/* * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hw.h" /* We can tune this as we go by monitoring really low values */ #define ATH9K_NF_TOO_LOW -60 /* AR5416 may return very high value (like -31 dBm), in those cases the nf * is incorrect and we should use the static NF value. Later we can try to * find out why they are reporting these values */ static bool ath9k_hw_nf_in_range(struct ath_hw *ah, s16 nf) { if (nf > ATH9K_NF_TOO_LOW) { ath_print(ath9k_hw_common(ah), ATH_DBG_CALIBRATE, "noise floor value detected (%d) is " "lower than what we think is a " "reasonable value (%d)\n", nf, ATH9K_NF_TOO_LOW); return false; } return true; } static int16_t ath9k_hw_get_nf_hist_mid(int16_t *nfCalBuffer) { int16_t nfval; int16_t sort[ATH9K_NF_CAL_HIST_MAX]; int i, j; for (i = 0; i < ATH9K_NF_CAL_HIST_MAX; i++) sort[i] = nfCalBuffer[i]; for (i = 0; i < ATH9K_NF_CAL_HIST_MAX - 1; i++) { for (j = 1; j < ATH9K_NF_CAL_HIST_MAX - i; j++) { if (sort[j] > sort[j - 1]) { nfval = sort[j]; sort[j] = sort[j - 1]; sort[j - 1] = nfval; } } } nfval = sort[(ATH9K_NF_CAL_HIST_MAX - 1) >> 1]; return nfval; } static void ath9k_hw_update_nfcal_hist_buffer(struct ath9k_nfcal_hist *h, int16_t *nfarray) { int i; for (i = 0; i < NUM_NF_READINGS; i++) { h[i].nfCalBuffer[h[i].currIndex] = nfarray[i]; if (++h[i].currIndex >= ATH9K_NF_CAL_HIST_MAX) h[i].currIndex = 0; if (h[i].invalidNFcount > 0) { if (nfarray[i] < AR_PHY_CCA_MIN_BAD_VALUE || nfarray[i] > AR_PHY_CCA_MAX_HIGH_VALUE) { h[i].invalidNFcount = ATH9K_NF_CAL_HIST_MAX; } else { h[i].invalidNFcount--; h[i].privNF = nfarray[i]; } } else { h[i].privNF = ath9k_hw_get_nf_hist_mid(h[i].nfCalBuffer); } } return; } static void ath9k_hw_do_getnf(struct ath_hw *ah, int16_t nfarray[NUM_NF_READINGS]) { struct ath_common *common = ath9k_hw_common(ah); int16_t nf; if (AR_SREV_9280_10_OR_LATER(ah)) nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR); else nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); ath_print(common, ATH_DBG_CALIBRATE, "NF calibrated [ctl] [chain 0] is %d\n", nf); nfarray[0] = nf; if (!AR_SREV_9285(ah)) { if (AR_SREV_9280_10_OR_LATER(ah)) nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR); else nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); ath_print(common, ATH_DBG_CALIBRATE, "NF calibrated [ctl] [chain 1] is %d\n", nf); nfarray[1] = nf; if (!AR_SREV_9280(ah) && !AR_SREV_9287(ah)) { nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); ath_print(common, ATH_DBG_CALIBRATE, "NF calibrated [ctl] [chain 2] is %d\n", nf); nfarray[2] = nf; } } if (AR_SREV_9280_10_OR_LATER(ah)) nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR); else nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); ath_print(common, ATH_DBG_CALIBRATE, "NF calibrated [ext] [chain 0] is %d\n", nf); nfarray[3] = nf; if (!AR_SREV_9285(ah)) { if (AR_SREV_9280_10_OR_LATER(ah)) nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR); else nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); ath_print(common, ATH_DBG_CALIBRATE, "NF calibrated [ext] [chain 1] is %d\n", nf); nfarray[4] = nf; if (!AR_SREV_9280(ah) && !AR_SREV_9287(ah)) { nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); ath_print(common, ATH_DBG_CALIBRATE, "NF calibrated [ext] [chain 2] is %d\n", nf); nfarray[5] = nf; } } } static bool getNoiseFloorThresh(struct ath_hw *ah, enum ieee80211_band band, int16_t *nft) { switch (band) { case IEEE80211_BAND_5GHZ: *nft = (int8_t)ah->eep_ops->get_eeprom(ah, EEP_NFTHRESH_5); break; case IEEE80211_BAND_2GHZ: *nft = (int8_t)ah->eep_ops->get_eeprom(ah, EEP_NFTHRESH_2); break; default: BUG_ON(1); return false; } return true; } static void ath9k_hw_setup_calibration(struct ath_hw *ah, struct ath9k_cal_list *currCal) { struct ath_common *common = ath9k_hw_common(ah); REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(0), AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, currCal->calData->calCountMax); switch (currCal->calData->calType) { case IQ_MISMATCH_CAL: REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ); ath_print(common, ATH_DBG_CALIBRATE, "starting IQ Mismatch Calibration\n"); break; case ADC_GAIN_CAL: REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_GAIN); ath_print(common, ATH_DBG_CALIBRATE, "starting ADC Gain Calibration\n"); break; case ADC_DC_CAL: REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_PER); ath_print(common, ATH_DBG_CALIBRATE, "starting ADC DC Calibration\n"); break; case ADC_DC_INIT_CAL: REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_INIT); ath_print(common, ATH_DBG_CALIBRATE, "starting Init ADC DC Calibration\n"); break; } REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0), AR_PHY_TIMING_CTRL4_DO_CAL); } static void ath9k_hw_reset_calibration(struct ath_hw *ah, struct ath9k_cal_list *currCal) { int i; ath9k_hw_setup_calibration(ah, currCal); currCal->calState = CAL_RUNNING; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ah->meas0.sign[i] = 0; ah->meas1.sign[i] = 0; ah->meas2.sign[i] = 0; ah->meas3.sign[i] = 0; } ah->cal_samples = 0; } static bool ath9k_hw_per_calibration(struct ath_hw *ah, struct ath9k_channel *ichan, u8 rxchainmask, struct ath9k_cal_list *currCal) { bool iscaldone = false; if (currCal->calState == CAL_RUNNING) { if (!(REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) & AR_PHY_TIMING_CTRL4_DO_CAL)) { currCal->calData->calCollect(ah); ah->cal_samples++; if (ah->cal_samples >= currCal->calData->calNumSamples) { int i, numChains = 0; for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (rxchainmask & (1 << i)) numChains++; } currCal->calData->calPostProc(ah, numChains); ichan->CalValid |= currCal->calData->calType; currCal->calState = CAL_DONE; iscaldone = true; } else { ath9k_hw_setup_calibration(ah, currCal); } } } else if (!(ichan->CalValid & currCal->calData->calType)) { ath9k_hw_reset_calibration(ah, currCal); } return iscaldone; } /* Assumes you are talking about the currently configured channel */ static bool ath9k_hw_iscal_supported(struct ath_hw *ah, enum ath9k_cal_types calType) { struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; switch (calType & ah->supp_cals) { case IQ_MISMATCH_CAL: /* Both 2 GHz and 5 GHz support OFDM */ return true; case ADC_GAIN_CAL: case ADC_DC_CAL: if (!(conf->channel->band == IEEE80211_BAND_2GHZ && conf_is_ht20(conf))) return true; break; } return false; } static void ath9k_hw_iqcal_collect(struct ath_hw *ah) { int i; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ah->totalPowerMeasI[i] += REG_READ(ah, AR_PHY_CAL_MEAS_0(i)); ah->totalPowerMeasQ[i] += REG_READ(ah, AR_PHY_CAL_MEAS_1(i)); ah->totalIqCorrMeas[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i)); ath_print(ath9k_hw_common(ah), ATH_DBG_CALIBRATE, "%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n", ah->cal_samples, i, ah->totalPowerMeasI[i], ah->totalPowerMeasQ[i], ah->totalIqCorrMeas[i]); } } static void ath9k_hw_adc_gaincal_collect(struct ath_hw *ah) { int i; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ah->totalAdcIOddPhase[i] += REG_READ(ah, AR_PHY_CAL_MEAS_0(i)); ah->totalAdcIEvenPhase[i] += REG_READ(ah, AR_PHY_CAL_MEAS_1(i)); ah->totalAdcQOddPhase[i] += REG_READ(ah, AR_PHY_CAL_MEAS_2(i)); ah->totalAdcQEvenPhase[i] += REG_READ(ah, AR_PHY_CAL_MEAS_3(i)); ath_print(ath9k_hw_common(ah), ATH_DBG_CALIBRATE, "%d: Chn %d oddi=0x%08x; eveni=0x%08x; " "oddq=0x%08x; evenq=0x%08x;\n", ah->cal_samples, i, ah->totalAdcIOddPhase[i], ah->totalAdcIEvenPhase[i], ah->totalAdcQOddPhase[i], ah->totalAdcQEvenPhase[i]); } } static void ath9k_hw_adc_dccal_collect(struct ath_hw *ah) { int i; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ah->totalAdcDcOffsetIOddPhase[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_0(i)); ah->totalAdcDcOffsetIEvenPhase[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_1(i)); ah->totalAdcDcOffsetQOddPhase[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i)); ah->totalAdcDcOffsetQEvenPhase[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_3(i)); ath_print(ath9k_hw_common(ah), ATH_DBG_CALIBRATE, "%d: Chn %d oddi=0x%08x; eveni=0x%08x; " "oddq=0x%08x; evenq=0x%08x;\n", ah->cal_samples, i, ah->totalAdcDcOffsetIOddPhase[i], ah->totalAdcDcOffsetIEvenPhase[i], ah->totalAdcDcOffsetQOddPhase[i], ah->totalAdcDcOffsetQEvenPhase[i]); } } static void ath9k_hw_iqcalibrate(struct ath_hw *ah, u8 numChains) { struct ath_common *common = ath9k_hw_common(ah); u32 powerMeasQ, powerMeasI, iqCorrMeas; u32 qCoffDenom, iCoffDenom; int32_t qCoff, iCoff; int iqCorrNeg, i; for (i = 0; i < numChains; i++) { powerMeasI = ah->totalPowerMeasI[i]; powerMeasQ = ah->totalPowerMeasQ[i]; iqCorrMeas = ah->totalIqCorrMeas[i]; ath_print(common, ATH_DBG_CALIBRATE, "Starting IQ Cal and Correction for Chain %d\n", i); ath_print(common, ATH_DBG_CALIBRATE, "Orignal: Chn %diq_corr_meas = 0x%08x\n", i, ah->totalIqCorrMeas[i]); iqCorrNeg = 0; if (iqCorrMeas > 0x80000000) { iqCorrMeas = (0xffffffff - iqCorrMeas) + 1; iqCorrNeg = 1; } ath_print(common, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_i = 0x%08x\n", i, powerMeasI); ath_print(common, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_q = 0x%08x\n", i, powerMeasQ); ath_print(common, ATH_DBG_CALIBRATE, "iqCorrNeg is 0x%08x\n", iqCorrNeg); iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128; qCoffDenom = powerMeasQ / 64; if (powerMeasQ != 0) { iCoff = iqCorrMeas / iCoffDenom; qCoff = powerMeasI / qCoffDenom - 64; ath_print(common, ATH_DBG_CALIBRATE, "Chn %d iCoff = 0x%08x\n", i, iCoff); ath_print(common, ATH_DBG_CALIBRATE, "Chn %d qCoff = 0x%08x\n", i, qCoff); iCoff = iCoff & 0x3f; ath_print(common, ATH_DBG_CALIBRATE, "New: Chn %d iCoff = 0x%08x\n", i, iCoff); if (iqCorrNeg == 0x0) iCoff = 0x40 - iCoff; if (qCoff > 15) qCoff = 15; else if (qCoff <= -16) qCoff = 16; ath_print(common, ATH_DBG_CALIBRATE, "Chn %d : iCoff = 0x%x qCoff = 0x%x\n", i, iCoff, qCoff); REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i), AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff); REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i), AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff); ath_print(common, ATH_DBG_CALIBRATE, "IQ Cal and Correction done for Chain %d\n", i); } } REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0), AR_PHY_TIMING_CTRL4_IQCORR_ENABLE); } static void ath9k_hw_adc_gaincal_calibrate(struct ath_hw *ah, u8 numChains) { struct ath_common *common = ath9k_hw_common(ah); u32 iOddMeasOffset, iEvenMeasOffset, qOddMeasOffset, qEvenMeasOffset; u32 qGainMismatch, iGainMismatch, val, i; for (i = 0; i < numChains; i++) { iOddMeasOffset = ah->totalAdcIOddPhase[i]; iEvenMeasOffset = ah->totalAdcIEvenPhase[i]; qOddMeasOffset = ah->totalAdcQOddPhase[i]; qEvenMeasOffset = ah->totalAdcQEvenPhase[i]; ath_print(common, ATH_DBG_CALIBRATE, "Starting ADC Gain Cal for Chain %d\n", i); ath_print(common, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_odd_i = 0x%08x\n", i, iOddMeasOffset); ath_print(common, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_even_i = 0x%08x\n", i, iEvenMeasOffset); ath_print(common, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_odd_q = 0x%08x\n", i, qOddMeasOffset); ath_print(common, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_even_q = 0x%08x\n", i, qEvenMeasOffset); if (iOddMeasOffset != 0 && qEvenMeasOffset != 0) { iGainMismatch = ((iEvenMeasOffset * 32) / iOddMeasOffset) & 0x3f; qGainMismatch = ((qOddMeasOffset * 32) / qEvenMeasOffset) & 