/* * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux. * * Based on skelton.c by Donald Becker. * * This driver is a replacement of older and less maintained version. * This is a header of the older version: * -----<snip>----- * Copyright 2001 MontaVista Software Inc. * Author: MontaVista Software, Inc. * ahennessy@mvista.com * Copyright (C) 2000-2001 Toshiba Corporation * static const char *version = * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n"; * -----<snip>----- * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * (C) Copyright TOSHIBA CORPORATION 2004-2005 * All Rights Reserved. */ #ifdef TC35815_NAPI #define DRV_VERSION "1.35-NAPI" #else #define DRV_VERSION "1.35" #endif static const char *version = "tc35815.c:v" DRV_VERSION "\n"; #define MODNAME "tc35815" #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/spinlock.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/delay.h> #include <linux/pci.h> #include <linux/mii.h> #include <linux/ethtool.h> #include <asm/io.h> #include <asm/byteorder.h> /* First, a few definitions that the brave might change. */ #define GATHER_TXINT /* On-Demand Tx Interrupt */ #define WORKAROUND_LOSTCAR #define WORKAROUND_100HALF_PROMISC /* #define TC35815_USE_PACKEDBUFFER */ typedef enum { TC35815CF = 0, TC35815_NWU, TC35815_TX4939, } board_t; /* indexed by board_t, above */ static const struct { const char *name; } board_info[] __devinitdata = { { "TOSHIBA TC35815CF 10/100BaseTX" }, { "TOSHIBA TC35815 with Wake on LAN" }, { "TOSHIBA TC35815/TX4939" }, }; static const struct pci_device_id tc35815_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF }, {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU }, {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 }, {0,} }; MODULE_DEVICE_TABLE (pci, tc35815_pci_tbl); /* see MODULE_PARM_DESC */ static struct tc35815_options { int speed; int duplex; int doforce; } options; /* * Registers */ struct tc35815_regs { volatile __u32 DMA_Ctl; /* 0x00 */ volatile __u32 TxFrmPtr; volatile __u32 TxThrsh; volatile __u32 TxPollCtr; volatile __u32 BLFrmPtr; volatile __u32 RxFragSize; volatile __u32 Int_En; volatile __u32 FDA_Bas; volatile __u32 FDA_Lim; /* 0x20 */ volatile __u32 Int_Src; volatile __u32 unused0[2]; volatile __u32 PauseCnt; volatile __u32 RemPauCnt; volatile __u32 TxCtlFrmStat; volatile __u32 unused1; volatile __u32 MAC_Ctl; /* 0x40 */ volatile __u32 CAM_Ctl; volatile __u32 Tx_Ctl; volatile __u32 Tx_Stat; volatile __u32 Rx_Ctl; volatile __u32 Rx_Stat; volatile __u32 MD_Data; volatile __u32 MD_CA; volatile __u32 CAM_Adr; /* 0x60 */ volatile __u32 CAM_Data; volatile __u32 CAM_Ena; volatile __u32 PROM_Ctl; volatile __u32 PROM_Data; volatile __u32 Algn_Cnt; volatile __u32 CRC_Cnt; volatile __u32 Miss_Cnt; }; /* * Bit assignments */ /* DMA_Ctl bit asign ------------------------------------------------------- */ #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */ #define DMA_RxAlign_1 0x00400000 #define DMA_RxAlign_2 0x00800000 #define DMA_RxAlign_3 0x00c00000 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */ #define DMA_IntMask 0x00040000 /* 1:Interupt mask */ #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */ #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */ #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */ #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */ #define DMA_TestMode 0x00002000 /* 1:Test Mode */ #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */ #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */ /* RxFragSize bit asign ---------------------------------------------------- */ #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */ #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */ /* MAC_Ctl bit asign ------------------------------------------------------- */ #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */ #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */ #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */ #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */ #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */ #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/ #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */ #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */ #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */ #define MAC_Reset 0x00000004 /* 1:Software Reset */ #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */ #define MAC_HaltReq 0x00000001 /* 1:Halt request */ /* PROM_Ctl bit asign ------------------------------------------------------ */ #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */ #define PROM_Read 0x00004000 /*10:Read operation */ #define PROM_Write 0x00002000 /*01:Write operation */ #define PROM_Erase 0x00006000 /*11:Erase operation */ /*00:Enable or Disable Writting, */ /* as specified in PROM_Addr. */ #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */ /*00xxxx: disable */ /* CAM_Ctl bit asign ------------------------------------------------------- */ #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */ #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/ /* accept other */ #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */ #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */ #define CAM_StationAcc 0x00000001 /* 1:unicast accept */ /* CAM_Ena bit asign ------------------------------------------------------- */ #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */ #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */ #define CAM_Ena_Bit(index) (1<<(index)) #define CAM_ENTRY_DESTINATION 0 #define CAM_ENTRY_SOURCE 1 #define CAM_ENTRY_MACCTL 20 /* Tx_Ctl bit asign -------------------------------------------------------- */ #define Tx_En 0x00000001 /* 1:Transmit enable */ #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */ #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */ #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */ #define Tx_FBack 0x00000010 /* 1:Fast Back-off */ #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */ #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */ #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */ #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */ #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */ #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */ #define Tx_EnComp 0x00004000 /* 1:Enable Completion */ /* Tx_Stat bit asign ------------------------------------------------------- */ #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */ #define Tx_ExColl 0x00000010 /* Excessive Collision */ #define Tx_TXDefer 0x00000020 /* Transmit Defered */ #define Tx_Paused 0x00000040 /* Transmit Paused */ #define Tx_IntTx 0x00000080 /* Interrupt on Tx */ #define Tx_Under 0x00000100 /* Underrun */ #define Tx_Defer 0x00000200 /* Deferral */ #define Tx_NCarr 0x00000400 /* No Carrier */ #define Tx_10Stat 0x00000800 /* 10Mbps Status */ #define Tx_LateColl 0x00001000 /* Late Collision */ #define Tx_TxPar 0x00002000 /* Tx Parity Error */ #define Tx_Comp 0x00004000 /* Completion */ #define Tx_Halted 0x00008000 /* Tx Halted */ #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */ /* Rx_Ctl bit asign -------------------------------------------------------- */ #define Rx_EnGood 0x00004000 /* 1:Enable Good */ #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */ #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */ #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */ #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */ #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */ #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */ #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */ #define Rx_ShortEn 0x00000008 /* 1:Short Enable */ #define Rx_LongEn 0x00000004 /* 1:Long Enable */ #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */ #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */ /* Rx_Stat bit asign ------------------------------------------------------- */ #define Rx_Halted 0x00008000 /* Rx Halted */ #define Rx_Good 0x00004000 /* Rx Good */ #define Rx_RxPar 0x00002000 /* Rx Parity Error */ /* 0x00001000 not use */ #define Rx_LongErr 0x00000800 /* Rx Long Error */ #define Rx_Over 0x00000400 /* Rx Overflow */ #define Rx_CRCErr 0x00000200 /* Rx CRC Error */ #define Rx_Align 0x00000100 /* Rx Alignment Error */ #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */ #define Rx_IntRx 0x00000040 /* Rx Interrupt */ #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */ #define Rx_Stat_Mask 0x0000EFC0 /* Rx All Status Mask */ /* Int_En bit asign -------------------------------------------------------- */ #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */ #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Control Complete Enable */ #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */ #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */ #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */ #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */ #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */ #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */ #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */ #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */ #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */ #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */ /* Exhausted Enable */ /* Int_Src bit asign ------------------------------------------------------- */ #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */ #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */ #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */ #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */ #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */ #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */ #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */ #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */ #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */ #define Int_SWInt 0x00000020 /* 1:Software request & Clear */ #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */ #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */ #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */ #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */ #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */ /* MD_CA bit asign --------------------------------------------------------- */ #define MD_CA_PreSup 0x00001000 /* 1:Preamble Supress */ #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */ #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */ /* * Descriptors */ /* Frame descripter */ struct FDesc { volatile __u32 FDNext; volatile __u32 FDSystem; volatile __u32 FDStat; volatile __u32 FDCtl; }; /* Buffer descripter */ struct BDesc { volatile __u32 BuffData; volatile __u32 BDCtl; }; #define FD_ALIGN 16 /* Frame Descripter bit asign ---------------------------------------------- */ #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */ #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */ #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */ #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */ #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */ #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */ #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */ #define FD_FrmOpt_Packing 0x04000000 /* Rx only */ #define FD_CownsFD 0x80000000 /* FD Controller owner bit */ #define FD_Next_EOL 0x00000001 /* FD EOL indicator */ #define FD_BDCnt_SHIFT 16 /* Buffer Descripter bit asign --------------------------------------------- */ #define BD_BuffLength_MASK 0x0000FFFF /* Recieve Data Size */ #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */ #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */ #define BD_CownsBD 0x80000000 /* BD Controller owner bit */ #define BD_RxBDID_SHIFT 16 #define BD_RxBDSeqN_SHIFT 24 /* Some useful constants. */ #undef NO_CHECK_CARRIER /* Does not check No-Carrier with TP */ #ifdef NO_CHECK_CARRIER #define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \ Tx_EnExColl | Tx_EnExDefer | Tx_EnUnder | \ Tx_En) /* maybe 0x7b01 */ #else #define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \ Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \ Tx_En) /* maybe 0x7b01 */ #endif #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \ | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */ #define INT_EN_CMD (Int_NRAbtEn | \ Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \ Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \ Int_STargAbtEn | \ Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/ #define DMA_CTL_CMD DMA_BURST_SIZE #define HAVE_DMA_RXALIGN(lp) likely((lp)->boardtype != TC35815CF) /* Tuning parameters */ #define DMA_BURST_SIZE 32 #define TX_THRESHOLD 1024 #define TX_THRESHOLD_MAX 1536 /* used threshold with packet max byte for low pci transfer ability.*/ #define TX_THRESHOLD_KEEP_LIMIT 10 /* setting threshold max value when overrun error occured this count. */ /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */ #ifdef TC35815_USE_PACKEDBUFFER #define FD_PAGE_NUM 2 #define RX_BUF_NUM 8 /* >= 2 */ #define RX_FD_NUM 250 /* >= 32 */ #define TX_FD_NUM 128 #define RX_BUF_SIZE PAGE_SIZE #else /* TC35815_USE_PACKEDBUFFER */ #define FD_PAGE_NUM 4 #define RX_BUF_NUM 128 /* < 256 */ #define RX_FD_NUM 256 /* >= 32 */ #define TX_FD_NUM 128 #if RX_CTL_CMD & Rx_LongEn #define RX_BUF_SIZE PAGE_SIZE #elif RX_CTL_CMD & Rx_StripCRC #define RX_BUF_SIZE ALIGN(ETH_FRAME_LEN + 4 + 2, 32) /* +2: reserve */ #else #define RX_BUF_SIZE ALIGN(ETH_FRAME_LEN + 2, 32) /* +2: reserve */ #endif #endif /* TC35815_USE_PACKEDBUFFER */ #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */ #define NAPI_WEIGHT 16 struct TxFD { struct FDesc fd; struct BDesc bd; struct BDesc unused; }; struct RxFD { struct FDesc fd; struct BDesc bd[0]; /* variable length */ }; struct FrFD { struct FDesc fd; struct BDesc bd[RX_BUF_NUM]; }; #define tc_readl(addr) readl(addr) #define tc_writel(d, addr) writel(d, addr) #define TC35815_TX_TIMEOUT msecs_to_jiffies(400) /* Timer state engine. */ enum tc35815_timer_state { arbwait = 0, /* Waiting for auto negotiation to complete. */ lupwait = 1, /* Auto-neg complete, awaiting link-up status. */ ltrywait = 2, /* Forcing try of all modes, from fastest to slowest. */ asleep = 3, /* Time inactive. */ lcheck = 4, /* Check link status. */ }; /* Information that need to be kept for each board. */ struct tc35815_local { struct pci_dev *pci_dev; /* statistics */ struct net_device_stats stats; struct { int max_tx_qlen; int tx_ints; int rx_ints; int tx_underrun; } lstats; /* Tx control lock. This protects the transmit buffer ring * state along with the "tx full" state of the driver. This * means all netif_queue flow control actions are protected * by this lock as well. */ spinlock_t lock; int phy_addr; int fullduplex; unsigned short saved_lpa; struct timer_list timer; enum tc35815_timer_state timer_state; /* State of auto-neg timer. */ unsigned int timer_ticks; /* Number of clicks at each state */ /* * Transmitting: Batch Mode. * 1 BD in 1 TxFD. * Receiving: Packing Mode. (TC35815_USE_PACKEDBUFFER) * 1 circular FD for Free Buffer List. * RX_BUF_NUM BD in Free Buffer FD. * One Free Buffer BD has PAGE_SIZE data buffer. * Or Non-Packing Mode. * 1 circular FD for Free Buffer List. * RX_BUF_NUM BD in Free Buffer FD. * One Free Buffer BD has ETH_FRAME_LEN data buffer. */ void * fd_buf; /* for TxFD, RxFD, FrFD */ dma_addr_t fd_buf_dma; struct TxFD *tfd_base; unsigned int tfd_start; unsigned int tfd_end; struct RxFD *rfd_base; struct RxFD *rfd_limit; struct RxFD *rfd_cur; struct FrFD *fbl_ptr; #ifdef TC35815_USE_PACKEDBUFFER unsigned char fbl_curid; void * data_buf[RX_BUF_NUM]; /* packing */ dma_addr_t data_buf_dma[RX_BUF_NUM]; struct { struct sk_buff *skb; dma_addr_t skb_dma; } tx_skbs[TX_FD_NUM]; #else unsigned int fbl_count; struct { struct sk_buff *skb; dma_addr_t skb_dma; } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM]; #endif struct mii_if_info mii; unsigned short mii_id[2]; u32 msg_enable; board_t boardtype; }; static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt) { return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf); } #ifdef DEBUG static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus) { return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma)); } #endif #ifdef TC35815_USE_PACKEDBUFFER static inline void *rxbuf_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus) { int i; for (i = 0; i < RX_BUF_NUM; i++) { if (bus >= lp->data_buf_dma[i] && bus < lp->data_buf_dma[i] + PAGE_SIZE) return (void *)((u8 *)lp->data_buf[i] + (bus - lp->data_buf_dma[i])); } return NULL; } #define TC35815_DMA_SYNC_ONDEMAND static void* alloc_rxbuf_page(struct pci_dev *hwdev, dma_addr_t *dma_handle) { #ifdef TC35815_DMA_SYNC_ONDEMAND void *buf; /* pci_map + pci_dma_sync will be more effective than * pci_alloc_consistent on some archs. */ if ((buf = (void *)__get_free_page(GFP_ATOMIC)) == NULL) return NULL; *dma_handle = pci_map_single(hwdev, buf, PAGE_SIZE, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(*dma_handle)) { free_page((unsigned long)buf); return NULL; } return buf; #else return pci_alloc_consistent(hwdev, PAGE_SIZE, dma_handle); #endif } static void free_rxbuf_page(struct pci_dev *hwdev, void *buf, dma_addr_t dma_handle) { #ifdef TC35815_DMA_SYNC_ONDEMAND pci_unmap_single(hwdev, dma_handle, PAGE_SIZE, PCI_DMA_FROMDEVICE); free_page((unsigned long)buf); #else pci_free_consistent(hwdev, PAGE_SIZE, buf, dma_handle); #endif } #else /* TC35815_USE_PACKEDBUFFER */ static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev, struct pci_dev *hwdev, dma_addr_t *dma_handle) { struct sk_buff *skb; skb = dev_alloc_skb(RX_BUF_SIZE); if (!skb) return NULL; *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(*dma_handle)) { dev_kfree_skb_any(skb); return NULL; } skb_reserve(skb, 2); /* make IP header 4byte aligned */ return skb; } static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle) { pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb_any(skb); } #endif /* TC35815_USE_PACKEDBUFFER */ /* Index to functions, as function prototypes. */ static int tc35815_open(struct net_device *dev); static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev); static irqreturn_t tc35815_interrupt(int irq, void *dev_id); #ifdef TC35815_NAPI static int tc35815_rx(struct net_device *dev, int limit); static int tc35815_poll(struct net_device *dev, int *budget); #else static void tc35815_rx(struct net_device *dev); #endif static void tc35815_txdone(struct net_device *dev); static int tc35815_close(struct net_device *dev); static struct net_device_stats *tc35815_get_stats(struct net_device *dev); static void tc35815_set_multicast_list(struct net_device *dev); static void tc35815_tx_timeout(struct net_device *dev); static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); #ifdef CONFIG_NET_POLL_CONTROLLER static void tc35815_poll_controller(struct net_device *dev); #endif static const struct ethtool_ops tc35815_ethtool_ops; /* Example routines you must write ;->. */ static void tc35815_chip_reset(struct net_device *dev); static void tc35815_chip_init(struct net_device *dev); static void tc35815_find_phy(struct net_device *dev); static void tc35815_phy_chip_init(struct net_device *dev); #ifdef DEBUG static void panic_queues(struct net_device *dev); #endif static void tc35815_timer(unsigned long data); static void tc35815_start_auto_negotiation(struct net_device *dev, struct ethtool_cmd *ep); static int tc_mdio_read(struct net_device *dev, int phy_id, int location); static void tc_mdio_write(struct net_device *dev, int phy_id, int location, int val); static void __devinit tc35815_init_dev_addr (struct net_device *dev) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; int i; /* dev_addr will be overwritten on NETDEV_REGISTER event */ while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) ; for (i = 0; i < 6; i += 2) { unsigned short data; tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl); while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) ; data = tc_readl(&tr->PROM_Data); dev->dev_addr[i] = data & 0xff; dev->dev_addr[i+1] = data >> 8; } } static int __devinit tc35815_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) { void __iomem *ioaddr = NULL; struct net_device *dev; struct tc35815_local *lp; int rc; unsigned long mmio_start, mmio_end, mmio_flags, mmio_len; static int printed_version; if (!printed_version++) { printk(version); dev_printk(KERN_DEBUG, &pdev->dev, "speed:%d duplex:%d doforce:%d\n", options.speed, options.duplex, options.doforce); } if (!pdev->irq) { dev_warn(&pdev->dev, "no IRQ assigned.