * a CCK bitrate the signal is the rate in 100kbit/s. */ rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1); rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); if (rt2x00_get_field32(word0, RXD_W0_OFDM)) rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; else rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) rxdesc->dev_flags |= RXDONE_MY_BSS; /* * Set skb pointers, and update frame information. */ skb_pull(entry->skb, entry->queue->desc_size); skb_trim(entry->skb, rxdesc->size); } /* * Device probe functions. */ static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) { u16 word; u8 *mac; s8 value; rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); /* * Start validation of the data that has been read. */ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); if (!is_valid_ether_addr(mac)) { random_ether_addr(mac); EEPROM(rt2x00dev, "MAC: %pM\n", mac); } rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, ANTENNA_B); rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, ANTENNA_B); rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226); rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0); rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, LED_MODE_DEFAULT); rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); EEPROM(rt2x00dev, "Led: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); } else { value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); } else { value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); } return 0; } static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev) { u32 reg; u16 value; u16 eeprom; /* * Read EEPROM word for configuration. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); /* * Identify RF chipset. */ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); rt2x00usb_register_read(rt2x00dev, MAC_CSR0, ®); rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) { ERROR(rt2x00dev, "Invalid RT chipset detected.\n"); return -ENODEV; } if (!rt2x00_rf(rt2x00dev, RF5226) && !rt2x00_rf(rt2x00dev, RF2528) && !rt2x00_rf(rt2x00dev, RF5225) && !rt2x00_rf(rt2x00dev, RF2527)) { ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); return -ENODEV; } /* * Identify default antenna configuration. */ rt2x00dev->default_ant.tx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); rt2x00dev->default_ant.rx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); /* * Read the Frame type. */ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags); /* * Detect if this device has an hardware controlled radio. */ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); /* * Read frequency offset. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); /* * Read external LNA informations. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) { __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); } /* * Store led settings, for correct led behaviour. */ #ifdef CONFIG_RT2X00_LIB_LEDS rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom); rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); if (value == LED_MODE_SIGNAL_STRENGTH) rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_0)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_1)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_2)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_3)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_4)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_RDY_G)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_RDY_A)); #endif /* CONFIG_RT2X00_LIB_LEDS */ return 0; } /* * RF value list for RF2528 * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_bg_2528[] = { { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, }; /* * RF value list for RF5226 * Supports: 2.4 GHz & 5.2 GHz */ static const struct rf_channel rf_vals_5226[] = { { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, /* 802.11 UNI / HyperLan 2 */ { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 }, { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 }, { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b }, { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 }, { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b }, { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 }, { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 }, { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b }, /* 802.11 HyperLan 2 */ { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 }, { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b }, { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 }, { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b }, { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 }, { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 }, { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b }, { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 }, { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b }, { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 }, /* 802.11 UNII */ { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 }, { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f }, { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 }, { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 }, { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f }, { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 }, /* MMAC(Japan)J52 ch 34,38,42,46 */ { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b }, { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 }, { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b }, { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 }, }; /* * RF value list for RF5225 & RF2527 * Supports: 2.4 GHz & 5.2 GHz */ static const struct rf_channel rf_vals_5225_2527[] = { { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, /* 802.11 UNI / HyperLan 2 */ { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, /* 802.11 HyperLan 2 */ { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, /* 802.11 UNII */ { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, /* MMAC(Japan)J52 ch 34,38,42,46 */ { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, }; static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) { struct hw_mode_spec *spec = &rt2x00dev->spec; struct channel_info *info; char *tx_power; unsigned int i; /* * Initialize all hw fields. * * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are * capable of sending the buffered frames out after the DTIM * transmission using rt2x00lib_beacondone. This will send out * multicast and broadcast traffic immediately instead of buffering it * infinitly and thus dropping it after some time. */ rt2x00dev->hw->flags = IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_SUPPORTS_PS | IEEE80211_HW_PS_NULLFUNC_STACK; SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0)); /* * Initialize hw_mode information. */ spec->supported_bands = SUPPORT_BAND_2GHZ; spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; if (rt2x00_rf(rt2x00dev, RF2528)) { spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528); spec->channels = rf_vals_bg_2528; } else if (rt2x00_rf(rt2x00dev, RF5226)) { spec->supported_bands |= SUPPORT_BAND_5GHZ; spec->num_channels = ARRAY_SIZE(rf_vals_5226); spec->channels = rf_vals_5226; } else if (rt2x00_rf(rt2x00dev, RF2527)) { spec->num_channels = 14; spec->channels = rf_vals_5225_2527; } else if (rt2x00_rf(rt2x00dev, RF5225)) { spec->supported_bands |= SUPPORT_BAND_5GHZ; spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527); spec->channels = rf_vals_5225_2527; } /* * Create channel information array */ info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; spec->channels_info = info; tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); for (i = 0; i < 14; i++) { info[i].max_power = MAX_TXPOWER; info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); } if (spec->num_channels > 14) { tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); for (i = 14; i < spec->num_channels; i++) { info[i].max_power = MAX_TXPOWER; info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); } } return 0; } static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev) { int retval; /* * Allocate eeprom data. */ retval = rt73usb_validate_eeprom(rt2x00dev); if (retval) return retval; retval = rt73usb_init_eeprom(rt2x00dev); if (retval) return retval; /* * Initialize hw specifications. */ retval = rt73usb_probe_hw_mode(rt2x00dev); if (retval) return retval; /* * This device has multiple filters for control frames, * but has no a separate filter for PS Poll frames. */ __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); /* * This device requires firmware. */ __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); if (!modparam_nohwcrypt) __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); /* * Set