0x3f; ath_print(common, ATH_DBG_CALIBRATE, "Chn %d gain_mismatch_i = 0x%08x\n", i, iGainMismatch); ath_print(common, ATH_DBG_CALIBRATE, "Chn %d gain_mismatch_q = 0x%08x\n", i, qGainMismatch); val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); val &= 0xfffff000; val |= (qGainMismatch) | (iGainMismatch << 6); REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val); ath_print(common, ATH_DBG_CALIBRATE, "ADC Gain Cal done for Chain %d\n", i); } } REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) | AR_PHY_NEW_ADC_GAIN_CORR_ENABLE); } static void ath9k_hw_adc_dccal_calibrate(struct ath_hw *ah, u8 numChains) { struct ath_common *common = ath9k_hw_common(ah); u32 iOddMeasOffset, iEvenMeasOffset, val, i; int32_t qOddMeasOffset, qEvenMeasOffset, qDcMismatch, iDcMismatch; const struct ath9k_percal_data *calData = ah->cal_list_curr->calData; u32 numSamples = (1 << (calData->calCountMax + 5)) * calData->calNumSamples; for (i = 0; i < numChains; i++) { iOddMeasOffset = ah->totalAdcDcOffsetIOddPhase[i]; iEvenMeasOffset = ah->totalAdcDcOffsetIEvenPhase[i]; qOddMeasOffset = ah->totalAdcDcOffsetQOddPhase[i]; qEvenMeasOffset = ah->totalAdcDcOffsetQEvenPhase[i]; ath_print(common, ATH_DBG_CALIBRATE, "Starting ADC DC Offset Cal for Chain %d\n", i); ath_print(common, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_odd_i = %d\n", i, iOddMeasOffset); ath_print(common, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_even_i = %d\n", i, iEvenMeasOffset); ath_print(common, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_odd_q = %d\n", i, qOddMeasOffset); ath_print(common, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_even_q = %d\n", i, qEvenMeasOffset); iDcMismatch = (((iEvenMeasOffset - iOddMeasOffset) * 2) / numSamples) & 0x1ff; qDcMismatch = (((qOddMeasOffset - qEvenMeasOffset) * 2) / numSamples) & 0x1ff; ath_print(common, ATH_DBG_CALIBRATE, "Chn %d dc_offset_mismatch_i = 0x%08x\n", i, iDcMismatch); ath_print(common, ATH_DBG_CALIBRATE, "Chn %d dc_offset_mismatch_q = 0x%08x\n", i, qDcMismatch); val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); val &= 0xc0000fff; val |= (qDcMismatch << 12) | (iDcMismatch << 21); REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val); ath_print(common, ATH_DBG_CALIBRATE, "ADC DC Offset Cal done for Chain %d\n", i); } REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) | AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE); } /* This is done for the currently configured channel */ bool ath9k_hw_reset_calvalid(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); struct ieee80211_conf *conf = &common->hw->conf; struct ath9k_cal_list *currCal = ah->cal_list_curr; if (!ah->curchan) return true; if (!AR_SREV_9100(ah) && !AR_SREV_9160_10_OR_LATER(ah)) return true; if (currCal == NULL) return true; if (currCal->calState != CAL_DONE) { ath_print(common, ATH_DBG_CALIBRATE, "Calibration state incorrect, %d\n", currCal->calState); return true; } if (!ath9k_hw_iscal_supported(ah, currCal->calData->calType)) return true; ath_print(common, ATH_DBG_CALIBRATE, "Resetting Cal %d state for channel %u\n", currCal->calData->calType, conf->channel->center_freq); ah->curchan->CalValid &= ~currCal->calData->calType; currCal->calState = CAL_WAITING; return false; } void ath9k_hw_start_nfcal(struct ath_hw *ah) { REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); } void ath9k_hw_loadnf(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath9k_nfcal_hist *h; int i, j; int32_t val; const u32 ar5416_cca_regs[6] = { AR_PHY_CCA, AR_PHY_CH1_CCA, AR_PHY_CH2_CCA, AR_PHY_EXT_CCA, AR_PHY_CH1_EXT_CCA, AR_PHY_CH2_EXT_CCA }; u8 chainmask, rx_chain_status; rx_chain_status = REG_READ(ah, AR_PHY_RX_CHAINMASK); if (AR_SREV_9285(ah)) chainmask = 0x9; else if (AR_SREV_9280(ah) || AR_SREV_9287(ah)) { if ((rx_chain_status & 0x2) || (rx_chain_status & 0x4)) chainmask = 0x1B; else chainmask = 0x09; } else { if (rx_chain_status & 0x4) chainmask = 0x3F; else if (rx_chain_status & 0x2) chainmask = 0x1B; else chainmask = 0x09; } h = ah->nfCalHist; for (i = 0; i < NUM_NF_READINGS; i++) { if (chainmask & (1 << i)) { val = REG_READ(ah, ar5416_cca_regs[i]); val &= 0xFFFFFE00; val |= (((u32) (h[i].privNF) << 1) & 0x1ff); REG_WRITE(ah, ar5416_cca_regs[i], val); } } REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); for (j = 0; j < 1000; j++) { if ((REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0) break; udelay(10); } for (i = 0; i < NUM_NF_READINGS; i++) { if (chainmask & (1 << i)) { val = REG_READ(ah, ar5416_cca_regs[i]); val &= 0xFFFFFE00; val |= (((u32) (-50) << 1) & 0x1ff); REG_WRITE(ah, ar5416_cca_regs[i], val); } } } int16_t ath9k_hw_getnf(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath_common *common = ath9k_hw_common(ah); int16_t nf, nfThresh; int16_t nfarray[NUM_NF_READINGS] = { 0 }; struct ath9k_nfcal_hist *h; struct ieee80211_channel *c = chan->chan; chan->channelFlags &= (~CHANNEL_CW_INT); if (REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { ath_print(common, ATH_DBG_CALIBRATE, "NF did not complete in calibration window\n"); nf = 0; chan->rawNoiseFloor = nf; return chan->rawNoiseFloor; } else { ath9k_hw_do_getnf(ah, nfarray); nf = nfarray[0]; if (getNoiseFloorThresh(ah, c->band, &nfThresh) && nf > nfThresh) { ath_print(common, ATH_DBG_CALIBRATE, "noise floor failed detected; " "detected %d, threshold %d\n", nf, nfThresh); chan->channelFlags |= CHANNEL_CW_INT; } } h = ah->nfCalHist; ath9k_hw_update_nfcal_hist_buffer(h, nfarray); chan->rawNoiseFloor = h[0].privNF; return chan->rawNoiseFloor; } void ath9k_init_nfcal_hist_buffer(struct ath_hw *ah) { int i, j; s16 noise_floor; if (AR_SREV_9280(ah)) noise_floor = AR_PHY_CCA_MAX_AR9280_GOOD_VALUE; else if (AR_SREV_9285(ah)) noise_floor = AR_PHY_CCA_MAX_AR9285_GOOD_VALUE; else if (AR_SREV_9287(ah)) noise_floor = AR_PHY_CCA_MAX_AR9287_GOOD_VALUE; else noise_floor = AR_PHY_CCA_MAX_AR5416_GOOD_VALUE; for (i = 0; i < NUM_NF_READINGS; i++) { ah->nfCalHist[i].currIndex = 0; ah->nfCalHist[i].privNF = noise_floor; ah->nfCalHist[i].invalidNFcount = AR_PHY_CCA_FILTERWINDOW_LENGTH; for (j = 0; j < ATH9K_NF_CAL_HIST_MAX; j++) { ah->nfCalHist[i].nfCalBuffer[j] = noise_floor; } } } s16 ath9k_hw_getchan_noise(struct ath_hw *ah, struct ath9k_channel *chan) { s16 nf; if (chan->rawNoiseFloor == 0) nf = -96; else nf = chan->rawNoiseFloor; if (!ath9k_hw_nf_in_range(ah, nf)) nf = ATH_DEFAULT_NOISE_FLOOR; return nf; } static void ath9k_olc_temp_compensation(struct ath_hw *ah) { u32 rddata, i; int delta, currPDADC, regval, slope; rddata = REG_READ(ah, AR_PHY_TX_PWRCTRL4); currPDADC = MS(rddata, AR_PHY_TX_PWRCTRL_PD_AVG_OUT); if (OLC_FOR_AR9287_10_LATER) { if (ah->initPDADC == 0 || currPDADC == 0) { return; } else { slope = ah->eep_ops->get_eeprom(ah, EEP_TEMPSENSE_SLOPE); if (slope == 0) delta = 0; else delta = ((currPDADC - ah->initPDADC)*4) / slope; REG_RMW_FIELD(ah, AR_PHY_CH0_TX_PWRCTRL11, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, delta); REG_RMW_FIELD(ah, AR_PHY_CH1_TX_PWRCTRL11, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, delta); } } else { if (ah->eep_ops->get_eeprom(ah, EEP_DAC_HPWR_5G)) delta = (currPDADC - ah->initPDADC + 4) / 8; else delta = (currPDADC - ah->initPDADC + 5) / 10; if (delta != ah->PDADCdelta) { ah->PDADCdelta = delta; for (i = 1; i < AR9280_TX_GAIN_TABLE_SIZE; i++) { regval = ah->originalGain[i] - delta; if (regval < 0) regval = 0; REG_RMW_FIELD(ah, AR_PHY_TX_GAIN_TBL1 + i * 4, AR_PHY_TX_GAIN, regval); } } } } static void ath9k_hw_9271_pa_cal(struct ath_hw *ah) { u32 regVal; unsigned int i; u32 regList [][2] = { { 0x786c, 0 }, { 0x7854, 0 }, { 