\n"); return -ENODEV; } /* dev zeroed in alloc_etherdev */ dev = alloc_etherdev (sizeof (*lp)); if (dev == NULL) { dev_err(&pdev->dev, "unable to alloc new ethernet\n"); return -ENOMEM; } SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); lp = dev->priv; /* enable device (incl. PCI PM wakeup), and bus-mastering */ rc = pci_enable_device (pdev); if (rc) goto err_out; mmio_start = pci_resource_start (pdev, 1); mmio_end = pci_resource_end (pdev, 1); mmio_flags = pci_resource_flags (pdev, 1); mmio_len = pci_resource_len (pdev, 1); /* set this immediately, we need to know before * we talk to the chip directly */ /* make sure PCI base addr 1 is MMIO */ if (!(mmio_flags & IORESOURCE_MEM)) { dev_err(&pdev->dev, "region #1 not an MMIO resource, aborting\n"); rc = -ENODEV; goto err_out; } /* check for weird/broken PCI region reporting */ if ((mmio_len < sizeof(struct tc35815_regs))) { dev_err(&pdev->dev, "Invalid PCI region size(s), aborting\n"); rc = -ENODEV; goto err_out; } rc = pci_request_regions (pdev, MODNAME); if (rc) goto err_out; pci_set_master (pdev); /* ioremap MMIO region */ ioaddr = ioremap (mmio_start, mmio_len); if (ioaddr == NULL) { dev_err(&pdev->dev, "cannot remap MMIO, aborting\n"); rc = -EIO; goto err_out_free_res; } /* Initialize the device structure. */ dev->open = tc35815_open; dev->hard_start_xmit = tc35815_send_packet; dev->stop = tc35815_close; dev->get_stats = tc35815_get_stats; dev->set_multicast_list = tc35815_set_multicast_list; dev->do_ioctl = tc35815_ioctl; dev->ethtool_ops = &tc35815_ethtool_ops; dev->tx_timeout = tc35815_tx_timeout; dev->watchdog_timeo = TC35815_TX_TIMEOUT; #ifdef TC35815_NAPI dev->poll = tc35815_poll; dev->weight = NAPI_WEIGHT; #endif #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = tc35815_poll_controller; #endif dev->irq = pdev->irq; dev->base_addr = (unsigned long) ioaddr; /* dev->priv/lp zeroed and aligned in alloc_etherdev */ lp = dev->priv; spin_lock_init(&lp->lock); lp->pci_dev = pdev; lp->boardtype = ent->driver_data; lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK; pci_set_drvdata(pdev, dev); /* Soft reset the chip. */ tc35815_chip_reset(dev); /* Retrieve the ethernet address. */ tc35815_init_dev_addr(dev); rc = register_netdev (dev); if (rc) goto err_out_unmap; memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); printk(KERN_INFO "%s: %s at 0x%lx, " "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, " "IRQ %d\n", dev->name, board_info[ent->driver_data].name, dev->base_addr, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], dev->irq); setup_timer(&lp->timer, tc35815_timer, (unsigned long) dev); lp->mii.dev = dev; lp->mii.mdio_read = tc_mdio_read; lp->mii.mdio_write = tc_mdio_write; lp->mii.phy_id_mask = 0x1f; lp->mii.reg_num_mask = 0x1f; tc35815_find_phy(dev); lp->mii.phy_id = lp->phy_addr; lp->mii.full_duplex = 0; lp->mii.force_media = 0; return 0; err_out_unmap: iounmap(ioaddr); err_out_free_res: pci_release_regions (pdev); err_out: free_netdev (dev); return rc; } static void __devexit tc35815_remove_one (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata (pdev); unsigned long mmio_addr; mmio_addr = dev->base_addr; unregister_netdev (dev); if (mmio_addr) { iounmap ((void __iomem *)mmio_addr); pci_release_regions (pdev); } free_netdev (dev); pci_set_drvdata (pdev, NULL); } static int tc35815_init_queues(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int i; unsigned long fd_addr; if (!lp->fd_buf) { BUG_ON(sizeof(struct FDesc) + sizeof(struct BDesc) * RX_BUF_NUM + sizeof(struct FDesc) * RX_FD_NUM + sizeof(struct TxFD) * TX_FD_NUM > PAGE_SIZE * FD_PAGE_NUM); if ((lp->fd_buf = pci_alloc_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, &lp->fd_buf_dma)) == 0) return -ENOMEM; for (i = 0; i < RX_BUF_NUM; i++) { #ifdef TC35815_USE_PACKEDBUFFER if ((lp->data_buf[i] = alloc_rxbuf_page(lp->pci_dev, &lp->data_buf_dma[i])) == NULL) { while (--i >= 0) { free_rxbuf_page(lp->pci_dev, lp->data_buf[i], lp->data_buf_dma[i]); lp->data_buf[i] = NULL; } pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, lp->fd_buf, lp->fd_buf_dma); lp->fd_buf = NULL; return -ENOMEM; } #else lp->rx_skbs[i].skb = alloc_rxbuf_skb(dev, lp->pci_dev, &lp->rx_skbs[i].skb_dma); if (!lp->rx_skbs[i].skb) { while (--i >= 0) { free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb, lp->rx_skbs[i].skb_dma); lp->rx_skbs[i].skb = NULL; } pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, lp->fd_buf, lp->fd_buf_dma); lp->fd_buf = NULL; return -ENOMEM; } #endif } printk(KERN_DEBUG "%s: FD buf %p DataBuf", dev->name, lp->fd_buf); #ifdef TC35815_USE_PACKEDBUFFER printk(" DataBuf"); for (i = 0; i < RX_BUF_NUM; i++) printk(" %p", lp->data_buf[i]); #endif printk("\n"); } else { for (i = 0; i < FD_PAGE_NUM; i++) { clear_page((void *)((unsigned long)lp->fd_buf + i * PAGE_SIZE)); } } fd_addr = (unsigned long)lp->fd_buf; /* Free Descriptors (for Receive) */ lp->rfd_base = (struct RxFD *)fd_addr; fd_addr += sizeof(struct RxFD) * RX_FD_NUM; for (i = 0; i < RX_FD_NUM; i++) { lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD); } lp->rfd_cur = lp->rfd_base; lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1); /* Transmit Descriptors */ lp->tfd_base = (struct TxFD *)fd_addr; fd_addr += sizeof(struct TxFD) * TX_FD_NUM; for (i = 0; i < TX_FD_NUM; i++) { lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1])); lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0); } lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0])); lp->tfd_start = 0; lp->tfd_end = 0; /* Buffer List (for Receive) */ lp->fbl_ptr = (struct FrFD *)fd_addr; lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr)); lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD); #ifndef TC35815_USE_PACKEDBUFFER /* * move all allocated skbs to head of rx_skbs[] array. * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in * tc35815_rx() had failed. */ lp->fbl_count = 0; for (i = 0; i < RX_BUF_NUM; i++) { if (lp->rx_skbs[i].skb) { if (i != lp->fbl_count) { lp->rx_skbs[lp->fbl_count].skb = lp->rx_skbs[i].skb; lp->rx_skbs[lp->fbl_count].skb_dma = lp->rx_skbs[i].skb_dma; } lp->fbl_count++; } } #endif for (i = 0; i < RX_BUF_NUM; i++) { #ifdef TC35815_USE_PACKEDBUFFER lp->fbl_ptr->bd[i].BuffData = cpu_to_le32(lp->data_buf_dma[i]); #else if (i >= lp->fbl_count) { lp->fbl_ptr->bd[i].BuffData = 0; lp->fbl_ptr->bd[i].BDCtl = 0; continue; } lp->fbl_ptr->bd[i].BuffData = cpu_to_le32(lp->rx_skbs[i].skb_dma); #endif /* BDID is index of FrFD.bd[] */ lp->fbl_ptr->bd[i].BDCtl = cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | RX_BUF_SIZE); } #ifdef TC35815_USE_PACKEDBUFFER lp->fbl_curid = 0; #endif printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n", dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr); return 0; } static void tc35815_clear_queues(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int i; for (i = 0; i < TX_FD_NUM; i++) { u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); struct sk_buff *skb = fdsystem != 0xffffffff ? lp->tx_skbs[fdsystem].skb : NULL; #ifdef DEBUG if (lp->tx_skbs[i].skb != skb) { printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); panic_queues(dev); } #else BUG_ON(lp->tx_skbs[i].skb != skb); #endif if (skb) { pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); lp->tx_skbs[i].skb = NULL; lp->tx_skbs[i].skb_dma = 0; dev_kfree_skb_any(skb); } lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); } tc35815_init_queues(dev); } static void tc35815_free_queues(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int i; if (lp->tfd_base) { for (i = 0; i < TX_FD_NUM; i++) { u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); struct sk_buff *skb = fdsystem != 0xffffffff ? lp->tx_skbs[fdsystem].skb : NULL; #ifdef DEBUG if (lp->tx_skbs[i].skb != skb) { printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); panic_queues(dev); } #else BUG_ON(lp->tx_skbs[i].skb != skb); #endif if (skb) { dev_kfree_skb(skb); pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); lp->tx_skbs[i].skb = NULL; lp->tx_skbs[i].skb_dma = 0; } lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); } } lp->rfd_base = NULL; lp->rfd_limit = NULL; lp->rfd_cur = NULL; lp->fbl_ptr = NULL; for (i = 0; i < RX_BUF_NUM; i++) { #ifdef TC35815_USE_PACKEDBUFFER if (lp->data_buf[i]) { free_rxbuf_page(lp->pci_dev, lp->data_buf[i], lp->data_buf_dma[i]); lp->data_buf[i] = NULL; } #else