the rssi offset. */ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; return 0; } /* * IEEE80211 stack callback functions. */ static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx, const struct ieee80211_tx_queue_params *params) { struct rt2x00_dev *rt2x00dev = hw->priv; struct data_queue *queue; struct rt2x00_field32 field; int retval; u32 reg; u32 offset; /* * First pass the configuration through rt2x00lib, that will * update the queue settings and validate the input. After that * we are free to update the registers based on the value * in the queue parameter. */ retval = rt2x00mac_conf_tx(hw, queue_idx, params); if (retval) return retval; /* * We only need to perform additional register initialization * for WMM queues/ */ if (queue_idx >= 4) return 0; queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); /* Update WMM TXOP register */ offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); field.bit_offset = (queue_idx & 1) * 16; field.bit_mask = 0xffff << field.bit_offset; rt2x00usb_register_read(rt2x00dev, offset, ®); rt2x00_set_field32(®, field, queue->txop); rt2x00usb_register_write(rt2x00dev, offset, reg); /* Update WMM registers */ field.bit_offset = queue_idx * 4; field.bit_mask = 0xf << field.bit_offset; rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, ®); rt2x00_set_field32(®, field, queue->aifs); rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg); rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, ®); rt2x00_set_field32(®, field, queue->cw_min); rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg); rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, ®); rt2x00_set_field32(®, field, queue->cw_max); rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg); return 0; } static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct rt2x00_dev *rt2x00dev = hw->priv; u64 tsf; u32 reg; rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, ®); tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, ®); tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); return tsf; } static const struct ieee80211_ops rt73usb_mac80211_ops = { .tx = rt2x00mac_tx, .start = rt2x00mac_start, .stop = rt2x00mac_stop, .add_interface = rt2x00mac_add_interface, .remove_interface = rt2x00mac_remove_interface, .config = rt2x00mac_config, .configure_filter = rt2x00mac_configure_filter, .set_tim = rt2x00mac_set_tim, .set_key = rt2x00mac_set_key, .sw_scan_start = rt2x00mac_sw_scan_start, .sw_scan_complete = rt2x00mac_sw_scan_complete, .get_stats = rt2x00mac_get_stats, .bss_info_changed = rt2x00mac_bss_info_changed, .conf_tx = rt73usb_conf_tx, .get_tsf = rt73usb_get_tsf, .rfkill_poll = rt2x00mac_rfkill_poll, .flush = rt2x00mac_flush, .set_antenna = rt2x00mac_set_antenna, .get_antenna = rt2x00mac_get_antenna, .get_ringparam = rt2x00mac_get_ringparam, .tx_frames_pending = rt2x00mac_tx_frames_pending, }; static const struct rt2x00lib_ops rt73usb_rt2x00_ops = { .probe_hw = rt73usb_probe_hw, .get_firmware_name = rt73usb_get_firmware_name, .check_firmware = rt73usb_check_firmware, .load_firmware = rt73usb_load_firmware, .initialize = rt2x00usb_initialize, .uninitialize = rt2x00usb_uninitialize, .clear_entry = rt2x00usb_clear_entry, .set_device_state = rt73usb_set_device_state, .rfkill_poll = rt73usb_rfkill_poll, .link_stats = rt73usb_link_stats, .reset_tuner = rt73usb_reset_tuner, .link_tuner = rt73usb_link_tuner, .watchdog = rt2x00usb_watchdog, .start_queue = rt73usb_start_queue, .kick_queue = rt2x00usb_kick_queue, .stop_queue = rt73usb_stop_queue, .flush_queue = rt2x00usb_flush_queue, .write_tx_desc = rt73usb_write_tx_desc, .write_beacon = rt73usb_write_beacon, .clear_beacon = rt73usb_clear_beacon, .get_tx_data_len = rt73usb_get_tx_data_len, .fill_rxdone = rt73usb_fill_rxdone, .config_shared_key = rt73usb_config_shared_key, .config_pairwise_key = rt73usb_config_pairwise_key, .config_filter = rt73usb_config_filter, .config_intf = rt73usb_config_intf, .config_erp = rt73usb_config_erp, .config_ant = rt73usb_config_ant, .config = rt73usb_config, }; static const struct data_queue_desc rt73usb_queue_rx = { .entry_num = 32, .data_size = DATA_FRAME_SIZE, .desc_size = RXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_usb), }; static const struct data_queue_desc rt73usb_queue_tx = { .entry_num = 32, .data_size = DATA_FRAME_SIZE, .desc_size = TXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_usb), }; static