0x7820, 0 }, { 0x7824, 0 }, { 0x7868, 0 }, { 0x783c, 0 }, { 0x7838, 0 } , { 0x7828, 0 } , }; for (i = 0; i < ARRAY_SIZE(regList); i++) regList[i][1] = REG_READ(ah, regList[i][0]); regVal = REG_READ(ah, 0x7834); regVal &= (~(0x1)); REG_WRITE(ah, 0x7834, regVal); regVal = REG_READ(ah, 0x9808); regVal |= (0x1 << 27); REG_WRITE(ah, 0x9808, regVal); /* 786c,b23,1, pwddac=1 */ REG_RMW_FIELD(ah, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC, 1); /* 7854, b5,1, pdrxtxbb=1 */ REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1, 1); /* 7854, b7,1, pdv2i=1 */ REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I, 1); /* 7854, b8,1, pddacinterface=1 */ REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF, 1); /* 7824,b12,0, offcal=0 */ REG_RMW_FIELD(ah, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL, 0); /* 7838, b1,0, pwddb=0 */ REG_RMW_FIELD(ah, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB, 0); /* 7820,b11,0, enpacal=0 */ REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL, 0); /* 7820,b25,1, pdpadrv1=0 */ REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1, 0); /* 7820,b24,0, pdpadrv2=0 */ REG_RMW_FIELD(ah, AR9285_AN_RF2G1,AR9285_AN_RF2G1_PDPADRV2,0); /* 7820,b23,0, pdpaout=0 */ REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT, 0); /* 783c,b14-16,7, padrvgn2tab_0=7 */ REG_RMW_FIELD(ah, AR9285_AN_RF2G8,AR9285_AN_RF2G8_PADRVGN2TAB0, 7); /* * 7838,b29-31,0, padrvgn1tab_0=0 * does not matter since we turn it off */ REG_RMW_FIELD(ah, AR9285_AN_RF2G7,AR9285_AN_RF2G7_PADRVGN2TAB0, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9271_AN_RF2G3_CCOMP, 0xfff); /* Set: * localmode=1,bmode=1,bmoderxtx=1,synthon=1, * txon=1,paon=1,oscon=1,synthon_force=1 */ REG_WRITE(ah, AR9285_AN_TOP2, 0xca0358a0); udelay(30); REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9271_AN_RF2G6_OFFS, 0); /* find off_6_1; */ for (i = 6; i >= 0; i--) { regVal = REG_READ(ah, 0x7834); regVal |= (1 << (20 + i)); REG_WRITE(ah, 0x7834, regVal); udelay(1); //regVal = REG_READ(ah, 0x7834); regVal &= (~(0x1 << (20 + i))); regVal |= (MS(REG_READ(ah, 0x7840), AR9285_AN_RXTXBB1_SPARE9) << (20 + i)); REG_WRITE(ah, 0x7834, regVal); } /* Empirical offset correction */ #if 0 REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9271_AN_RF2G6_OFFS, 0x20); #endif regVal = REG_READ(ah, 0x7834); regVal |= 0x1; REG_WRITE(ah, 0x7834, regVal); regVal = REG_READ(ah, 0x9808); regVal &= (~(0x1 << 27)); REG_WRITE(ah, 0x9808, regVal); for (i = 0; i < ARRAY_SIZE(regList); i++) REG_WRITE(ah, regList[i][0], regList[i][1]); } static inline void ath9k_hw_9285_pa_cal(struct ath_hw *ah, bool is_reset) { struct ath_common *common = ath9k_hw_common(ah); u32 regVal; int i, offset, offs_6_1, offs_0; u32 ccomp_org, reg_field; u32 regList[][2] = { { 0x786c, 0 }, { 0x7854, 0 }, { 0x7820, 0 }, { 0x7824, 0 }, { 0x7868, 0 }, { 0x783c, 0 }, { 0x7838, 0 }, }; ath_print(common, ATH_DBG_CALIBRATE, "Running PA Calibration\n"); /* PA CAL is not needed for high power solution */ if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == AR5416_EEP_TXGAIN_HIGH_POWER) return; if (AR_SREV_9285_11(ah)) { REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14)); udelay(10); } for (i = 0; i < ARRAY_SIZE(regList); i++) regList[i][1] = REG_READ(ah, regList[i][0]); regVal = REG_READ(ah, 0x7834); regVal &= (~(0x1)); REG_WRITE(ah, 0x7834, regVal); regVal = REG_READ(ah, 0x9808); regVal |= (0x1 << 27); REG_WRITE(ah, 0x9808, regVal); REG_RMW_FIELD(ah, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC, 1); REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1, 1); REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I, 1); REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF, 1); REG_RMW_FIELD(ah, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G8, AR9285_AN_RF2G8_PADRVGN2TAB0, 