if (lp->rx_skbs[i].skb) { free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb, lp->rx_skbs[i].skb_dma); lp->rx_skbs[i].skb = NULL; } #endif } if (lp->fd_buf) { pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, lp->fd_buf, lp->fd_buf_dma); lp->fd_buf = NULL; } } static void dump_txfd(struct TxFD *fd) { printk("TxFD(%p): %08x %08x %08x %08x\n", fd, le32_to_cpu(fd->fd.FDNext), le32_to_cpu(fd->fd.FDSystem), le32_to_cpu(fd->fd.FDStat), le32_to_cpu(fd->fd.FDCtl)); printk("BD: "); printk(" %08x %08x", le32_to_cpu(fd->bd.BuffData), le32_to_cpu(fd->bd.BDCtl)); printk("\n"); } static int dump_rxfd(struct RxFD *fd) { int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; if (bd_count > 8) bd_count = 8; printk("RxFD(%p): %08x %08x %08x %08x\n", fd, le32_to_cpu(fd->fd.FDNext), le32_to_cpu(fd->fd.FDSystem), le32_to_cpu(fd->fd.FDStat), le32_to_cpu(fd->fd.FDCtl)); if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD) return 0; printk("BD: "); for (i = 0; i < bd_count; i++) printk(" %08x %08x", le32_to_cpu(fd->bd[i].BuffData), le32_to_cpu(fd->bd[i].BDCtl)); printk("\n"); return bd_count; } #if defined(DEBUG) || defined(TC35815_USE_PACKEDBUFFER) static void dump_frfd(struct FrFD *fd) { int i; printk("FrFD(%p): %08x %08x %08x %08x\n", fd, le32_to_cpu(fd->fd.FDNext), le32_to_cpu(fd->fd.FDSystem), le32_to_cpu(fd->fd.FDStat), le32_to_cpu(fd->fd.FDCtl)); printk("BD: "); for (i = 0; i < RX_BUF_NUM; i++) printk(" %08x %08x", le32_to_cpu(fd->bd[i].BuffData), le32_to_cpu(fd->bd[i].BDCtl)); printk("\n"); } #endif #ifdef DEBUG static void panic_queues(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int i; printk("TxFD base %p, start %u, end %u\n", lp->tfd_base, lp->tfd_start, lp->tfd_end); printk("RxFD base %p limit %p cur %p\n", lp->rfd_base, lp->rfd_limit, lp->rfd_cur); printk("FrFD %p\n", lp->fbl_ptr); for (i = 0; i < TX_FD_NUM; i++) dump_txfd(&lp->tfd_base[i]); for (i = 0; i < RX_FD_NUM; i++) { int bd_count = dump_rxfd(&lp->rfd_base[i]); i += (bd_count + 1) / 2; /* skip BDs */ } dump_frfd(lp->fbl_ptr); panic("%s: Illegal queue state.", dev->name); } #endif static void print_eth(char *add) { int i; printk("print_eth(%p)\n", add); for (i = 0; i < 6; i++) printk(" %2.2X", (unsigned char) add[i + 6]); printk(" =>"); for (i = 0; i < 6; i++) printk(" %2.2X", (unsigned char) add[i]); printk(" : %2.2X%2.2X\n", (unsigned char) add[12], (unsigned char) add[13]); } static int tc35815_tx_full(struct net_device *dev) { struct tc35815_local *lp = dev->priv; return ((lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end); } static void tc35815_restart(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int pid = lp->phy_addr; int do_phy_reset = 1; del_timer(&lp->timer); /* Kill if running */ if (lp->mii_id[0] == 0x0016 && (lp->mii_id[1] & 0xfc00) == 0xf800) { /* Resetting PHY cause problem on some chip... (SEEQ 80221) */ do_phy_reset = 0; } if (do_phy_reset) { int timeout; tc_mdio_write(dev, pid, MII_BMCR, BMCR_RESET); timeout = 100; while (--timeout) { if (!(tc_mdio_read(dev, pid, MII_BMCR) & BMCR_RESET)) break; udelay(1); } if (!timeout) printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name); } tc35815_chip_reset(dev); tc35815_clear_queues(dev); tc35815_chip_init(dev); /* Reconfigure CAM again since tc35815_chip_init() initialize it. */ tc35815_set_multicast_list(dev); } static void tc35815_tx_timeout(struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; printk(KERN_WARNING "%s: transmit timed out, status %#x\n", dev->name, tc_readl(&tr->Tx_Stat)); /* Try to restart the adaptor. */ spin_lock_irq(&lp->lock); tc35815_restart(dev); spin_unlock_irq(&lp->lock); lp->stats.tx_errors++; /* If we have space available to accept new transmit * requests, wake up the queueing layer. This would * be the case if the chipset_init() call above just * flushes out the tx queue and empties it. * * If instead, the tx queue is retained then the * netif_wake_queue() call should be placed in the * TX completion interrupt handler of the driver instead * of here. */ if (!tc35815_tx_full(dev)) netif_wake_queue(dev); } /* * Open/initialize the board. This is called (in the current kernel) * sometime after booting when the 'ifconfig' program is run. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int tc35815_open(struct net_device *dev) { struct tc35815_local *lp = dev->priv; /* * This is used if the interrupt line can turned off (shared). * See 3c503.c for an example of selecting the IRQ at config-time. */ if (request_irq(dev->irq, &tc35815_interrupt, IRQF_SHARED, dev->name, dev)) { return -EAGAIN; } del_timer(&lp->timer); /* Kill if running */ tc35815_chip_reset(dev); if (tc35815_init_queues(dev) != 0) { free_irq(dev->irq, dev); return -EAGAIN; } /* Reset the hardware here. Don't forget to set the station address. */ spin_lock_irq(&lp->lock); tc35815_chip_init(dev); spin_unlock_irq(&lp->lock); /* We are now ready to accept transmit requeusts from * the queueing layer of the networking. */ netif_start_queue(dev); return 0; } /* This will only be invoked if your driver is _not_ in XOFF state. * What this means is that you need not check it, and that this * invariant will hold if you make sure that the netif_*_queue() * calls are done at the proper times. */ static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct TxFD *txfd; unsigned long flags; /* If some error occurs while trying to transmit this * packet, you should return '1' from this function. * In such a case you _may not_ do anything to the * SKB, it is still owned by the network queueing * layer when an error is returned. This means you * may not modify any SKB fields, you may not free * the SKB, etc. */ /* This is the most common case for modern hardware. * The spinlock protects this code from the TX complete * hardware interrupt handler. Queue flow control is * thus managed under this lock as well. */ spin_lock_irqsave(&lp->lock, flags); /* failsafe... (handle txdone now if half of FDs are used) */ if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM > TX_FD_NUM / 2) tc35815_txdone(dev); if (netif_msg_pktdata(lp)) print_eth(skb->data); #ifdef DEBUG if (lp->tx_skbs[lp->tfd_start].skb) { printk("%s: tx_skbs conflict.\n", dev->name); panic_queues(dev); } #else BUG_ON(lp->tx_skbs[lp->tfd_start].skb); #endif lp->tx_skbs[lp->tfd_start].skb = skb; lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE); /*add to ring */ txfd = &lp->tfd_base[lp->tfd_start]; txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma); txfd->bd.BDCtl = cpu_to_le32(skb->len); txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start); txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT)); if (lp->tfd_start == lp->tfd_end) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; /* Start DMA Transmitter. */ txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL); #ifdef GATHER_TXINT txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); #endif if (netif_msg_tx_queued(lp)) { printk("%s: starting TxFD.\n", dev->name); dump_txfd(txfd); } tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); } else { txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL); if (netif_msg_tx_queued(lp)) { printk("%s: queueing TxFD.\n", dev->name); dump_txfd(txfd); } } lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM; dev->trans_start = jiffies; /* If we just used up the very last entry in the * TX ring on this device, tell the queueing * layer to send no more. */ if (tc35815_tx_full(dev)) { if (netif_msg_tx_queued(lp)) printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name); netif_stop_queue(dev); } /* When the TX completion hw interrupt arrives, this * is when the transmit statistics are updated. */ spin_unlock_irqrestore(&lp->lock, flags); return 0; } #define FATAL_ERROR_INT \ (Int_IntPCI | Int_DmParErr | Int_IntNRAbt) static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status) { static int count; printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):", dev->name, status); if (status & Int_IntPCI) printk(" IntPCI"); if (status & Int_DmParErr) printk(" DmParErr"); if (status & Int_IntNRAbt) printk(" IntNRAbt"); printk("\n"); if (count++ > 100) panic("%s: Too many fatal errors.", dev->name); printk(KERN_WARNING "%s: Resetting ...\n", dev->name); /* Try to restart the adaptor. */ tc35815_restart(dev); } #ifdef TC35815_NAPI static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit) #else static int tc35815_do_interrupt(struct net_device *dev, u32 status) #endif { struct tc35815_local *lp = dev->priv; struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; int ret = -1; /* Fatal errors... */ if (status & FATAL_ERROR_INT) { tc35815_fatal_error_interrupt(dev, status); return 0; } /* recoverable errors */ if (status & Int_IntFDAEx) { /* disable FDAEx int. (until we make rooms...) */ tc_writel(tc_readl(&tr->Int_En) & ~Int_FDAExEn, &tr->Int_En); printk(KERN_WARNING "%s: Free Descriptor Area Exhausted (%#x).\n", dev->name, status); lp->stats.rx_dropped++; ret = 0; } if (status & Int_IntBLEx) { /* disable BLEx int. (until we make rooms...) */ tc_writel(tc_readl(&tr->Int_En) & ~Int_BLExEn, &tr->Int_En); printk(KERN_WARNING "%s: Buffer List Exhausted (%#x).\n", dev->name, status); lp->stats.rx_dropped++; ret = 0; } if (status & Int_IntExBD) { printk(KERN_WARNING "%s: Excessive Buffer Descriptiors (%#x).\n", dev->name, status); lp->stats.rx_length_errors++; ret = 0; } /* normal notification */ if (status & Int_IntMacRx) { /* Got a packet(s). */ #ifdef TC35815_NAPI ret = tc35815_rx(dev, limit); #else tc35815_rx(dev); ret = 0; #endif lp->lstats.rx_ints++; } if (status & Int_IntMacTx) { /* Transmit complete. */ lp->lstats.tx_ints++; tc35815_txdone(dev); netif_wake_queue(dev); ret = 0; } return ret; } /* * The typical workload of the driver: * Handle the network interface interrupts. */ static irqreturn_t tc35815_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; #ifdef TC35815_NAPI u32 dmactl = tc_readl(&tr->DMA_Ctl); if (!