const struct data_queue_desc rt73usb_queue_bcn = { .entry_num = 4, .data_size = MGMT_FRAME_SIZE, .desc_size = TXINFO_SIZE, .priv_size = sizeof(struct queue_entry_priv_usb), }; static const struct rt2x00_ops rt73usb_ops = { .name = KBUILD_MODNAME, .max_sta_intf = 1, .max_ap_intf = 4, .eeprom_size = EEPROM_SIZE, .rf_size = RF_SIZE, .tx_queues = NUM_TX_QUEUES, .extra_tx_headroom = TXD_DESC_SIZE, .rx = &rt73usb_queue_rx, .tx = &rt73usb_queue_tx, .bcn = &rt73usb_queue_bcn, .lib = &rt73usb_rt2x00_ops, .hw = &rt73usb_mac80211_ops, #ifdef CONFIG_RT2X00_LIB_DEBUGFS .debugfs = &rt73usb_rt2x00debug, #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * rt73usb module information. */ static struct usb_device_id rt73usb_device_table[] = { /* AboCom */ { USB_DEVICE(0x07b8, 0xb21b) }, { USB_DEVICE(0x07b8, 0xb21c) }, { USB_DEVICE(0x07b8, 0xb21d) }, { USB_DEVICE(0x07b8, 0xb21e) }, { USB_DEVICE(0x07b8, 0xb21f) }, /* AL */ { USB_DEVICE(0x14b2, 0x3c10) }, /* Amigo */ { USB_DEVICE(0x148f, 0x9021) }, { USB_DEVICE(0x0eb0, 0x9021) }, /* AMIT */ { USB_DEVICE(0x18c5, 0x0002) }, /* Askey */ { USB_DEVICE(0x1690, 0x0722) }, /* ASUS */ { USB_DEVICE(0x0b05, 0x1723) }, { USB_DEVICE(0x0b05, 0x1724) }, /* Belkin */ { USB_DEVICE(0x050d, 0x705a) }, { USB_DEVICE(0x050d, 0x905b) }, { USB_DEVICE(0x050d, 0x905c) }, /* Billionton */ { USB_DEVICE(0x1631, 0xc019) }, { USB_DEVICE(0x08dd, 0x0120) }, /* Buffalo */ { USB_DEVICE(0x0411, 0x00d8) }, { USB_DEVICE(0x0411, 0x00d9) }, { USB_DEVICE(0x0411, 0x00e6) }, { USB_DEVICE(0x0411, 0x00f4) }, { USB_DEVICE(0x0411, 0x0116) }, { USB_DEVICE(0x0411, 0x0119) }, { USB_DEVICE(0x0411, 0x0137) }, /* CEIVA */ { USB_DEVICE(0x178d, 0x02be) }, /* CNet */ { USB_DEVICE(0x1371, 0x9022) }, { USB_DEVICE(0x1371, 0x9032) }, /* Conceptronic */ { USB_DEVICE(0x14b2, 0x3c22) }, /* Corega */ { USB_DEVICE(0x07aa, 0x002e) }, /* D-Link */ { USB_DEVICE(0x07d1, 0x3c03) }, { USB_DEVICE(0x07d1, 0x3c04) }, { USB_DEVICE(0x07d1, 0x3c06) }, { USB_DEVICE(0x07d1, 0x3c07) }, /* Edimax */ { USB_DEVICE(0x7392, 0x7318) }, { USB_DEVICE(0x7392, 0x7618) }, /* EnGenius */ { USB_DEVICE(0x1740, 0x3701) }, /* Gemtek */ { USB_DEVICE(0x15a9, 0x0004) }, /* Gigabyte */ { USB_DEVICE(0x1044, 0x8008) }, { USB_DEVICE(0x1044, 0x800a) }, /* Huawei-3Com */ { USB_DEVICE(0x1472, 0x0009) }, /* Hercules */ { USB_DEVICE(0x06f8, 0xe002) }, { USB_DEVICE(0x06f8, 0xe010) }, { USB_DEVICE(0x06f8, 0xe020) }, /* Linksys */ { USB_DEVICE(0x13b1, 0x0020) }, { USB_DEVICE(0x13b1, 0x0023) }, { USB_DEVICE(0x13b1, 0x0028) }, /* MSI */ { USB_DEVICE(0x0db0, 0x4600) }, { USB_DEVICE(0x0db0, 0x6877) }, { USB_DEVICE(0x0db0, 0x6874) }, { USB_DEVICE(0x0db0, 0xa861) }, { USB_DEVICE(0x0db0, 0xa874) }, /* Ovislink */ { USB_DEVICE(0x1b75, 0x7318) }, /* Ralink */ { USB_DEVICE(0x04bb, 0x093d) }, { USB_DEVICE(0x148f, 0x2573) }, { USB_DEVICE(0x148f, 0x2671) }, { USB_DEVICE(0x0812, 0x3101) }, /* Qcom */ { USB_DEVICE(0x18e8, 0x6196) }, { USB_DEVICE(0x18e8, 0x6229) }, { USB_DEVICE(0x18e8, 0x6238) }, /* Samsung */ { USB_DEVICE(0x04e8, 0x4471) }, /* Senao */ { USB_DEVICE(0x1740, 0x7100) }, /* Sitecom */ { USB_DEVICE(0x0df6, 0x0024) }, { USB_DEVICE(0x0df6, 0x0027) }, { USB_DEVICE(0x0df6, 0x002f) }, { USB_DEVICE(0x0df6, 0x90ac) }, { USB_DEVICE(0x0df6, 0x9712) }, /* Surecom */ { USB_DEVICE(0x0769, 0x31f3) }, /* Tilgin */ { USB_DEVICE(0x6933, 0x5001) }, /* Philips */ { USB_DEVICE(0x0471, 0x200a) }, /* Planex */ { USB_DEVICE(0x2019, 0xab01) }, { USB_DEVICE(0x2019, 0xab50) }, /* WideTell */ { USB_DEVICE(0x7167, 0x3840) }, /* Zcom */ { USB_DEVICE(0x0cde, 0x001c) }, /* ZyXEL */ { USB_DEVICE(0x0586, 0x3415) }, { 0, } }; MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver."); MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards"); MODULE_DEVICE_TABLE(usb, rt73usb_device_table); MODULE_FIRMWARE(FIRMWARE_RT2571); MODULE_LICENSE("GPL"); static int rt73usb_probe(struct usb_interface *usb_intf, const struct usb_device_id *id) { return rt2x00usb_probe(usb_intf, &rt73usb_ops); } static struct usb_driver rt73usb_driver = { .name = KBUILD_MODNAME, .id_table = rt73usb_device_table, .probe = rt73usb_probe, .disconnect = rt2x00usb_disconnect, .suspend = rt2x00usb_suspend, .resume = rt2x00usb_resume, }; static int __init rt73usb_init(void) { return usb_register(&rt73usb_driver); } static void __exit rt73usb_exit(void) { usb_deregister(&rt73usb_driver); } module_init(rt73usb_init); module_exit(rt73usb_exit);