7); REG_RMW_FIELD(ah, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PADRVGN2TAB0, 0); ccomp_org = MS(REG_READ(ah, AR9285_AN_RF2G6), AR9285_AN_RF2G6_CCOMP); REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_CCOMP, 0xf); REG_WRITE(ah, AR9285_AN_TOP2, 0xca0358a0); udelay(30); REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, 0); for (i = 6; i > 0; i--) { regVal = REG_READ(ah, 0x7834); regVal |= (1 << (19 + i)); REG_WRITE(ah, 0x7834, regVal); udelay(1); regVal = REG_READ(ah, 0x7834); regVal &= (~(0x1 << (19 + i))); reg_field = MS(REG_READ(ah, 0x7840), AR9285_AN_RXTXBB1_SPARE9); regVal |= (reg_field << (19 + i)); REG_WRITE(ah, 0x7834, regVal); } REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, 1); udelay(1); reg_field = MS(REG_READ(ah, AR9285_AN_RF2G9), AR9285_AN_RXTXBB1_SPARE9); REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, reg_field); offs_6_1 = MS(REG_READ(ah, AR9285_AN_RF2G6), AR9285_AN_RF2G6_OFFS); offs_0 = MS(REG_READ(ah, AR9285_AN_RF2G3), AR9285_AN_RF2G3_PDVCCOMP); offset = (offs_6_1<<1) | offs_0; offset = offset - 0; offs_6_1 = offset>>1; offs_0 = offset & 1; if ((!is_reset) && (ah->pacal_info.prev_offset == offset)) { if (ah->pacal_info.max_skipcount < MAX_PACAL_SKIPCOUNT) ah->pacal_info.max_skipcount = 2 * ah->pacal_info.max_skipcount; ah->pacal_info.skipcount = ah->pacal_info.max_skipcount; } else { ah->pacal_info.max_skipcount = 1; ah->pacal_info.skipcount = 0; ah->pacal_info.prev_offset = offset; } REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS, offs_6_1); REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, offs_0); regVal = REG_READ(ah, 0x7834); regVal |= 0x1; REG_WRITE(ah, 0x7834, regVal); regVal = REG_READ(ah, 0x9808); regVal &= (~(0x1 << 27)); REG_WRITE(ah, 0x9808, regVal); for (i = 0; i < ARRAY_SIZE(regList); i++) REG_WRITE(ah, regList[i][0], regList[i][1]); REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_CCOMP, ccomp_org); if (AR_SREV_9285_11(ah)) REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT); } bool ath9k_hw_calibrate(struct ath_hw *ah, struct ath9k_channel *chan, u8 rxchainmask, bool longcal) { bool iscaldone = true; struct ath9k_cal_list *currCal = ah->cal_list_curr; if (currCal && (currCal->calState == CAL_RUNNING || currCal->calState == CAL_WAITING)) { iscaldone = ath9k_hw_per_calibration(ah, chan, rxchainmask, currCal); if (iscaldone) { ah->cal_list_curr = currCal = currCal->calNext; if (currCal->calState == CAL_WAITING) { iscaldone = false; ath9k_hw_reset_calibration(ah, currCal); } } } /* Do NF cal only at longer intervals */ if (longcal) { /* Do periodic PAOffset Cal */ if (AR_SREV_9271(ah)) ath9k_hw_9271_pa_cal(ah); else if (AR_SREV_9285_11_OR_LATER(ah)) { if (!ah->pacal_info.skipcount) ath9k_hw_9285_pa_cal(ah, false); else ah->pacal_info.skipcount--; } if (OLC_FOR_AR9280_20_LATER || OLC_FOR_AR9287_10_LATER) ath9k_olc_temp_compensation(ah); /* Get the value from the previous NF cal and update history buffer */ ath9k_hw_getnf(ah, chan); /* * Load the NF from history buffer of the current channel. * NF is slow time-variant, so it is OK to use a historical value. */ ath9k_hw_loadnf(ah, ah->curchan); ath9k_hw_start_nfcal(ah); } return iscaldone; } static bool ar9285_clc(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath_common *common = ath9k_hw_common(ah); REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); if (IS_CHAN_HT20(chan)) { REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE); REG_SET_BIT(ah, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN); REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); REG_CLR_BIT(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL); if (!ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0, AH_WAIT_TIMEOUT)) { ath_print(common, ATH_DBG_CALIBRATE, "offset " "calibration failed to complete in " "1ms; noisy ??