(dmactl & DMA_IntMask)) { /* disable interrupts */ tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl); if (netif_rx_schedule_prep(dev)) __netif_rx_schedule(dev); else { printk(KERN_ERR "%s: interrupt taken in poll\n", dev->name); BUG(); } (void)tc_readl(&tr->Int_Src); /* flush */ return IRQ_HANDLED; } return IRQ_NONE; #else struct tc35815_local *lp = dev->priv; int handled; u32 status; spin_lock(&lp->lock); status = tc_readl(&tr->Int_Src); tc_writel(status, &tr->Int_Src); /* write to clear */ handled = tc35815_do_interrupt(dev, status); (void)tc_readl(&tr->Int_Src); /* flush */ spin_unlock(&lp->lock); return IRQ_RETVAL(handled >= 0); #endif /* TC35815_NAPI */ } #ifdef CONFIG_NET_POLL_CONTROLLER static void tc35815_poll_controller(struct net_device *dev) { disable_irq(dev->irq); tc35815_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif /* We have a good packet(s), get it/them out of the buffers. */ #ifdef TC35815_NAPI static int tc35815_rx(struct net_device *dev, int limit) #else static void tc35815_rx(struct net_device *dev) #endif { struct tc35815_local *lp = dev->priv; unsigned int fdctl; int i; int buf_free_count = 0; int fd_free_count = 0; #ifdef TC35815_NAPI int received = 0; #endif while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) { int status = le32_to_cpu(lp->rfd_cur->fd.FDStat); int pkt_len = fdctl & FD_FDLength_MASK; int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; #ifdef DEBUG struct RxFD *next_rfd; #endif #if (RX_CTL_CMD & Rx_StripCRC) == 0 pkt_len -= 4; #endif if (netif_msg_rx_status(lp)) dump_rxfd(lp->rfd_cur); if (status & Rx_Good) { struct sk_buff *skb; unsigned char *data; int cur_bd; #ifdef TC35815_USE_PACKEDBUFFER int offset; #endif #ifdef TC35815_NAPI if (--limit < 0) break; #endif #ifdef TC35815_USE_PACKEDBUFFER BUG_ON(bd_count > 2); skb = dev_alloc_skb(pkt_len + 2); /* +2: for reserve */ if (skb == NULL) { printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name); lp->stats.rx_dropped++; break; } skb_reserve(skb, 2); /* 16 bit alignment */ data = skb_put(skb, pkt_len); /* copy from receive buffer */ cur_bd = 0; offset = 0; while (offset < pkt_len && cur_bd < bd_count) { int len = le32_to_cpu(lp->rfd_cur->bd[cur_bd].BDCtl) & BD_BuffLength_MASK; dma_addr_t dma = le32_to_cpu(lp->rfd_cur->bd[cur_bd].BuffData); void *rxbuf = rxbuf_bus_to_virt(lp, dma); if (offset + len > pkt_len) len = pkt_len - offset; #ifdef TC35815_DMA_SYNC_ONDEMAND pci_dma_sync_single_for_cpu(lp->pci_dev, dma, len, PCI_DMA_FROMDEVICE); #endif memcpy(data + offset, rxbuf, len); #ifdef TC35815_DMA_SYNC_ONDEMAND pci_dma_sync_single_for_device(lp->pci_dev, dma, len, PCI_DMA_FROMDEVICE); #endif offset += len; cur_bd++; } #else /* TC35815_USE_PACKEDBUFFER */ BUG_ON(bd_count > 1); cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl) & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; #ifdef DEBUG if (cur_bd >= RX_BUF_NUM) { printk("%s: invalid BDID.\n", dev->name); panic_queues(dev); } BUG_ON(lp->rx_skbs[cur_bd].skb_dma != (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3)); if (!lp->rx_skbs[cur_bd].skb) { printk("%s: NULL skb.\n", dev->name); panic_queues(dev); } #else BUG_ON(cur_bd >= RX_BUF_NUM); #endif skb = lp->rx_skbs[cur_bd].skb; prefetch(skb->data); lp->rx_skbs[cur_bd].skb = NULL; lp->fbl_count--; pci_unmap_single(lp->pci_dev, lp->rx_skbs[cur_bd].skb_dma, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); if (!HAVE_DMA_RXALIGN(lp)) memmove(skb->data, skb->data - 2, pkt_len); data = skb_put(skb, pkt_len); #endif /* TC35815_USE_PACKEDBUFFER */ if (netif_msg_pktdata(lp)) print_eth(data); skb->protocol = eth_type_trans(skb, dev); #ifdef TC35815_NAPI netif_receive_skb(skb); received++; #else netif_rx(skb); #endif dev->last_rx = jiffies; lp->stats.rx_packets++; lp->stats.rx_bytes += pkt_len; } else { lp->stats.rx_errors++; printk(KERN_DEBUG "%s: Rx error (status %x)\n", dev->name, status & Rx_Stat_Mask); /* WORKAROUND: LongErr and CRCErr means Overflow. */ if ((status & Rx_LongErr) && (status & Rx_CRCErr)) { status &= ~(Rx_LongErr|Rx_CRCErr); status |= Rx_Over; } if (status & Rx_LongErr) lp->stats.rx_length_errors++; if (status & Rx_Over) lp->stats.rx_fifo_errors++; if (status & Rx_CRCErr) lp->stats.rx_crc_errors++; if (status & Rx_Align) lp->stats.rx_frame_errors++; } if (bd_count > 0) { /* put Free Buffer back to controller */ int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl); unsigned char id = (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; #ifdef DEBUG if (id >= RX_BUF_NUM) { printk("%s: invalid BDID.\n", dev->name); panic_queues(dev); } #else BUG_ON(id >= RX_BUF_NUM); #endif /* free old buffers */ #ifdef TC35815_USE_PACKEDBUFFER while (lp->fbl_curid != id) #else while (lp->fbl_count < RX_BUF_NUM) #endif { #ifdef TC35815_USE_PACKEDBUFFER unsigned char curid = lp->fbl_curid; #else unsigned char curid = (id + 1 + lp->fbl_count) % RX_BUF_NUM; #endif struct BDesc *bd = &lp->fbl_ptr->bd[curid]; #ifdef DEBUG bdctl = le32_to_cpu(bd->BDCtl); if (bdctl & BD_CownsBD) { printk("%s: Freeing invalid BD.\n", dev->name); panic_queues(dev); } #endif /* pass BD to controler */ #ifndef TC35815_USE_PACKEDBUFFER if (!lp->rx_skbs[curid].skb) { lp->rx_skbs[curid].skb = alloc_rxbuf_skb(dev, lp->pci_dev, &lp->rx_skbs[curid].skb_dma); if (!lp->rx_skbs[curid].skb) break; /* try on next reception */ bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma); } #endif /* TC35815_USE_PACKEDBUFFER */ /* Note: BDLength was modified by chip. */ bd->BDCtl = cpu_to_le32(BD_CownsBD | (curid << BD_RxBDID_SHIFT) | RX_BUF_SIZE); #ifdef TC35815_USE_PACKEDBUFFER lp->fbl_curid = (curid + 1) % RX_BUF_NUM; if (netif_msg_rx_status(lp)) { printk("%s: Entering new FBD %d\n", dev->name, lp->fbl_curid); dump_frfd(lp->fbl_ptr); } #else lp->fbl_count++; #endif buf_free_count++; } } /* put RxFD back to controller */ #ifdef DEBUG next_rfd = fd_bus_to_virt(lp, le32_to_cpu(lp->rfd_cur->fd.FDNext)); if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) { printk("%s: RxFD FDNext invalid.\n", dev->name); panic_queues(dev); } #endif for (i = 0; i < (bd_count + 1) / 2 + 1; i++) { /* pass FD to controler */ #ifdef DEBUG lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); #else lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL); #endif lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD); lp->rfd_cur++; fd_free_count++; } if (lp->rfd_cur > lp->rfd_limit) lp->rfd_cur = lp->rfd_base; #ifdef DEBUG if (lp->rfd_cur != next_rfd) printk("rfd_cur = %p, next_rfd %p\n", lp->rfd_cur, next_rfd); #endif } /* re-enable BL/FDA Exhaust interrupts. */ if (fd_free_count) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; u32 en, en_old = tc_readl(&tr->Int_En); en = en_old | Int_FDAExEn; if (buf_free_count) en |= Int_BLExEn; if (en != en_old) tc_writel(en, &tr->Int_En); } #ifdef TC35815_NAPI return received; #endif } #ifdef TC35815_NAPI static int tc35815_poll(struct net_device *dev, int *budget) { struct tc35815_local *lp = dev->priv; struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; int limit = min(*budget, dev->quota); int received = 0, handled; u32 status; spin_lock(&lp->lock); status = tc_readl(&tr->Int_Src); do { tc_writel(status, &tr->Int_Src); /* write to clear */ handled = tc35815_do_interrupt(dev, status, limit); if (handled >= 0) { received += handled; limit -= handled; if (limit <= 0) break; } status = tc_readl(&tr->Int_Src); } while (status); spin_unlock(&lp->lock); dev->quota -= received; *budget -= received; if (limit <= 0) return 1; netif_rx_complete(dev); /* enable interrupts */ tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl); return 0; } #endif #ifdef NO_CHECK_CARRIER #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_LateColl|Tx_TxPar|Tx_SQErr) #else #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr) #endif static void tc35815_check_tx_stat(struct net_device *dev, int status) { struct tc35815_local *lp = dev->priv; const char *msg = NULL; /* count collisions */ if (status & Tx_ExColl) lp->stats.collisions += 16; if (status & Tx_TxColl_MASK) lp->stats.collisions += status & Tx_TxColl_MASK; #ifndef NO_CHECK_CARRIER /* TX4939 does not have NCarr */ if (lp->boardtype == TC35815_TX4939) status &= ~Tx_NCarr; #ifdef WORKAROUND_LOSTCAR /* WORKAROUND: ignore LostCrS in full duplex operation */ if ((lp->timer_state != asleep && lp->timer_state != lcheck) || lp->fullduplex) status &= ~Tx_NCarr; #endif #endif if (!(status & TX_STA_ERR)) { /* no error. */ lp->stats.tx_packets++; return; } lp->stats.tx_errors++; if (status & Tx_ExColl) { lp->stats.tx_aborted_errors++; msg = "Excessive Collision."; } if (status & Tx_Under) { lp->stats.tx_fifo_errors++; msg = "Tx FIFO Underrun."; if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) { lp->lstats.tx_underrun++; if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh); msg = "Tx FIFO Underrun.Change Tx threshold to max."; } } } if (status & Tx_Defer) { lp->stats.tx_fifo_errors++; msg = "Excessive Deferral."; } #ifndef NO_CHECK_CARRIER if (status & Tx_NCarr) { lp->stats.tx_carrier_errors++; msg = "Lost Carrier Sense."; } #endif if (status & Tx_LateColl) { lp->stats.tx_aborted_errors++; msg = "Late Collision."; } if (status & Tx_TxPar) { lp->stats.tx_fifo_errors++; msg = "Transmit Parity Error."; } if (status & Tx_SQErr) { lp->stats.tx_heartbeat_errors++; msg = "Signal Quality Error."; } if (msg && netif_msg_tx_err(lp)) printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status); } /* This handles TX complete events posted by the device * via interrupts. */ static void tc35815_txdone(struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct TxFD *txfd; unsigned int fdctl; txfd = &lp->tfd_base[lp->tfd_end]; while (lp->tfd_start != lp->tfd_end && !