/** * Copyright (c) 2014 Redpine Signals Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "rsi_mgmt.h" #include "rsi_common.h" #include "rsi_ps.h" static struct bootup_params boot_params_20 = { .magic_number = cpu_to_le16(0x5aa5), .crystal_good_time = 0x0, .valid = cpu_to_le32(VALID_20), .reserved_for_valids = 0x0, .bootup_mode_info = 0x0, .digital_loop_back_params = 0x0, .rtls_timestamp_en = 0x0, .host_spi_intr_cfg = 0x0, .device_clk_info = {{ .pll_config_g = { .tapll_info_g = { .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| (TA_PLL_M_VAL_20)), .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), }, .pll960_info_g = { .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| (PLL960_N_VAL_20)), .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), .pll_reg_3 = 0x0, }, .afepll_info_g = { .pll_reg = cpu_to_le16(0x9f0), } }, .switch_clk_g = { .switch_clk_info = cpu_to_le16(0xb), .bbp_lmac_clk_reg_val = cpu_to_le16(0x111), .umac_clock_reg_config = cpu_to_le16(0x48), .qspi_uart_clock_reg_config = cpu_to_le16(0x1211) } }, { .pll_config_g = { .tapll_info_g = { .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| (TA_PLL_M_VAL_20)), .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), }, .pll960_info_g = { .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| (PLL960_N_VAL_20)), .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), .pll_reg_3 = 0x0, }, .afepll_info_g = { .pll_reg = cpu_to_le16(0x9f0), } }, .switch_clk_g = { .switch_clk_info = 0x0, .bbp_lmac_clk_reg_val = 0x0, .umac_clock_reg_config = 0x0, .qspi_uart_clock_reg_config = 0x0 } }, { .pll_config_g = { .tapll_info_g = { .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)| (TA_PLL_M_VAL_20)), .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20), }, .pll960_info_g = { .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)| (PLL960_N_VAL_20)), .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20), .pll_reg_3 = 0x0, }, .afepll_info_g = { .pll_reg = cpu_to_le16(0x9f0), } }, .switch_clk_g = { .switch_clk_info = 0x0, .bbp_lmac_clk_reg_val = 0x0, .umac_clock_reg_config = 0x0, .qspi_uart_clock_reg_config = 0x0 } } }, .buckboost_wakeup_cnt = 0x0, .pmu_wakeup_wait = 0x0, .shutdown_wait_time = 0x0, .pmu_slp_clkout_sel = 0x0, .wdt_prog_value = 0x0, .wdt_soc_rst_delay = 0x0, .dcdc_operation_mode = 0x0, .soc_reset_wait_cnt = 0x0, .waiting_time_at_fresh_sleep = 0x0, .max_threshold_to_avoid_sleep = 0x0, .beacon_resedue_alg_en = 0, }; static struct bootup_params boot_params_40 = { .magic_number = cpu_to_le16(0x5aa5), .crystal_good_time = 0x0, .valid = cpu_to_le32(VALID_40), .reserved_for_valids = 0x0, .bootup_mode_info = 0x0, .digital_loop_back_params = 0x0, .rtls_timestamp_en = 0x0, .host_spi_intr_cfg = 0x0, .device_clk_info = {{ .pll_config_g = { .tapll_info_g = { .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| (TA_PLL_M_VAL_40)), .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), }, .pll960_info_g = { .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| (PLL960_N_VAL_40)), .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), .pll_reg_3 = 0x0, }, .afepll_info_g = { .pll_reg = cpu_to_le16(0x9f0), } }, .switch_clk_g = { .switch_clk_info = cpu_to_le16(0x09), .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121), .umac_clock_reg_config = cpu_to_le16(0x48), .qspi_uart_clock_reg_config = cpu_to_le16(0x1211) } }, { .pll_config_g = { .tapll_info_g = { .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| (TA_PLL_M_VAL_40)), .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), }, .pll960_info_g = { .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| (PLL960_N_VAL_40)), .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), .pll_reg_3 = 0x0, }, .afepll_info_g = { .pll_reg = cpu_to_le16(0x9f0), } }, .switch_clk_g = { .switch_clk_info = 0x0, .bbp_lmac_clk_reg_val = 0x0, .umac_clock_reg_config = 0x0, .qspi_uart_clock_reg_config = 0x0 } }, { .pll_config_g = { .tapll_info_g = { .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)| (TA_PLL_M_VAL_40)), .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40), }, .pll960_info_g = { .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)| (PLL960_N_VAL_40)), .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40), .pll_reg_3 = 0x0, }, .afepll_info_g = { .pll_reg = cpu_to_le16(0x9f0), } }, .switch_clk_g = { .switch_clk_info = 0x0, .bbp_lmac_clk_reg_val = 0x0, .umac_clock_reg_config = 0x0, .qspi_uart_clock_reg_config = 0x0 } } }, .buckboost_wakeup_cnt = 0x0, .pmu_wakeup_wait = 0x0, .shutdown_wait_time = 0x0, .pmu_slp_clkout_sel = 0x0, .wdt_prog_value = 0x0, .wdt_soc_rst_delay = 0x0, .dcdc_operation_mode = 0x0, .soc_reset_wait_cnt = 0x0, .waiting_time_at_fresh_sleep = 0x0, .max_threshold_to_avoid_sleep = 0x0, .beacon_resedue_alg_en = 0, }; static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130}; /** * rsi_set_default_parameters() - This function sets default parameters. * @common: Pointer to the driver private structure. * * Return: none */ static void rsi_set_default_parameters(struct rsi_common *common) { common->band = NL80211_BAND_2GHZ; common->channel_width = BW_20MHZ; common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD; common->channel = 1; common->min_rate = 0xffff; common->fsm_state = FSM_CARD_NOT_READY; common->iface_down = true; common->endpoint = EP_2GHZ_20MHZ; common->driver_mode = 1; /* End to end mode */ common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/ common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/ common->rf_power_val = 0; /* Default 1.9V */ common->wlan_rf_power_mode = 0; common->obm_ant_sel_val = 2; common->beacon_interval = RSI_BEACON_INTERVAL; common->dtim_cnt = RSI_DTIM_COUNT; } /** * rsi_set_contention_vals() - This function sets the contention values for the * backoff procedure. * @common: Pointer to the driver private structure. * * Return: None. */ static void rsi_set_contention_vals(struct rsi_common *common) { u8 ii = 0; for (; ii < NUM_EDCA_QUEUES; ii++) { common->tx_qinfo[ii].wme_params = (((common->edca_params[ii].cw_min / 2) + (common->edca_params[ii].aifs)) * WMM_SHORT_SLOT_TIME + SIFS_DURATION); common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params; common->tx_qinfo[ii].pkt_contended = 0; } } /** * rsi_send_internal_mgmt_frame() - This function sends management frames to * firmware.Also schedules packet to queue * for transmission. * @common: Pointer to the driver private structure. * @skb: Pointer to the socket buffer structure. * * Return: 0 on success, -1 on failure. */ static int rsi_send_internal_mgmt_frame(struct rsi_common *common, struct sk_buff *skb) { struct skb_info *tx_params; struct rsi_cmd_desc *desc; if (skb == NULL) { rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__); return -ENOMEM; } desc = (struct rsi_cmd_desc *)skb->data; desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP); skb->priority = MGMT_SOFT_Q; tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data; tx_params->flags |= INTERNAL_MGMT_PKT; skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb); rsi_set_event(&common->tx_thread.event); return 0; } /** * rsi_load_radio_caps() - This function is used to send radio capabilities * values to firmware. * @common: Pointer to the driver private structure. * * Return: 0 on success, corresponding negative error code on failure. */ static int rsi_load_radio_caps(struct rsi_common *common) { struct rsi_radio_caps *radio_caps; struct rsi_hw *adapter = common->priv; u16 inx = 0; u8 ii; u8 radio_id = 0; u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0}; struct sk_buff *skb; u16 frame_len = sizeof(struct rsi_radio_caps); rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__); skb = dev_alloc_skb(frame_len); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, frame_len); radio_caps = (struct rsi_radio_caps *)skb->data; radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES; radio_caps->channel_num = common->channel; radio_caps->rf_model = RSI_RF_TYPE; if (common->channel_width == BW_40MHZ) { radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ; radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ; if (common->fsm_state == FSM_MAC_INIT_DONE) { struct ieee80211_hw *hw = adapter->hw; struct ieee80211_conf *conf = &hw->conf; if (conf_is_ht40_plus(conf)) { radio_caps->radio_cfg_info = RSI_CMDDESC_LOWER_20_ENABLE; radio_caps->radio_info = RSI_CMDDESC_LOWER_20_ENABLE; } else if (conf_is_ht40_minus(conf)) { radio_caps->radio_cfg_info = RSI_CMDDESC_UPPER_20_ENABLE; radio_caps->radio_info = RSI_CMDDESC_UPPER_20_ENABLE; } else { radio_caps->radio_cfg_info = RSI_CMDDESC_40MHZ; radio_caps->radio_info = RSI_CMDDESC_FULL_40_ENABLE; } } } radio_caps->radio_info |= radio_id; radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE); radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE); radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE); radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE); radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE); radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE); for (ii = 0; ii < MAX_HW_QUEUES; ii++) { radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3); radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f); radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2); radio_caps->qos_params[ii].txop_q = 0; } for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) { radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(common->edca_params[ii].cw_min); radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(common->edca_params[ii].cw_max); radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16((common->edca_params[ii].aifs) << 8); radio_caps->qos_params[ii].txop_q = cpu_to_le16(common->edca_params[ii].txop); } radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff); radio_caps->qos_params[MGMT_HW_Q].txop_q = 0; radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff); memcpy(&common->rate_pwr[0], &gc[0], 40); for (ii = 0; ii < 20; ii++) radio_caps->gcpd_per_rate[inx++] = cpu_to_le16(common->rate_pwr[ii] & 0x00FF); rsi_set_len_qno(&radio_caps->desc_dword0.len_qno, (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); skb_put(skb, frame_len); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module. * @common: Pointer to the driver private structure. * @msg: Pointer to received packet. * @msg_len: Length of the recieved packet. * @type: Type of recieved packet. * * Return: 0 on success, -1 on failure. */ static int rsi_mgmt_pkt_to_core(struct rsi_common *common, u8 *msg, s32 msg_len) { struct rsi_hw *adapter = common->priv; struct ieee80211_tx_info *info; struct skb_info *rx_params; u8 pad_bytes = msg[4]; struct sk_buff *skb; if (!adapter->sc_nvifs) return -ENOLINK; msg_len -= pad_bytes; if (msg_len <= 0) { rsi_dbg(MGMT_RX_ZONE, "%s: Invalid rx msg of len = %d\n", __func__, msg_len); return -EINVAL; } skb = dev_alloc_skb(msg_len); if (!skb) return -ENOMEM; skb_put_data(skb, (u8 *)(msg + FRAME_DESC_SZ + pad_bytes), msg_len); info = IEEE80211_SKB_CB(skb); rx_params = (struct skb_info *)info->driver_data; rx_params->rssi = rsi_get_rssi(msg); rx_params->channel = rsi_get_channel(msg); rsi_indicate_pkt_to_os(common, skb); return 0; } /** * rsi_hal_send_sta_notify_frame() - This function sends the station notify * frame to firmware. * @common: Pointer to the driver private structure. * @opmode: Operating mode of device. * @notify_event: Notification about station connection. * @bssid: bssid. * @qos_enable: Qos is enabled. * @aid: Aid (unique for all STA). * * Return: status: 0 on success, corresponding negative error code on failure. */ static int rsi_hal_send_sta_notify_frame(struct rsi_common *common, u8 opmode, u8 notify_event, const unsigned char *bssid, u8 qos_enable, u16 aid) { struct sk_buff *skb = NULL; struct rsi_peer_notify *peer_notify; u16 vap_id = 0; int status; u16 frame_len = sizeof(struct rsi_peer_notify); rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__); skb = dev_alloc_skb(frame_len); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, frame_len); peer_notify = (struct rsi_peer_notify *)skb->data; peer_notify->command = cpu_to_le16(opmode << 1); switch (notify_event) { case STA_CONNECTED: peer_notify->command |= cpu_to_le16(RSI_ADD_PEER); break; case STA_DISCONNECTED: peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER); break; default: break; } peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4); ether_addr_copy(peer_notify->mac_addr, bssid); peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY); peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0); rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno, (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY; peer_notify->desc.desc_dword3.sta_id = vap_id; skb_put(skb, frame_len); status = rsi_send_internal_mgmt_frame(common, skb); if (!status && qos_enable) { rsi_set_contention_vals(common); status = rsi_load_radio_caps(common); } return status; } /** * rsi_send_aggregation_params_frame() - This function sends the ampdu * indication frame to firmware. * @common: Pointer to the driver private structure. * @tid: traffic identifier. * @ssn: ssn. * @buf_size: buffer size. * @event: notification about station connection. * * Return: 0 on success, corresponding negative error code on failure. */ int rsi_send_aggregation_params_frame(struct rsi_common *common, u16 tid, u16 ssn, u8 buf_size, u8 event) { struct sk_buff *skb = NULL; struct rsi_aggr_params *aggr_params; u8 peer_id = 0; u16 frame_len = sizeof(struct rsi_aggr_params); skb = dev_alloc_skb(frame_len); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, frame_len); aggr_params = (struct rsi_aggr_params *)skb->data; rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__); rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); aggr_params->desc_dword0.frame_type = AMPDU_IND; aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK; aggr_params->peer_id = peer_id; if (event == STA_TX_ADDBA_DONE) { aggr_params->seq_start = cpu_to_le16(ssn); aggr_params->baw_size = cpu_to_le16(buf_size); aggr_params->aggr_params |= RSI_AGGR_PARAMS_START; } else if (event == STA_RX_ADDBA_DONE) { aggr_params->seq_start = cpu_to_le16(ssn); aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START | RSI_AGGR_PARAMS_RX_AGGR); } else if (event == STA_RX_DELBA) { aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR; } skb_put(skb, frame_len); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_program_bb_rf() - This function starts base band and RF programming. * This is called after initial configurations are done. * @common: Pointer to the driver private structure. * * Return: 0 on success, corresponding negative error code on failure. */ static int rsi_program_bb_rf(struct rsi_common *common) { struct sk_buff *skb; struct rsi_bb_rf_prog *bb_rf_prog; u16 frame_len = sizeof(struct rsi_bb_rf_prog); rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__); skb = dev_alloc_skb(frame_len); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, frame_len); bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data; rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA; bb_rf_prog->endpoint = common->endpoint; bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode; if (common->rf_reset) { bb_rf_prog->flags = cpu_to_le16(RF_RESET_ENABLE); rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n", __func__); common->rf_reset = 0; } common->bb_rf_prog_count = 1; bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE | (RSI_RF_TYPE << 4)); skb_put(skb, frame_len); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_set_vap_capabilities() - This function send vap capability to firmware. * @common: Pointer to the driver private structure. * @opmode: Operating mode of device. * * Return: 0 on success, corresponding negative error code on failure. */ int rsi_set_vap_capabilities(struct rsi_common *common, enum opmode mode, u8 *mac_addr, u8 vap_id, u8 vap_status) { struct sk_buff *skb = NULL; struct rsi_vap_caps *vap_caps; struct rsi_hw *adapter = common->priv; struct ieee80211_hw *hw = adapter->hw; struct ieee80211_conf *conf = &hw->conf; u16 frame_len = sizeof(struct rsi_vap_caps); rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__); skb = dev_alloc_skb(frame_len); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, frame_len); vap_caps = (struct rsi_vap_caps *)skb->data; rsi_set_len_qno(&vap_caps->desc_dword0.len_qno, (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES; vap_caps->status = vap_status; vap_caps->vif_type = mode; vap_caps->channel_bw = common->channel_width; vap_caps->vap_id = vap_id; vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) | (common->radio_id & 0xf); memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN); vap_caps->keep_alive_period = cpu_to_le16(90); vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD); vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold); if (common->band == NL80211_BAND_5GHZ) { vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6); vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6); } else { vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1); vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1); } if (conf_is_ht40(conf)) { if (conf_is_ht40_minus(conf)) vap_caps->ctrl_rate_flags = cpu_to_le16(UPPER_20_ENABLE); else if (conf_is_ht40_plus(conf)) vap_caps->ctrl_rate_flags = cpu_to_le16(LOWER_20_ENABLE); else vap_caps->ctrl_rate_flags = cpu_to_le16(FULL40M_ENABLE); } vap_caps->default_data_rate = 0; vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval); vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt); skb_put(skb, frame_len); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_hal_load_key() - This function is used to load keys within the firmware. * @common: Pointer to the driver private structure. * @data: Pointer to the key data. * @key_len: Key length to be loaded. * @key_type: Type of key: GROUP/PAIRWISE. * @key_id: Key index. * @cipher: Type of cipher used. * * Return: 0 on success, -1 on failure. */ int rsi_hal_load_key(struct rsi_common *common, u8 *data, u16 key_len, u8 key_type, u8 key_id, u32 cipher) { struct sk_buff *skb = NULL; struct rsi_set_key *set_key; u16 key_descriptor = 0; u16 frame_len = sizeof(struct rsi_set_key); rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__); skb = dev_alloc_skb(frame_len); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, frame_len); set_key = (struct rsi_set_key *)skb->data; if (key_type == RSI_GROUP_KEY) key_descriptor = RSI_KEY_TYPE_BROADCAST; if ((cipher == WLAN_CIPHER_SUITE_WEP40) || (cipher == WLAN_CIPHER_SUITE_WEP104)) { key_id = 0; key_descriptor |= RSI_WEP_KEY; if (key_len >= 13) key_descriptor |= RSI_WEP_KEY_104; } else if (cipher != KEY_TYPE_CLEAR) { key_descriptor |= RSI_CIPHER_WPA; if (cipher == WLAN_CIPHER_SUITE_TKIP) key_descriptor |= RSI_CIPHER_TKIP; } key_descriptor |= RSI_PROTECT_DATA_FRAMES; key_descriptor |= ((key_id << RSI_KEY_ID_OFFSET) & RSI_KEY_ID_MASK); rsi_set_len_qno(&set_key->desc_dword0.len_qno, (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); set_key->desc_dword0.frame_type = SET_KEY_REQ; set_key->key_desc = cpu_to_le16(key_descriptor); if (data) { if ((cipher == WLAN_CIPHER_SUITE_WEP40) || (cipher == WLAN_CIPHER_SUITE_WEP104)) { memcpy(&set_key->key[key_id][1], data, key_len * 2); } else { memcpy(&set_key->key[0][0], data, key_len); } memcpy(set_key->tx_mic_key, &data[16], 8); memcpy(set_key->rx_mic_key, &data[24], 8); } else { memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ); } skb_put(skb, frame_len); return rsi_send_internal_mgmt_frame(common, skb); } /* * This function sends the common device configuration parameters to device. * This frame includes the useful information to make device works on * specific operating mode. */ static int rsi_send_common_dev_params(struct rsi_common *common) { struct sk_buff *skb; u16 frame_len; struct rsi_config_vals *dev_cfgs; frame_len = sizeof(struct rsi_config_vals); rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n"); skb = dev_alloc_skb(frame_len); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, frame_len); dev_cfgs = (struct rsi_config_vals *)skb->data; memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals))); rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ), RSI_COEX_Q); dev_cfgs->pkt_type = COMMON_DEV_CONFIG; dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode; dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode; dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP; dev_cfgs->unused_soc_gpio_bitmap = cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP); dev_cfgs->opermode = common->oper_mode; dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode; dev_cfgs->driver_mode = common->driver_mode; dev_cfgs->region_code = NL80211_DFS_FCC; dev_cfgs->antenna_sel_val = common->obm_ant_sel_val; skb_put(skb, frame_len); return rsi_send_internal_mgmt_frame(common, skb); } /* * rsi_load_bootup_params() - This function send bootup params to the firmware. * @common: Pointer to the driver private structure. * * Return: 0 on success, corresponding error code on failure. */ static int rsi_load_bootup_params(struct rsi_common *common) { struct sk_buff *skb; struct rsi_boot_params *boot_params; rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__); skb = dev_alloc_skb(sizeof(struct rsi_boot_params)); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, sizeof(struct rsi_boot_params)); boot_params = (struct rsi_boot_params *)skb->data; rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__); if (common->channel_width == BW_40MHZ) { memcpy(&boot_params->bootup_params, &boot_params_40, sizeof(struct bootup_params)); rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__, UMAC_CLK_40BW); boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW); } else { memcpy(&boot_params->bootup_params, &boot_params_20, sizeof(struct bootup_params)); if (boot_params_20.valid != cpu_to_le32(VALID_20)) { boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW); rsi_dbg(MGMT_TX_ZONE, "%s: Packet 20MHZ <=== %d\n", __func__, UMAC_CLK_20BW); } else { boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ); rsi_dbg(MGMT_TX_ZONE, "%s: Packet 20MHZ <=== %d\n", __func__, UMAC_CLK_40MHZ); } } /** * Bit{0:11} indicates length of the Packet * Bit{12:15} indicates host queue number */ boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) | (RSI_WIFI_MGMT_Q << 12)); boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST); skb_put(skb, sizeof(struct rsi_boot_params)); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_send_reset_mac() - This function prepares reset MAC request and sends an * internal management frame to indicate it to firmware. * @common: Pointer to the driver private structure. * * Return: 0 on success, corresponding error code on failure. */ static int rsi_send_reset_mac(struct rsi_common *common) { struct sk_buff *skb; struct rsi_mac_frame *mgmt_frame; rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__); skb = dev_alloc_skb(FRAME_DESC_SZ); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, FRAME_DESC_SZ); mgmt_frame = (struct rsi_mac_frame *)skb->data; mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ); mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8); skb_put(skb, FRAME_DESC_SZ); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_band_check() - This function programs the band * @common: Pointer to the driver private structure. * * Return: 0 on success, corresponding error code on failure. */ int rsi_band_check(struct rsi_common *common) { struct rsi_hw *adapter = common->priv; struct ieee80211_hw *hw = adapter->hw; u8 prev_bw = common->channel_width; u8 prev_ep = common->endpoint; struct ieee80211_channel *curchan = hw->conf.chandef.chan; int status = 0; if (common->band != curchan->band) { common->rf_reset = 1; common->band = curchan->band; } if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) || (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20)) common->channel_width = BW_20MHZ; else common->channel_width = BW_40MHZ; if (common->band == NL80211_BAND_2GHZ) { if (common->channel_width) common->endpoint = EP_2GHZ_40MHZ; else common->endpoint = EP_2GHZ_20MHZ; } else { if (common->channel_width) common->endpoint = EP_5GHZ_40MHZ; else common->endpoint = EP_5GHZ_20MHZ; } if (common->endpoint != prev_ep) { status = rsi_program_bb_rf(common); if (status) return status; } if (common->channel_width != prev_bw) { status = rsi_load_bootup_params(common); if (status) return status; status = rsi_load_radio_caps(common); if (status) return status; } return status; } /** * rsi_set_channel() - This function programs the channel. * @common: Pointer to the driver private structure. * @channel: Channel value to be set. * * Return: 0 on success, corresponding error code on failure. */ int rsi_set_channel(struct rsi_common *common, struct ieee80211_channel *channel) { struct sk_buff *skb = NULL; struct rsi_chan_config *chan_cfg; u16 frame_len = sizeof(struct rsi_chan_config); rsi_dbg(MGMT_TX_ZONE, "%s: Sending scan req frame\n", __func__); skb = dev_alloc_skb(frame_len); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } if (!channel) { dev_kfree_skb(skb); return 0; } memset(skb->data, 0, frame_len); chan_cfg = (struct rsi_chan_config *)skb->data; rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); chan_cfg->desc_dword0.frame_type = SCAN_REQUEST; chan_cfg->channel_number = channel->hw_value; chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain; chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain; chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4; if ((channel->flags & IEEE80211_CHAN_NO_IR) || (channel->flags & IEEE80211_CHAN_RADAR)) { chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR; } else { if (common->tx_power < channel->max_power) chan_cfg->tx_power = cpu_to_le16(common->tx_power); else chan_cfg->tx_power = cpu_to_le16(channel->max_power); } chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf); if (common->channel_width == BW_40MHZ) chan_cfg->channel_width = 0x1; common->channel = channel->hw_value; skb_put(skb, frame_len); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_send_radio_params_update() - This function sends the radio * parameters update to device * @common: Pointer to the driver private structure. * @channel: Channel value to be set. * * Return: 0 on success, corresponding error code on failure. */ int rsi_send_radio_params_update(struct rsi_common *common) { struct rsi_mac_frame *cmd_frame; struct sk_buff *skb = NULL; rsi_dbg(MGMT_TX_ZONE, "%s: Sending Radio Params update frame\n", __func__); skb = dev_alloc_skb(FRAME_DESC_SZ); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, FRAME_DESC_SZ); cmd_frame = (struct rsi_mac_frame *)skb->data; cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE); cmd_frame->desc_word[3] = cpu_to_le16(BIT(0)); cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8); skb_put(skb, FRAME_DESC_SZ); return rsi_send_internal_mgmt_frame(common, skb); } /* This function programs the threshold. */ int rsi_send_vap_dynamic_update(struct rsi_common *common) { struct sk_buff *skb; struct rsi_dynamic_s *dynamic_frame; rsi_dbg(MGMT_TX_ZONE, "%s: Sending vap update indication frame\n", __func__); skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s)); if (!skb) return -ENOMEM; memset(skb->data, 0, sizeof(struct rsi_dynamic_s)); dynamic_frame = (struct rsi_dynamic_s *)skb->data; rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno, sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q); dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE; dynamic_frame->desc_dword2.pkt_info = cpu_to_le32(common->rts_threshold); /* Beacon miss threshold */ dynamic_frame->frame_body.keep_alive_period = cpu_to_le16(RSI_DEF_KEEPALIVE); dynamic_frame->desc_dword3.sta_id = 0; /* vap id */ skb_put(skb, sizeof(struct rsi_dynamic_s)); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_compare() - This function is used to compare two integers * @a: pointer to the first integer * @b: pointer to the second integer * * Return: 0 if both are equal, -1 if the first is smaller, else 1 */ static int rsi_compare(const void *a, const void *b) { u16 _a = *(const u16 *)(a); u16 _b = *(const u16 *)(b); if (_a > _b) return -1; if (_a < _b) return 1; return 0; } /** * rsi_map_rates() - This function is used to map selected rates to hw rates. * @rate: The standard rate to be mapped. * @offset: Offset that will be returned. * * Return: 0 if it is a mcs rate, else 1 */ static bool rsi_map_rates(u16 rate, int *offset) { int kk; for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) { if (rate == mcs[kk]) { *offset = kk; return false; } } for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) { if (rate == rsi_rates[kk].bitrate / 5) { *offset = kk; break; } } return true; } /** * rsi_send_auto_rate_request() - This function is to set rates for connection * and send autorate request to firmware. * @common: Pointer to the driver private structure. * * Return: 0 on success, corresponding error code on failure. */ static int rsi_send_auto_rate_request(struct rsi_common *common) { struct sk_buff *skb; struct rsi_auto_rate *auto_rate; int ii = 0, jj = 0, kk = 0; struct ieee80211_hw *hw = common->priv->hw; u8 band = hw->conf.chandef.chan->band; u8 num_supported_rates = 0; u8 rate_table_offset, rate_offset = 0; u32 rate_bitmap = common->bitrate_mask[band]; u16 *selected_rates, min_rate; skb = dev_alloc_skb(sizeof(struct rsi_auto_rate)); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL); if (!selected_rates) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n", __func__); dev_kfree_skb(skb); return -ENOMEM; } memset(skb->data, 0, sizeof(struct rsi_auto_rate)); auto_rate = (struct rsi_auto_rate *)skb->data; auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f)); auto_rate->collision_tolerance = cpu_to_le16(3); auto_rate->failure_limit = cpu_to_le16(3); auto_rate->initial_boundary = cpu_to_le16(3); auto_rate->max_threshold_limt = cpu_to_le16(27); auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND); if (common->channel_width == BW_40MHZ) auto_rate->desc_word[7] |= cpu_to_le16(1); if (band == NL80211_BAND_2GHZ) { min_rate = RSI_RATE_1; rate_table_offset = 0; } else { min_rate = RSI_RATE_6; rate_table_offset = 4; } for (ii = 0, jj = 0; ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) { if (rate_bitmap & BIT(ii)) { selected_rates[jj++] = (rsi_rates[ii + rate_table_offset].bitrate / 5); rate_offset++; } } num_supported_rates = jj; if (common->vif_info[0].is_ht) { for (ii = 0; ii < ARRAY_SIZE(mcs); ii++) selected_rates[jj++] = mcs[ii]; num_supported_rates += ARRAY_SIZE(mcs); rate_offset += ARRAY_SIZE(mcs); } sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL); /* mapping the rates to RSI rates */ for (ii = 0; ii < jj; ii++) { if (rsi_map_rates(selected_rates[ii], &kk)) { auto_rate->supported_rates[ii] = cpu_to_le16(rsi_rates[kk].hw_value); } else { auto_rate->supported_rates[ii] = cpu_to_le16(rsi_mcsrates[kk]); } } /* loading HT rates in the bottom half of the auto rate table */ if (common->vif_info[0].is_ht) { for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1; ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) { if (common->vif_info[0].sgi || conf_is_ht40(&common->priv->hw->conf)) auto_rate->supported_rates[ii++] = cpu_to_le16(rsi_mcsrates[kk] | BIT(9)); else auto_rate->supported_rates[ii++] = cpu_to_le16(rsi_mcsrates[kk]); auto_rate->supported_rates[ii] = cpu_to_le16(rsi_mcsrates[kk--]); } for (; ii < (RSI_TBL_SZ - 1); ii++) { auto_rate->supported_rates[ii] = cpu_to_le16(rsi_mcsrates[0]); } } for (; ii < RSI_TBL_SZ; ii++) auto_rate->supported_rates[ii] = cpu_to_le16(min_rate); auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2); auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2); auto_rate->desc_word[7] |= cpu_to_le16(0 << 8); num_supported_rates *= 2; auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) - FRAME_DESC_SZ) | (RSI_WIFI_MGMT_Q << 12)); skb_put(skb, sizeof(struct rsi_auto_rate)); kfree(selected_rates); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_inform_bss_status() - This function informs about bss status with the * help of sta notify params by sending an internal * management frame to firmware. * @common: Pointer to the driver private structure. * @status: Bss status type. * @bssid: Bssid. * @qos_enable: Qos is enabled. * @aid: Aid (unique for all STAs). * * Return: None. */ void rsi_inform_bss_status(struct rsi_common *common, u8 status, const unsigned char *bssid, u8 qos_enable, u16 aid) { if (status) { common->hw_data_qs_blocked = true; rsi_hal_send_sta_notify_frame(common, RSI_IFTYPE_STATION, STA_CONNECTED, bssid, qos_enable, aid); if (common->min_rate == 0xffff) rsi_send_auto_rate_request(common); if (!rsi_send_block_unblock_frame(common, false)) common->hw_data_qs_blocked = false; } else { common->hw_data_qs_blocked = true; rsi_hal_send_sta_notify_frame(common, RSI_IFTYPE_STATION, STA_DISCONNECTED, bssid, qos_enable, aid); rsi_send_block_unblock_frame(common, true); } } /** * rsi_eeprom_read() - This function sends a frame to read the mac address * from the eeprom. * @common: Pointer to the driver private structure. * * Return: 0 on success, -1 on failure. */ static int rsi_eeprom_read(struct rsi_common *common) { struct rsi_eeprom_read_frame *mgmt_frame; struct rsi_hw *adapter = common->priv; struct sk_buff *skb; rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__); skb = dev_alloc_skb(FRAME_DESC_SZ); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, FRAME_DESC_SZ); mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data; /* FrameType */ rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q); mgmt_frame->pkt_type = EEPROM_READ; /* Number of bytes to read */ mgmt_frame->pkt_info = cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) & RSI_EEPROM_LEN_MASK); mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) & RSI_EEPROM_HDR_SIZE_MASK); /* Address to read */ mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset); skb_put(skb, FRAME_DESC_SZ); return rsi_send_internal_mgmt_frame(common, skb); } /** * This function sends a frame to block/unblock * data queues in the firmware * * @param common Pointer to the driver private structure. * @param block event - block if true, unblock if false * @return 0 on success, -1 on failure. */ int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event) { struct rsi_block_unblock_data *mgmt_frame; struct sk_buff *skb; rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__); skb = dev_alloc_skb(FRAME_DESC_SZ); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, FRAME_DESC_SZ); mgmt_frame = (struct rsi_block_unblock_data *)skb->data; rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE; mgmt_frame->host_quiet_info = QUIET_INFO_VALID; if (block_event) { rsi_dbg(INFO_ZONE, "blocking the data qs\n"); mgmt_frame->block_q_bitmap = cpu_to_le16(0xf); mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4); } else { rsi_dbg(INFO_ZONE, "unblocking the data qs\n"); mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf); mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4); } skb_put(skb, FRAME_DESC_SZ); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets * * @common: Pointer to the driver private structure. * @rx_filter_word: Flags of filter packets * * @Return: 0 on success, -1 on failure. */ int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word) { struct rsi_mac_frame *cmd_frame; struct sk_buff *skb; rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n"); skb = dev_alloc_skb(FRAME_DESC_SZ); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, FRAME_DESC_SZ); cmd_frame = (struct rsi_mac_frame *)skb->data; cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12); cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER); cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word); skb_put(skb, FRAME_DESC_SZ); return rsi_send_internal_mgmt_frame(common, skb); } int rsi_send_ps_request(struct rsi_hw *adapter, bool enable) { struct rsi_common *common = adapter->priv; struct ieee80211_bss_conf *bss = &adapter->vifs[0]->bss_conf; struct rsi_request_ps *ps; struct rsi_ps_info *ps_info; struct sk_buff *skb; int frame_len = sizeof(*ps); skb = dev_alloc_skb(frame_len); if (!skb) return -ENOMEM; memset(skb->data, 0, frame_len); ps = (struct rsi_request_ps *)skb->data; ps_info = &adapter->ps_info; rsi_set_len_qno(&ps->desc.desc_dword0.len_qno, (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q); ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST; if (enable) { ps->ps_sleep.enable = RSI_PS_ENABLE; ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST); } else { ps->ps_sleep.enable = RSI_PS_DISABLE; ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND); ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST); } ps->ps_uapsd_acs = common->uapsd_bitmap; ps->ps_sleep.sleep_type = ps_info->sleep_type; ps->ps_sleep.num_bcns_per_lis_int = cpu_to_le16(ps_info->num_bcns_per_lis_int); ps->ps_sleep.sleep_duration = cpu_to_le32(ps_info->deep_sleep_wakeup_period); if (bss->assoc) ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP; else ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP; ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval); ps->ps_dtim_interval_duration = cpu_to_le32(ps_info->dtim_interval_duration); if (ps_info->listen_interval > ps_info->dtim_interval_duration) ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE); ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep); skb_put(skb, frame_len); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_set_antenna() - This fuction send antenna configuration request * to device * * @common: Pointer to the driver private structure. * @antenna: bitmap for tx antenna selection * * Return: 0 on Success, negative error code on failure */ int rsi_set_antenna(struct rsi_common *common, u8 antenna) { struct rsi_ant_sel_frame *ant_sel_frame; struct sk_buff *skb; skb = dev_alloc_skb(FRAME_DESC_SZ); if (!skb) { rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n", __func__); return -ENOMEM; } memset(skb->data, 0, FRAME_DESC_SZ); ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data; ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME; ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE; ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE); rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q); skb_put(skb, FRAME_DESC_SZ); return rsi_send_internal_mgmt_frame(common, skb); } /** * rsi_handle_ta_confirm_type() - This function handles the confirm frames. * @common: Pointer to the driver private structure. * @msg: Pointer to received packet. * * Return: 0 on success, -1 on failure. */ static int rsi_handle_ta_confirm_type(struct rsi_common *common, u8 *msg) { struct rsi_hw *adapter = common->priv; u8 sub_type = (msg[15] & 0xff); u16 msg_len = ((u16 *)msg)[0] & 0xfff; u8 offset; switch (sub_type) { case BOOTUP_PARAMS_REQUEST: rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n", __func__); if (common->fsm_state == FSM_BOOT_PARAMS_SENT) { adapter->eeprom.length = (IEEE80211_ADDR_LEN + WLAN_MAC_MAGIC_WORD_LEN + WLAN_HOST_MODE_LEN); adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR; if (rsi_eeprom_read(common)) { common->fsm_state = FSM_CARD_NOT_READY; goto out; } common->fsm_state = FSM_EEPROM_READ_MAC_ADDR; } else { rsi_dbg(INFO_ZONE, "%s: Received bootup params cfm in %d state\n", __func__, common->fsm_state); return 0; } break; case EEPROM_READ: rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n"); if (msg_len <= 0) { rsi_dbg(FSM_ZONE, "%s: [EEPROM_READ] Invalid len %d\n", __func__, msg_len); goto out; } if (msg[16] != MAGIC_WORD) { rsi_dbg(FSM_ZONE, "%s: [EEPROM_READ] Invalid token\n", __func__); common->fsm_state = FSM_CARD_NOT_READY; goto out; } if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) { offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN + WLAN_MAC_MAGIC_WORD_LEN); memcpy(common->mac_addr, &msg[offset], ETH_ALEN); adapter->eeprom.length = ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3)); adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR; if (rsi_eeprom_read(common)) { rsi_dbg(ERR_ZONE, "%s: Failed reading RF band\n", __func__); common->fsm_state = FSM_CARD_NOT_READY; goto out; } common->fsm_state = FSM_EEPROM_READ_RF_TYPE; } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) { if ((msg[17] & 0x3) == 0x3) { rsi_dbg(INIT_ZONE, "Dual band supported\n"); common->band = NL80211_BAND_5GHZ; common->num_supp_bands = 2; } else if ((msg[17] & 0x3) == 0x1) { rsi_dbg(INIT_ZONE, "Only 2.4Ghz band supported\n"); common->band = NL80211_BAND_2GHZ; common->num_supp_bands = 1; } if (rsi_send_reset_mac(common)) goto out; common->fsm_state = FSM_RESET_MAC_SENT; } else { rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n", __func__); return 0; } break; case RESET_MAC_REQ: if (common->fsm_state == FSM_RESET_MAC_SENT) { rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n", __func__); if (rsi_load_radio_caps(common)) goto out; else common->fsm_state = FSM_RADIO_CAPS_SENT; } else { rsi_dbg(ERR_ZONE, "%s: Received reset mac cfm in %d state\n", __func__, common->fsm_state); return 0; } break; case RADIO_CAPABILITIES: if (common->fsm_state == FSM_RADIO_CAPS_SENT) { common->rf_reset = 1; if (rsi_program_bb_rf(common)) { goto out; } else { common->fsm_state = FSM_BB_RF_PROG_SENT; rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n", __func__); } } else { rsi_dbg(INFO_ZONE, "%s: Received radio caps cfm in %d state\n", __func__, common->fsm_state); return 0; } break; case BB_PROG_VALUES_REQUEST: case RF_PROG_VALUES_REQUEST: case BBP_PROG_IN_TA: rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__); if (common->fsm_state == FSM_BB_RF_PROG_SENT) { common->bb_rf_prog_count--; if (!common->bb_rf_prog_count) { common->fsm_state = FSM_MAC_INIT_DONE; return rsi_mac80211_attach(common); } } else { rsi_dbg(INFO_ZONE, "%s: Received bbb_rf cfm in %d state\n", __func__, common->fsm_state); return 0; } break; case WAKEUP_SLEEP_REQUEST: rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n"); return rsi_handle_ps_confirm(adapter, msg); default: rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n", __func__); break; } return 0; out: rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n", __func__); return -EINVAL; } static int rsi_handle_card_ready(struct rsi_common *common, u8 *msg) { switch (common->fsm_state) { case FSM_CARD_NOT_READY: rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n"); rsi_set_default_parameters(common); if (rsi_send_common_dev_params(common) < 0) return -EINVAL; common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT; break; case FSM_COMMON_DEV_PARAMS_SENT: rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n"); /* Get usb buffer status register address */ common->priv->usb_buffer_status_reg = *(u32 *)&msg[8]; rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n", common->priv->usb_buffer_status_reg); if (rsi_load_bootup_params(common)) { common->fsm_state = FSM_CARD_NOT_READY; return -EINVAL; } common->fsm_state = FSM_BOOT_PARAMS_SENT; break; default: rsi_dbg(ERR_ZONE, "%s: card ready indication in invalid state %d.\n", __func__, common->fsm_state); return -EINVAL; } return 0; } /** * rsi_mgmt_pkt_recv() - This function processes the management packets * recieved from the hardware. * @common: Pointer to the driver private structure. * @msg: Pointer to the received packet. * * Return: 0 on success, -1 on failure. */ int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg) { s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff); u16 msg_type = (msg[2]); rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n", __func__, msg_len, msg_type); if (msg_type == TA_CONFIRM_TYPE) { return rsi_handle_ta_confirm_type(common, msg); } else if (msg_type == CARD_READY_IND) { rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n", __func__); return rsi_handle_card_ready(common, msg); } else if (msg_type == TX_STATUS_IND) { if (msg[15] == PROBEREQ_CONFIRM) { common->mgmt_q_block = false; rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n", __func__); } } else if (msg_type == RX_DOT11_MGMT) { return rsi_mgmt_pkt_to_core(common, msg, msg_len); } else { rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type); } return 0; }