\n"); return false; } REG_CLR_BIT(ah, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN); REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE); REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); } REG_CLR_BIT(ah, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); REG_SET_BIT(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL); if (!ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0, AH_WAIT_TIMEOUT)) { ath_print(common, ATH_DBG_CALIBRATE, "offset calibration " "failed to complete in 1ms; noisy ??\n"); return false; } REG_SET_BIT(ah, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); return true; } bool ath9k_hw_init_cal(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath_common *common = ath9k_hw_common(ah); if (AR_SREV_9285_12_OR_LATER(ah)) { if (!ar9285_clc(ah, chan)) return false; } else { if (AR_SREV_9280_10_OR_LATER(ah)) { if (!AR_SREV_9287_10_OR_LATER(ah)) REG_CLR_BIT(ah, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); } /* Calibrate the AGC */ REG_WRITE(ah, AR_PHY_AGC_CONTROL, REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); /* Poll for offset calibration complete */ if (!ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0, AH_WAIT_TIMEOUT)) { ath_print(common, ATH_DBG_CALIBRATE, "offset calibration failed to " "complete in 1ms; noisy environment?\n"); return false; } if (AR_SREV_9280_10_OR_LATER(ah)) { if (!AR_SREV_9287_10_OR_LATER(ah)) REG_SET_BIT(ah, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); } } /* Do PA Calibration */ if (AR_SREV_9285_11_OR_LATER(ah)) ath9k_hw_9285_pa_cal(ah, true); /* Do NF Calibration after DC offset and other calibrations */ REG_WRITE(ah, AR_PHY_AGC_CONTROL, REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF); ah->cal_list = ah->cal_list_last = ah->cal_list_curr = NULL; /* Enable IQ, ADC Gain and ADC DC offset CALs */ if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) { if (ath9k_hw_iscal_supported(ah, ADC_GAIN_CAL)) { INIT_CAL(&ah->adcgain_caldata); INSERT_CAL(ah, &ah->adcgain_caldata); ath_print(common, ATH_DBG_CALIBRATE, "enabling ADC Gain Calibration.\n"); } if (ath9k_hw_iscal_supported(ah, ADC_DC_CAL)) { INIT_CAL(&ah->adcdc_caldata); INSERT_CAL(ah, &ah->adcdc_caldata); ath_print(common, ATH_DBG_CALIBRATE, "enabling ADC DC Calibration.\n"); } if (ath9k_hw_iscal_supported(ah, IQ_MISMATCH_CAL)) { INIT_CAL(&ah->iq_caldata); INSERT_CAL(ah, &ah->iq_caldata); ath_print(common, ATH_DBG_CALIBRATE, "enabling IQ Calibration.\n"); } ah->cal_list_curr = ah->cal_list; if (ah->cal_list_curr) ath9k_hw_reset_calibration(ah, ah->cal_list_curr); } chan->CalValid = 0; return true; } const struct ath9k_percal_data iq_cal_multi_sample = { IQ_MISMATCH_CAL, MAX_CAL_SAMPLES, PER_MIN_LOG_COUNT, ath9k_hw_iqcal_collect, ath9k_hw_iqcalibrate }; const struct ath9k_percal_data iq_cal_single_sample = { IQ_MISMATCH_CAL, MIN_CAL_SAMPLES, PER_MAX_LOG_COUNT, ath9k_hw_iqcal_collect, ath9k_hw_iqcalibrate }; const struct ath9k_percal_data adc_gain_cal_multi_sample = { ADC_GAIN_CAL, MAX_CAL_SAMPLES, PER_MIN_LOG_COUNT, ath9k_hw_adc_gaincal_collect, ath9k_hw_adc_gaincal_calibrate }; const struct ath9k_percal_data adc_gain_cal_single_sample = { ADC_GAIN_CAL, MIN_CAL_SAMPLES, PER_MAX_LOG_COUNT, ath9k_hw_adc_gaincal_collect, ath9k_hw_adc_gaincal_calibrate }; const struct ath9k_percal_data adc_dc_cal_multi_sample = { ADC_DC_CAL, MAX_CAL_SAMPLES, PER_MIN_LOG_COUNT, ath9k_hw_adc_dccal_collect, ath9k_hw_adc_dccal_calibrate }; const struct ath9k_percal_data adc_dc_cal_single_sample = { ADC_DC_CAL, MIN_CAL_SAMPLES, PER_MAX_LOG_COUNT, ath9k_hw_adc_dccal_collect, ath9k_hw_adc_dccal_calibrate }; const struct ath9k_percal_data adc_init_dc_cal = { ADC_DC_INIT_CAL, MIN_CAL_SAMPLES, INIT_LOG_COUNT, ath9k_hw_adc_dccal_collect, ath9k_hw_adc_dccal_calibrate };