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) { int status = le32_to_cpu(txfd->fd.FDStat); struct sk_buff *skb; unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext); u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem); if (netif_msg_tx_done(lp)) { printk("%s: complete TxFD.\n", dev->name); dump_txfd(txfd); } tc35815_check_tx_stat(dev, status); skb = fdsystem != 0xffffffff ? lp->tx_skbs[fdsystem].skb : NULL; #ifdef DEBUG if (lp->tx_skbs[lp->tfd_end].skb != skb) { printk("%s: tx_skbs mismatch.\n", dev->name); panic_queues(dev); } #else BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb); #endif if (skb) { lp->stats.tx_bytes += skb->len; pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE); lp->tx_skbs[lp->tfd_end].skb = NULL; lp->tx_skbs[lp->tfd_end].skb_dma = 0; #ifdef TC35815_NAPI dev_kfree_skb_any(skb); #else dev_kfree_skb_irq(skb); #endif } txfd->fd.FDSystem = cpu_to_le32(0xffffffff); lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM; txfd = &lp->tfd_base[lp->tfd_end]; #ifdef DEBUG if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) { printk("%s: TxFD FDNext invalid.\n", dev->name); panic_queues(dev); } #endif if (fdnext & FD_Next_EOL) { /* DMA Transmitter has been stopping... */ if (lp->tfd_end != lp->tfd_start) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM; struct TxFD* txhead = &lp->tfd_base[head]; int qlen = (lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM; #ifdef DEBUG if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) { printk("%s: TxFD FDCtl invalid.\n", dev->name); panic_queues(dev); } #endif /* log max queue length */ if (lp->lstats.max_tx_qlen < qlen) lp->lstats.max_tx_qlen = qlen; /* start DMA Transmitter again */ txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL); #ifdef GATHER_TXINT txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); #endif if (netif_msg_tx_queued(lp)) { printk("%s: start TxFD on queue.\n", dev->name); dump_txfd(txfd); } tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); } break; } } /* If we had stopped the queue due to a "tx full" * condition, and space has now been made available, * wake up the queue. */ if (netif_queue_stopped(dev) && ! tc35815_tx_full(dev)) netif_wake_queue(dev); } /* The inverse routine to tc35815_open(). */ static int tc35815_close(struct net_device *dev) { struct tc35815_local *lp = dev->priv; netif_stop_queue(dev); /* Flush the Tx and disable Rx here. */ del_timer(&lp->timer); /* Kill if running */ tc35815_chip_reset(dev); free_irq(dev->irq, dev); tc35815_free_queues(dev); return 0; } /* * Get the current statistics. * This may be called with the card open or closed. */ static struct net_device_stats *tc35815_get_stats(struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; if (netif_running(dev)) { /* Update the statistics from the device registers. */ lp->stats.rx_missed_errors = tc_readl(&tr->Miss_Cnt); } return &lp->stats; } static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr) { struct tc35815_local *lp = dev->priv; struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; int cam_index = index * 6; u32 cam_data; u32 saved_addr; saved_addr = tc_readl(&tr->CAM_Adr); if (netif_msg_hw(lp)) { int i; printk(KERN_DEBUG "%s: CAM %d:", dev->name, index); for (i = 0; i < 6; i++) printk(" %02x", addr[i]); printk("\n"); } if (index & 1) { /* read modify write */ tc_writel(cam_index - 2, &tr->CAM_Adr); cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000; cam_data |= addr[0] << 8 | addr[1]; tc_writel(cam_data, &tr->CAM_Data); /* write whole word */ tc_writel(cam_index + 2, &tr->CAM_Adr); cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; tc_writel(cam_data, &tr->CAM_Data); } else { /* write whole word */ tc_writel(cam_index, &tr->CAM_Adr); cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]; tc_writel(cam_data, &tr->CAM_Data); /* read modify write */ tc_writel(cam_index + 4, &tr->CAM_Adr); cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff; cam_data |= addr[4] << 24 | (addr[5] << 16); tc_writel(cam_data, &tr->CAM_Data); } tc_writel(saved_addr, &tr->CAM_Adr); } /* * Set or clear the multicast filter for this adaptor. * num_addrs == -1 Promiscuous mode, receive all packets * num_addrs == 0 Normal mode, clear multicast list * num_addrs > 0 Multicast mode, receive normal and MC packets, * and do best-effort filtering. */ static void tc35815_set_multicast_list(struct net_device *dev) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; if (dev->flags&IFF_PROMISC) { #ifdef WORKAROUND_100HALF_PROMISC /* With some (all?) 100MHalf HUB, controller will hang * if we enabled promiscuous mode before linkup... */ struct tc35815_local *lp = dev->priv; int pid = lp->phy_addr; if (!(tc_mdio_read(dev, pid, MII_BMSR) & BMSR_LSTATUS)) return; #endif /* Enable promiscuous mode */ tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl); } else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > CAM_ENTRY_MAX - 3) { /* CAM 0, 1, 20 are reserved. */ /* Disable promiscuous mode, use normal mode. */ tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl); } else if(dev->mc_count) { struct dev_mc_list* cur_addr = dev->mc_list; int i; int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE); tc_writel(0, &tr->CAM_Ctl); /* Walk the address list, and load the filter */ for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) { if (!cur_addr) break; /* entry 0,1 is reserved. */ tc35815_set_cam_entry(dev, i + 2, cur_addr->dmi_addr); ena_bits |= CAM_Ena_Bit(i + 2); } tc_writel(ena_bits, &tr->CAM_Ena); tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); } else { tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); } } static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct tc35815_local *lp = dev->priv; strcpy(info->driver, MODNAME); strcpy(info->version, DRV_VERSION); strcpy(info->bus_info, pci_name(lp->pci_dev)); } static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct tc35815_local *lp = dev->priv; spin_lock_irq(&lp->lock); mii_ethtool_gset(&lp->mii, cmd); spin_unlock_irq(&lp->lock); return 0; } static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct tc35815_local *lp = dev->priv; int rc; #if 1 /* use our negotiation method... */ /* Verify the settings we care about. */ if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) return -EINVAL; if (cmd->autoneg == AUTONEG_DISABLE && ((cmd->speed != SPEED_100 && cmd->speed != SPEED_10) || (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL))) return -EINVAL; /* Ok, do it to it. */ spin_lock_irq(&lp->lock); del_timer(&lp->timer); tc35815_start_auto_negotiation(dev, cmd); spin_unlock_irq(&lp->lock); rc = 0; #else spin_lock_irq(&lp->lock); rc = mii_ethtool_sset(&lp->mii, cmd); spin_unlock_irq(&lp->lock); #endif return rc; } static int tc35815_nway_reset(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int rc; spin_lock_irq(&lp->lock); rc = mii_nway_restart(&lp->mii); spin_unlock_irq(&lp->lock); return rc; } static u32 tc35815_get_link(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int rc; spin_lock_irq(&lp->lock); rc = mii_link_ok(&lp->mii); spin_unlock_irq(&lp->lock); return rc; } static u32 tc35815_get_msglevel(struct net_device *dev) { struct tc35815_local *lp = dev->priv; return lp->msg_enable; } static void tc35815_set_msglevel(struct net_device *dev, u32 datum) { struct tc35815_local *lp = dev->priv; lp->msg_enable = datum; } static int tc35815_get_stats_count(struct net_device *dev) { struct tc35815_local *lp = dev->priv; return sizeof(lp->lstats) / sizeof(int); } static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct tc35815_local *lp = dev->priv; data[0] = lp->lstats.max_tx_qlen; data[1] = lp->lstats.tx_ints; data[2] = lp->lstats.rx_ints; data[3] = lp->lstats.tx_underrun; } static struct { const char str[ETH_GSTRING_LEN]; } ethtool_stats_keys[] = { { "max_tx_qlen" }, { "tx_ints" }, { "rx_ints" }, { "tx_underrun" }, }; static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data) { memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys)); } static const struct ethtool_ops tc35815_ethtool_ops = { .get_drvinfo = tc35815_get_drvinfo, .get_settings = tc35815_get_settings, .set_settings = tc35815_set_settings, .nway_reset = tc35815_nway_reset, .get_link = tc35815_get_link, .get_msglevel = tc35815_get_msglevel, .set_msglevel = tc35815_set_msglevel, .get_strings = tc35815_get_strings, .get_stats_count = tc35815_get_stats_count, .get_ethtool_stats = tc35815_get_ethtool_stats, .get_perm_addr = ethtool_op_get_perm_addr, }; static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct tc35815_local *lp = dev->priv; int rc; if (!netif_running(dev)) return -EINVAL; spin_lock_irq(&lp->lock); rc = generic_mii_ioctl(&lp->mii, if_mii(rq), cmd, NULL); spin_unlock_irq(&lp->lock); return rc; } static int tc_mdio_read(struct net_device *dev, int phy_id, int location) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; u32 data; tc_writel(MD_CA_Busy | (phy_id << 5) | location, &tr->MD_CA); while (tc_readl(&tr->MD_CA) & MD_CA_Busy) ; data = tc_readl(&tr->MD_Data); return data & 0xffff; } static void tc_mdio_write(struct net_device *dev, int phy_id, int location, int val) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; tc_writel(val, &tr->MD_Data); tc_writel(MD_CA_Busy | MD_CA_Wr | (phy_id << 5) | location, &tr->MD_CA); while (tc_readl(&tr->MD_CA) & MD_CA_Busy) ; } /* Auto negotiation. The scheme is very simple. We have a timer routine * that keeps watching the auto negotiation process as it progresses. * The DP83840 is first told to start doing it's thing, we set up the time * and place the timer state machine in it's initial state. * * Here the timer peeks at the DP83840 status registers at each click to see * if the auto negotiation has completed, we assume here that the DP83840 PHY * will time out at some point and just tell us what (didn't) happen. For * complete coverage we only allow so many of the ticks at this level to run, * when this has expired we print a warning message and try another strategy. * This "other" strategy is to force the interface into various speed/duplex * configurations and we stop when we see a link-up condition before the * maximum number of "peek" ticks have occurred. * * Once a valid link status has been detected we configure the BigMAC and * the rest of the Happy Meal to speak the most efficient protocol we could * get a clean link for. The priority for link configurations, highest first * is: * 100 Base-T Full Duplex * 100 Base-T Half Duplex * 10 Base-T Full Duplex * 10 Base-T Half Duplex * * We start a new timer now, after a successful auto negotiation status has * been detected. This timer just waits for the link-up bit to get set in * the BMCR of the DP83840. When this occurs we print a kernel log message * describing the link type in use and the fact that it is up. * * If a fatal error of some sort is signalled and detected in the interrupt * service routine, and the chip is reset, or the link is ifconfig'd down * and then back up, this entire process repeats itself all over again. */ /* Note: Above comments are come from sunhme driver. */ static int tc35815_try_next_permutation(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int pid = lp->phy_addr; unsigned short bmcr; bmcr = tc_mdio_read(dev, pid, MII_BMCR); /* Downgrade from full to half duplex. Only possible via ethtool. */ if (bmcr & BMCR_FULLDPLX) { bmcr &= ~BMCR_FULLDPLX; printk(KERN_DEBUG "%s: try next permutation (BMCR %x)\n", dev->name, bmcr); tc_mdio_write(dev, pid, MII_BMCR, bmcr); return 0; } /* Downgrade from 100 to 10. */ if (bmcr & BMCR_SPEED100) { bmcr &= ~BMCR_SPEED100; printk(KERN_DEBUG "%s: try next permutation (BMCR %x)\n", dev->name, bmcr); tc_mdio_write(dev, pid, MII_BMCR, bmcr); return 0; } /* We've tried everything. */ return -1; } static void tc35815_display_link_mode(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int pid = lp->phy_addr; unsigned short lpa, bmcr; char *speed = "", *duplex = ""; lpa = tc_mdio_read(dev, pid, MII_LPA); bmcr = tc_mdio_read(dev, pid, MII_BMCR); if (options.speed ? (bmcr & BMCR_SPEED100) : (lpa & (LPA_100HALF | LPA_100FULL))) speed = "100Mb/s"; else speed = "10Mb/s"; if (options.duplex ? (bmcr & BMCR_FULLDPLX) : (lpa & (LPA_100FULL | LPA_10FULL))) duplex = "Full Duplex"; else duplex = "Half Duplex"; if (netif_msg_link(lp)) printk(KERN_INFO "%s: Link is up at %s, %s.\n", dev->name, speed, duplex); printk(KERN_DEBUG "%s: MII BMCR %04x BMSR %04x LPA %04x\n", dev->name, bmcr, tc_mdio_read(dev, pid, MII_BMSR), lpa); } static void tc35815_display_forced_link_mode(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int pid = lp->phy_addr; unsigned short bmcr; char *speed = "", *duplex = ""; bmcr = tc_mdio_read(dev, pid, MII_BMCR); if (bmcr & BMCR_SPEED100) speed = "100Mb/s"; else speed = "10Mb/s"; if (bmcr & BMCR_FULLDPLX) duplex = "Full Duplex.\n"; else duplex = "Half Duplex.\n"; if (netif_msg_link(lp)) printk(KERN_INFO "%s: Link has been forced up at %s, %s", dev->name, speed, duplex); } static void tc35815_set_link_modes(struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; int pid = lp->phy_addr; unsigned short bmcr, lpa; int speed; if (lp->timer_state == arbwait) { lpa = tc_mdio_read(dev, pid, MII_LPA); bmcr = tc_mdio_read(dev, pid, MII_BMCR); printk(KERN_DEBUG "%s: MII BMCR %04x BMSR %04x LPA %04x\n", dev->name, bmcr, tc_mdio_read(dev, pid, MII_BMSR), lpa); if (!(lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL))) { /* fall back to 10HALF */ printk(KERN_INFO "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa); lpa = LPA_10HALF; } if (options.duplex ? (bmcr & BMCR_FULLDPLX) : (lpa & (LPA_100FULL | LPA_10FULL))) lp->fullduplex = 1; else lp->fullduplex = 0; if (options.speed ? (bmcr & BMCR_SPEED100) : (lpa & (LPA_100HALF | LPA_100FULL))) speed = 100; else speed = 10; } else { /* Forcing a link mode. */ bmcr = tc_mdio_read(dev, pid, MII_BMCR); if (bmcr & BMCR_FULLDPLX) lp->fullduplex = 1; else lp->fullduplex = 0; if (bmcr & BMCR_SPEED100) speed = 100; else speed = 10; } tc_writel(tc_readl(&tr->MAC_Ctl) | MAC_HaltReq, &tr->MAC_Ctl); if (lp->fullduplex) { tc_writel(tc_readl(&tr->MAC_Ctl) | MAC_FullDup, &tr->MAC_Ctl); } else { tc_writel(tc_readl(&tr->MAC_Ctl) & ~MAC_FullDup, &tr->MAC_Ctl); } tc_writel(tc_readl(&tr->MAC_Ctl) & ~MAC_HaltReq, &tr->MAC_Ctl); /* TX4939 PCFG.SPEEDn bit will be changed on NETDEV_CHANGE event. */ #ifndef NO_CHECK_CARRIER /* TX4939 does not have EnLCarr */ if (lp->boardtype != TC35815_TX4939) { #ifdef WORKAROUND_LOSTCAR /* WORKAROUND: enable LostCrS only if half duplex operation */ if (!lp->fullduplex && lp->boardtype != TC35815_TX4939) tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr, &tr->Tx_Ctl); #endif } #endif lp->mii.full_duplex = lp->fullduplex; } static void tc35815_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct tc35815_local *lp = dev->priv; int pid = lp->phy_addr; unsigned short bmsr, bmcr, lpa; int restart_timer = 0; spin_lock_irq(&lp->lock); lp->timer_ticks++; switch (lp->timer_state) { case arbwait: /* * Only allow for 5 ticks, thats 10 seconds and much too * long to wait for arbitration to complete. */ /* TC35815 need more times... */ if (lp->timer_ticks >= 10) { /* Enter force mode. */ if (!options.doforce) { printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful," " cable probblem?\n", dev->name); /* Try to restart the adaptor. */ tc35815_restart(dev); goto out; } printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful," " trying force link mode\n", dev->name); printk(KERN_DEBUG "%s: BMCR %x BMSR %x\n", dev->name, tc_mdio_read(dev, pid, MII_BMCR), tc_mdio_read(dev, pid, MII_BMSR)); bmcr = BMCR_SPEED100; tc_mdio_write(dev, pid, MII_BMCR, bmcr); /* * OK, seems we need do disable the transceiver * for the first tick to make sure we get an * accurate link state at the second tick. */ lp->timer_state = ltrywait; lp->timer_ticks = 0; restart_timer = 1; } else { /* Anything interesting happen? */ bmsr = tc_mdio_read(dev, pid, MII_BMSR); if (bmsr & BMSR_ANEGCOMPLETE) { /* Just what we've been waiting for... */ tc35815_set_link_modes(dev); /* * Success, at least so far, advance our state * engine. */ lp->timer_state = lupwait; restart_timer = 1; } else { restart_timer = 1; } } break; case lupwait: /* * Auto negotiation was successful and we are awaiting a * link up status. I have decided to let this timer run * forever until some sort of error is signalled, reporting * a message to the user at 10 second intervals. */ bmsr = tc_mdio_read(dev, pid, MII_BMSR); if (bmsr & BMSR_LSTATUS) { /* * Wheee, it's up, display the link mode in use and put * the timer to sleep. */ tc35815_display_link_mode(dev); netif_carrier_on(dev); #ifdef WORKAROUND_100HALF_PROMISC /* delayed promiscuous enabling */ if (dev->flags & IFF_PROMISC) tc35815_set_multicast_list(dev); #endif #if 1 lp->saved_lpa = tc_mdio_read(dev, pid, MII_LPA); lp->timer_state = lcheck; restart_timer = 1; #else lp->timer_state = asleep; restart_timer = 0; #endif } else { if (lp->timer_ticks >= 10) { printk(KERN_NOTICE "%s: Auto negotiation successful, link still " "not completely up.\n", dev->name); lp->timer_ticks = 0; restart_timer = 1; } else { restart_timer = 1; } } break; case ltrywait: /* * Making the timeout here too long can make it take * annoyingly long to attempt all of the link mode * permutations, but then again this is essentially * error recovery code for the most part. */ bmsr = tc_mdio_read(dev, pid, MII_BMSR); bmcr = tc_mdio_read(dev, pid, MII_BMCR); if (lp->timer_ticks == 1) { /* * Re-enable transceiver, we'll re-enable the * transceiver next tick, then check link state * on the following tick. */ restart_timer = 1; break; } if (lp->timer_ticks == 2) { restart_timer = 1; break; } if (bmsr & BMSR_LSTATUS) { /* Force mode selection success. */ tc35815_display_forced_link_mode(dev); netif_carrier_on(dev); tc35815_set_link_modes(dev); #ifdef WORKAROUND_100HALF_PROMISC /* delayed promiscuous enabling */ if (dev->flags & IFF_PROMISC) tc35815_set_multicast_list(dev); #endif #if 1 lp->saved_lpa = tc_mdio_read(dev, pid, MII_LPA); lp->timer_state = lcheck; restart_timer = 1; #else lp->timer_state = asleep; restart_timer = 0; #endif } else { if (lp->timer_ticks >= 4) { /* 6 seconds or so... */ int ret; ret = tc35815_try_next_permutation(dev); if (ret == -1) { /* * Aieee, tried them all, reset the * chip and try all over again. */ printk(KERN_NOTICE "%s: Link down, " "cable problem?\n", dev->name); /* Try to restart the adaptor. */ tc35815_restart(dev); goto out; } lp->timer_ticks = 0; restart_timer = 1; } else { restart_timer = 1; } } break; case lcheck: bmcr = tc_mdio_read(dev, pid, MII_BMCR); lpa = tc_mdio_read(dev, pid, MII_LPA); if (bmcr & (BMCR_PDOWN | BMCR_ISOLATE | BMCR_RESET)) { printk(KERN_ERR "%s: PHY down? (BMCR %x)\n", dev->name, bmcr); } else if ((lp->saved_lpa ^ lpa) & (LPA_100FULL|LPA_100HALF|LPA_10FULL|LPA_10HALF)) { printk(KERN_NOTICE "%s: link status changed" " (BMCR %x LPA %x->%x)\n", dev->name, bmcr, lp->saved_lpa, lpa); } else { /* go on */ restart_timer = 1; break; } /* Try to restart the adaptor. */ tc35815_restart(dev); goto out; case asleep: default: /* Can't happens.... */ printk(KERN_ERR "%s: Aieee, link timer is asleep but we got " "one anyways!\n", dev->name); restart_timer = 0; lp->timer_ticks = 0; lp->timer_state = asleep; /* foo on you */ break; } if (restart_timer) { lp->timer.expires = jiffies + msecs_to_jiffies(1200); add_timer(&lp->timer); } out: spin_unlock_irq(&lp->lock); } static void tc35815_start_auto_negotiation(struct net_device *dev, struct ethtool_cmd *ep) { struct tc35815_local *lp = dev->priv; int pid = lp->phy_addr; unsigned short bmsr, bmcr, advertize; int timeout; netif_carrier_off(dev); bmsr = tc_mdio_read(dev, pid, MII_BMSR); bmcr = tc_mdio_read(dev, pid, MII_BMCR); advertize = tc_mdio_read(dev, pid, MII_ADVERTISE); if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) { if (options.speed || options.duplex) { /* Advertise only specified configuration. */ advertize &= ~(ADVERTISE_10HALF | ADVERTISE_10FULL | ADVERTISE_100HALF | ADVERTISE_100FULL); if (options.speed != 10) { if (options.duplex != 1) advertize |= ADVERTISE_100FULL; if (options.duplex != 2) advertize |= ADVERTISE_100HALF; } if (options.speed != 100) { if (options.duplex != 1) advertize |= ADVERTISE_10FULL; if (options.duplex != 2) advertize |= ADVERTISE_10HALF; } if (options.speed == 100) bmcr |= BMCR_SPEED100; else if (options.speed == 10) bmcr &= ~BMCR_SPEED100; if (options.duplex == 2) bmcr |= BMCR_FULLDPLX; else if (options.duplex == 1) bmcr &= ~BMCR_FULLDPLX; } else { /* Advertise everything we can support. */ if (bmsr & BMSR_10HALF) advertize |= ADVERTISE_10HALF; else advertize &= ~ADVERTISE_10HALF; if (bmsr & BMSR_10FULL) advertize |= ADVERTISE_10FULL; else advertize &= ~ADVERTISE_10FULL; if (bmsr & BMSR_100HALF) advertize |= ADVERTISE_100HALF; else advertize &= ~ADVERTISE_100HALF; if (bmsr & BMSR_100FULL) advertize |= ADVERTISE_100FULL; else advertize &= ~ADVERTISE_100FULL; } tc_mdio_write(dev, pid, MII_ADVERTISE, advertize); /* Enable Auto-Negotiation, this is usually on already... */ bmcr |= BMCR_ANENABLE; tc_mdio_write(dev, pid, MII_BMCR, bmcr); /* Restart it to make sure it is going. */ bmcr |= BMCR_ANRESTART; tc_mdio_write(dev, pid, MII_BMCR, bmcr); printk(KERN_DEBUG "%s: ADVERTISE %x BMCR %x\n", dev->name, advertize, bmcr); /* BMCR_ANRESTART self clears when the process has begun. */ timeout = 64; /* More than enough. */ while (--timeout) { bmcr = tc_mdio_read(dev, pid, MII_BMCR); if (!(bmcr & BMCR_ANRESTART)) break; /* got it. */ udelay(10); } if (!timeout) { printk(KERN_ERR "%s: TC35815 would not start auto " "negotiation BMCR=0x%04x\n", dev->name, bmcr); printk(KERN_NOTICE "%s: Performing force link " "detection.\n", dev->name); goto force_link; } else { printk(KERN_DEBUG "%s: auto negotiation started.\n", dev->name); lp->timer_state = arbwait; } } else { force_link: /* Force the link up, trying first a particular mode. * Either we are here at the request of ethtool or * because the Happy Meal would not start to autoneg. */ /* Disable auto-negotiation in BMCR, enable the duplex and * speed setting, init the timer state machine, and fire it off. */ if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) { bmcr = BMCR_SPEED100; } else { if (ep->speed == SPEED_100) bmcr = BMCR_SPEED100; else bmcr = 0; if (ep->duplex == DUPLEX_FULL) bmcr |= BMCR_FULLDPLX; } tc_mdio_write(dev, pid, MII_BMCR, bmcr); /* OK, seems we need do disable the transceiver for the first * tick to make sure we get an accurate link state at the * second tick. */ lp->timer_state = ltrywait; } del_timer(&lp->timer); lp->timer_ticks = 0; lp->timer.expires = jiffies + msecs_to_jiffies(1200); add_timer(&lp->timer); } static void tc35815_find_phy(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int pid = lp->phy_addr; unsigned short id0; /* find MII phy */ for (pid = 31; pid >= 0; pid--) { id0 = tc_mdio_read(dev, pid, MII_BMSR); if (id0 != 0xffff && id0 != 0x0000 && (id0 & BMSR_RESV) != (0xffff & BMSR_RESV) /* paranoia? */ ) { lp->phy_addr = pid; break; } } if (pid < 0) { printk(KERN_ERR "%s: No MII Phy found.\n", dev->name); lp->phy_addr = pid = 0; } lp->mii_id[0] = tc_mdio_read(dev, pid, MII_PHYSID1); lp->mii_id[1] = tc_mdio_read(dev, pid, MII_PHYSID2); if (netif_msg_hw(lp)) printk(KERN_INFO "%s: PHY(%02x) ID %04x %04x\n", dev->name, pid, lp->mii_id[0], lp->mii_id[1]); } static void tc35815_phy_chip_init(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int pid = lp->phy_addr; unsigned short bmcr; struct ethtool_cmd ecmd, *ep; /* dis-isolate if needed. */ bmcr = tc_mdio_read(dev, pid, MII_BMCR); if (bmcr & BMCR_ISOLATE) { int count = 32; printk(KERN_DEBUG "%s: unisolating...", dev->name); tc_mdio_write(dev, pid, MII_BMCR, bmcr & ~BMCR_ISOLATE); while (--count) { if (!(tc_mdio_read(dev, pid, MII_BMCR) & BMCR_ISOLATE)) break; udelay(20); } printk(" %s.\n", count ? "done" : "failed"); } if (options.speed && options.duplex) { ecmd.autoneg = AUTONEG_DISABLE; ecmd.speed = options.speed == 10 ? SPEED_10 : SPEED_100; ecmd.duplex = options.duplex == 1 ? DUPLEX_HALF : DUPLEX_FULL; ep = &ecmd; } else { ep = NULL; } tc35815_start_auto_negotiation(dev, ep); } static void tc35815_chip_reset(struct net_device *dev) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; int i; /* reset the controller */ tc_writel(MAC_Reset, &tr->MAC_Ctl); udelay(4); /* 3200ns */ i = 0; while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) { if (i++ > 100) { printk(KERN_ERR "%s: MAC reset failed.\n", dev->name); break; } mdelay(1); } tc_writel(0, &tr->MAC_Ctl); /* initialize registers to default value */ tc_writel(0, &tr->DMA_Ctl); tc_writel(0, &tr->TxThrsh); tc_writel(0, &tr->TxPollCtr); tc_writel(0, &tr->RxFragSize); tc_writel(0, &tr->Int_En); tc_writel(0, &tr->FDA_Bas); tc_writel(0, &tr->FDA_Lim); tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */ tc_writel(0, &tr->CAM_Ctl); tc_writel(0, &tr->Tx_Ctl); tc_writel(0, &tr->Rx_Ctl); tc_writel(0, &tr->CAM_Ena); (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */ /* initialize internal SRAM */ tc_writel(DMA_TestMode, &tr->DMA_Ctl); for (i = 0; i < 0x1000; i += 4) { tc_writel(i, &tr->CAM_Adr); tc_writel(0, &tr->CAM_Data); } tc_writel(0, &tr->DMA_Ctl); } static void tc35815_chip_init(struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; unsigned long txctl = TX_CTL_CMD; tc35815_phy_chip_init(dev); /* load station address to CAM */ tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr); /* Enable CAM (broadcast and unicast) */ tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */ if (HAVE_DMA_RXALIGN(lp)) tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl); else tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl); #ifdef TC35815_USE_PACKEDBUFFER tc_writel(RxFrag_EnPack | ETH_ZLEN, &tr->RxFragSize); /* Packing */ #else tc_writel(ETH_ZLEN, &tr->RxFragSize); #endif tc_writel(0, &tr->TxPollCtr); /* Batch mode */ tc_writel(TX_THRESHOLD, &tr->TxThrsh); tc_writel(INT_EN_CMD, &tr->Int_En); /* set queues */ tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas); tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base, &tr->FDA_Lim); /* * Activation method: * First, enable the MAC Transmitter and the DMA Receive circuits. * Then enable the DMA Transmitter and the MAC Receive circuits. */ tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */ tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */ /* start MAC transmitter */ #ifndef NO_CHECK_CARRIER /* TX4939 does not have EnLCarr */ if (lp->boardtype == TC35815_TX4939) txctl &= ~Tx_EnLCarr; #ifdef WORKAROUND_LOSTCAR /* WORKAROUND: ignore LostCrS in full duplex operation */ if ((lp->timer_state != asleep && lp->timer_state != lcheck) || lp->fullduplex) txctl &= ~Tx_EnLCarr; #endif #endif /* !NO_CHECK_CARRIER */ #ifdef GATHER_TXINT txctl &= ~Tx_EnComp; /* disable global tx completion int. */ #endif tc_writel(txctl, &tr->Tx_Ctl); } #ifdef CONFIG_PM static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *dev = pci_get_drvdata(pdev); struct tc35815_local *lp = dev->priv; unsigned long flags; pci_save_state(pdev); if (!netif_running(dev)) return 0; netif_device_detach(dev); spin_lock_irqsave(&lp->lock, flags); del_timer(&lp->timer); /* Kill if running */ tc35815_chip_reset(dev); spin_unlock_irqrestore(&lp->lock, flags); pci_set_power_state(pdev, PCI_D3hot); return 0; } static int tc35815_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct tc35815_local *lp = dev->priv; unsigned long flags; pci_restore_state(pdev); if (!netif_running(dev)) return 0; pci_set_power_state(pdev, PCI_D0); spin_lock_irqsave(&lp->lock, flags); tc35815_restart(dev); spin_unlock_irqrestore(&lp->lock, flags); netif_device_attach(dev); return 0; } #endif /* CONFIG_PM */ static struct pci_driver tc35815_pci_driver = { .name = MODNAME, .id_table = tc35815_pci_tbl, .probe = tc35815_init_one, .remove = __devexit_p(tc35815_remove_one), #ifdef CONFIG_PM .suspend = tc35815_suspend, .resume = tc35815_resume, #endif }; module_param_named(speed, options.speed, int, 0); MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps"); module_param_named(duplex, options.duplex, int, 0); MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full"); module_param_named(doforce, options.doforce, int, 0); MODULE_PARM_DESC(doforce, "try force link mode if auto-negotiation failed"); static int __init tc35815_init_module(void) { return pci_register_driver(&tc35815_pci_driver); } static void __exit tc35815_cleanup_module(void) { pci_unregister_driver(&tc35815_pci_driver); } module_init(tc35815_init_module); module_exit(tc35815_cleanup_module); MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver"); MODULE_LICENSE("GPL");